14c6bb798d
Change-Id: I0cfcc0005c4ad7bfbb1aaf454188ce70fb043dc1
945 lines
34 KiB
C
945 lines
34 KiB
C
/* Copyright (c) 2011 Xiph.Org Foundation
|
|
Written by Jean-Marc Valin */
|
|
/*
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#define ANALYSIS_C
|
|
|
|
#include <stdio.h>
|
|
|
|
#include "mathops.h"
|
|
#include "kiss_fft.h"
|
|
#include "celt.h"
|
|
#include "modes.h"
|
|
#include "arch.h"
|
|
#include "quant_bands.h"
|
|
#include "analysis.h"
|
|
#include "mlp.h"
|
|
#include "stack_alloc.h"
|
|
#include "float_cast.h"
|
|
|
|
#ifndef M_PI
|
|
#define M_PI 3.141592653
|
|
#endif
|
|
|
|
#ifndef DISABLE_FLOAT_API
|
|
|
|
#define TRANSITION_PENALTY 10
|
|
|
|
static const float dct_table[128] = {
|
|
0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f,
|
|
0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f,
|
|
0.351851f, 0.338330f, 0.311806f, 0.273300f, 0.224292f, 0.166664f, 0.102631f, 0.034654f,
|
|
-0.034654f,-0.102631f,-0.166664f,-0.224292f,-0.273300f,-0.311806f,-0.338330f,-0.351851f,
|
|
0.346760f, 0.293969f, 0.196424f, 0.068975f,-0.068975f,-0.196424f,-0.293969f,-0.346760f,
|
|
-0.346760f,-0.293969f,-0.196424f,-0.068975f, 0.068975f, 0.196424f, 0.293969f, 0.346760f,
|
|
0.338330f, 0.224292f, 0.034654f,-0.166664f,-0.311806f,-0.351851f,-0.273300f,-0.102631f,
|
|
0.102631f, 0.273300f, 0.351851f, 0.311806f, 0.166664f,-0.034654f,-0.224292f,-0.338330f,
|
|
0.326641f, 0.135299f,-0.135299f,-0.326641f,-0.326641f,-0.135299f, 0.135299f, 0.326641f,
|
|
0.326641f, 0.135299f,-0.135299f,-0.326641f,-0.326641f,-0.135299f, 0.135299f, 0.326641f,
|
|
0.311806f, 0.034654f,-0.273300f,-0.338330f,-0.102631f, 0.224292f, 0.351851f, 0.166664f,
|
|
-0.166664f,-0.351851f,-0.224292f, 0.102631f, 0.338330f, 0.273300f,-0.034654f,-0.311806f,
|
|
0.293969f,-0.068975f,-0.346760f,-0.196424f, 0.196424f, 0.346760f, 0.068975f,-0.293969f,
|
|
-0.293969f, 0.068975f, 0.346760f, 0.196424f,-0.196424f,-0.346760f,-0.068975f, 0.293969f,
|
|
0.273300f,-0.166664f,-0.338330f, 0.034654f, 0.351851f, 0.102631f,-0.311806f,-0.224292f,
|
|
0.224292f, 0.311806f,-0.102631f,-0.351851f,-0.034654f, 0.338330f, 0.166664f,-0.273300f,
|
|
};
|
|
|
|
static const float analysis_window[240] = {
|
|
0.000043f, 0.000171f, 0.000385f, 0.000685f, 0.001071f, 0.001541f, 0.002098f, 0.002739f,
|
|
0.003466f, 0.004278f, 0.005174f, 0.006156f, 0.007222f, 0.008373f, 0.009607f, 0.010926f,
|
|
0.012329f, 0.013815f, 0.015385f, 0.017037f, 0.018772f, 0.020590f, 0.022490f, 0.024472f,
|
|
0.026535f, 0.028679f, 0.030904f, 0.033210f, 0.035595f, 0.038060f, 0.040604f, 0.043227f,
|
|
0.045928f, 0.048707f, 0.051564f, 0.054497f, 0.057506f, 0.060591f, 0.063752f, 0.066987f,
|
|
0.070297f, 0.073680f, 0.077136f, 0.080665f, 0.084265f, 0.087937f, 0.091679f, 0.095492f,
|
|
0.099373f, 0.103323f, 0.107342f, 0.111427f, 0.115579f, 0.119797f, 0.124080f, 0.128428f,
|
|
0.132839f, 0.137313f, 0.141849f, 0.146447f, 0.151105f, 0.155823f, 0.160600f, 0.165435f,
|
|
0.170327f, 0.175276f, 0.180280f, 0.185340f, 0.190453f, 0.195619f, 0.200838f, 0.206107f,
|
|
0.211427f, 0.216797f, 0.222215f, 0.227680f, 0.233193f, 0.238751f, 0.244353f, 0.250000f,
|
|
0.255689f, 0.261421f, 0.267193f, 0.273005f, 0.278856f, 0.284744f, 0.290670f, 0.296632f,
|
|
0.302628f, 0.308658f, 0.314721f, 0.320816f, 0.326941f, 0.333097f, 0.339280f, 0.345492f,
|
|
0.351729f, 0.357992f, 0.364280f, 0.370590f, 0.376923f, 0.383277f, 0.389651f, 0.396044f,
|
|
0.402455f, 0.408882f, 0.415325f, 0.421783f, 0.428254f, 0.434737f, 0.441231f, 0.447736f,
|
|
0.454249f, 0.460770f, 0.467298f, 0.473832f, 0.480370f, 0.486912f, 0.493455f, 0.500000f,
|
|
0.506545f, 0.513088f, 0.519630f, 0.526168f, 0.532702f, 0.539230f, 0.545751f, 0.552264f,
|
|
0.558769f, 0.565263f, 0.571746f, 0.578217f, 0.584675f, 0.591118f, 0.597545f, 0.603956f,
|
|
0.610349f, 0.616723f, 0.623077f, 0.629410f, 0.635720f, 0.642008f, 0.648271f, 0.654508f,
|
|
0.660720f, 0.666903f, 0.673059f, 0.679184f, 0.685279f, 0.691342f, 0.697372f, 0.703368f,
|
|
0.709330f, 0.715256f, 0.721144f, 0.726995f, 0.732807f, 0.738579f, 0.744311f, 0.750000f,
|
|
0.755647f, 0.761249f, 0.766807f, 0.772320f, 0.777785f, 0.783203f, 0.788573f, 0.793893f,
|
|
0.799162f, 0.804381f, 0.809547f, 0.814660f, 0.819720f, 0.824724f, 0.829673f, 0.834565f,
|
|
0.839400f, 0.844177f, 0.848895f, 0.853553f, 0.858151f, 0.862687f, 0.867161f, 0.871572f,
|
|
0.875920f, 0.880203f, 0.884421f, 0.888573f, 0.892658f, 0.896677f, 0.900627f, 0.904508f,
|
|
0.908321f, 0.912063f, 0.915735f, 0.919335f, 0.922864f, 0.926320f, 0.929703f, 0.933013f,
|
|
0.936248f, 0.939409f, 0.942494f, 0.945503f, 0.948436f, 0.951293f, 0.954072f, 0.956773f,
|
|
0.959396f, 0.961940f, 0.964405f, 0.966790f, 0.969096f, 0.971321f, 0.973465f, 0.975528f,
|
|
0.977510f, 0.979410f, 0.981228f, 0.982963f, 0.984615f, 0.986185f, 0.987671f, 0.989074f,
|
|
0.990393f, 0.991627f, 0.992778f, 0.993844f, 0.994826f, 0.995722f, 0.996534f, 0.997261f,
|
|
0.997902f, 0.998459f, 0.998929f, 0.999315f, 0.999615f, 0.999829f, 0.999957f, 1.000000f,
|
|
};
|
|
|
|
static const int tbands[NB_TBANDS+1] = {
|
|
4, 8, 12, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 136, 160, 192, 240
|
|
};
|
|
|
|
#define NB_TONAL_SKIP_BANDS 9
|
|
|
|
static opus_val32 silk_resampler_down2_hp(
|
|
opus_val32 *S, /* I/O State vector [ 2 ] */
|
|
opus_val32 *out, /* O Output signal [ floor(len/2) ] */
|
|
const opus_val32 *in, /* I Input signal [ len ] */
|
|
int inLen /* I Number of input samples */
|
|
)
|
|
{
|
|
int k, len2 = inLen/2;
|
|
opus_val32 in32, out32, out32_hp, Y, X;
|
|
opus_val64 hp_ener = 0;
|
|
/* Internal variables and state are in Q10 format */
|
|
for( k = 0; k < len2; k++ ) {
|
|
/* Convert to Q10 */
|
|
in32 = in[ 2 * k ];
|
|
|
|
/* All-pass section for even input sample */
|
|
Y = SUB32( in32, S[ 0 ] );
|
|
X = MULT16_32_Q15(QCONST16(0.6074371f, 15), Y);
|
|
out32 = ADD32( S[ 0 ], X );
|
|
S[ 0 ] = ADD32( in32, X );
|
|
out32_hp = out32;
|
|
/* Convert to Q10 */
|
|
in32 = in[ 2 * k + 1 ];
|
|
|
|
/* All-pass section for odd input sample, and add to output of previous section */
|
|
Y = SUB32( in32, S[ 1 ] );
|
|
X = MULT16_32_Q15(QCONST16(0.15063f, 15), Y);
|
|
out32 = ADD32( out32, S[ 1 ] );
|
|
out32 = ADD32( out32, X );
|
|
S[ 1 ] = ADD32( in32, X );
|
|
|
|
Y = SUB32( -in32, S[ 2 ] );
|
|
X = MULT16_32_Q15(QCONST16(0.15063f, 15), Y);
|
|
out32_hp = ADD32( out32_hp, S[ 2 ] );
|
|
out32_hp = ADD32( out32_hp, X );
|
|
S[ 2 ] = ADD32( -in32, X );
|
|
|
|
hp_ener += out32_hp*(opus_val64)out32_hp;
|
|
/* Add, convert back to int16 and store to output */
|
|
out[ k ] = HALF32(out32);
|
|
}
|
|
#ifdef FIXED_POINT
|
|
/* len2 can be up to 480, so we shift by 8 more to make it fit. */
|
|
hp_ener = hp_ener >> (2*SIG_SHIFT + 8);
|
|
#endif
|
|
return (opus_val32)hp_ener;
|
|
}
|
|
|
|
static opus_val32 downmix_and_resample(downmix_func downmix, const void *_x, opus_val32 *y, opus_val32 S[3], int subframe, int offset, int c1, int c2, int C, int Fs)
|
|
{
|
|
VARDECL(opus_val32, tmp);
|
|
opus_val32 scale;
|
|
int j;
|
|
opus_val32 ret = 0;
|
|
SAVE_STACK;
|
|
|
|
if (subframe==0) return 0;
|
|
if (Fs == 48000)
|
|
{
|
|
subframe *= 2;
|
|
offset *= 2;
|
|
} else if (Fs == 16000) {
|
|
subframe = subframe*2/3;
|
|
offset = offset*2/3;
|
|
}
|
|
ALLOC(tmp, subframe, opus_val32);
|
|
|
|
downmix(_x, tmp, subframe, offset, c1, c2, C);
|
|
#ifdef FIXED_POINT
|
|
scale = (1<<SIG_SHIFT);
|
|
#else
|
|
scale = 1.f/32768;
|
|
#endif
|
|
if (c2==-2)
|
|
scale /= C;
|
|
else if (c2>-1)
|
|
scale /= 2;
|
|
for (j=0;j<subframe;j++)
|
|
tmp[j] *= scale;
|
|
if (Fs == 48000)
|
|
{
|
|
ret = silk_resampler_down2_hp(S, y, tmp, subframe);
|
|
} else if (Fs == 24000) {
|
|
OPUS_COPY(y, tmp, subframe);
|
|
} else if (Fs == 16000) {
|
|
VARDECL(opus_val32, tmp3x);
|
|
ALLOC(tmp3x, 3*subframe, opus_val32);
|
|
/* Don't do this at home! This resampler is horrible and it's only (barely)
|
|
usable for the purpose of the analysis because we don't care about all
|
|
the aliasing between 8 kHz and 12 kHz. */
|
|
for (j=0;j<subframe;j++)
|
|
{
|
|
tmp3x[3*j] = tmp[j];
|
|
tmp3x[3*j+1] = tmp[j];
|
|
tmp3x[3*j+2] = tmp[j];
|
|
}
|
|
silk_resampler_down2_hp(S, y, tmp3x, 3*subframe);
|
|
}
|
|
RESTORE_STACK;
|
|
return ret;
|
|
}
|
|
|
|
void tonality_analysis_init(TonalityAnalysisState *tonal, opus_int32 Fs)
|
|
{
|
|
/* Initialize reusable fields. */
|
|
tonal->arch = opus_select_arch();
|
|
tonal->Fs = Fs;
|
|
/* Clear remaining fields. */
|
|
tonality_analysis_reset(tonal);
|
|
}
|
|
|
|
void tonality_analysis_reset(TonalityAnalysisState *tonal)
|
|
{
|
|
/* Clear non-reusable fields. */
|
|
char *start = (char*)&tonal->TONALITY_ANALYSIS_RESET_START;
|
|
OPUS_CLEAR(start, sizeof(TonalityAnalysisState) - (start - (char*)tonal));
|
|
}
|
|
|
|
void tonality_get_info(TonalityAnalysisState *tonal, AnalysisInfo *info_out, int len)
|
|
{
|
|
int pos;
|
|
int curr_lookahead;
|
|
float tonality_max;
|
|
float tonality_avg;
|
|
int tonality_count;
|
|
int i;
|
|
int pos0;
|
|
float prob_avg;
|
|
float prob_count;
|
|
float prob_min, prob_max;
|
|
float vad_prob;
|
|
int mpos, vpos;
|
|
int bandwidth_span;
|
|
|
|
pos = tonal->read_pos;
|
|
curr_lookahead = tonal->write_pos-tonal->read_pos;
|
|
if (curr_lookahead<0)
|
|
curr_lookahead += DETECT_SIZE;
|
|
|
|
/* On long frames, look at the second analysis window rather than the first. */
|
|
if (len > tonal->Fs/50 && pos != tonal->write_pos)
|
|
{
|
|
pos++;
|
|
if (pos==DETECT_SIZE)
|
|
pos=0;
|
|
}
|
|
if (pos == tonal->write_pos)
|
|
pos--;
|
|
if (pos<0)
|
|
pos = DETECT_SIZE-1;
|
|
pos0 = pos;
|
|
OPUS_COPY(info_out, &tonal->info[pos], 1);
|
|
tonality_max = tonality_avg = info_out->tonality;
|
|
tonality_count = 1;
|
|
/* Look at the neighbouring frames and pick largest bandwidth found (to be safe). */
|
|
bandwidth_span = 6;
|
|
/* If possible, look ahead for a tone to compensate for the delay in the tone detector. */
|
|
for (i=0;i<3;i++)
|
|
{
|
|
pos++;
|
|
if (pos==DETECT_SIZE)
|
|
pos = 0;
|
|
if (pos == tonal->write_pos)
|
|
break;
|
|
tonality_max = MAX32(tonality_max, tonal->info[pos].tonality);
|
|
tonality_avg += tonal->info[pos].tonality;
|
|
tonality_count++;
|
|
info_out->bandwidth = IMAX(info_out->bandwidth, tonal->info[pos].bandwidth);
|
|
bandwidth_span--;
|
|
}
|
|
pos = pos0;
|
|
/* Look back in time to see if any has a wider bandwidth than the current frame. */
|
|
for (i=0;i<bandwidth_span;i++)
|
|
{
|
|
pos--;
|
|
if (pos < 0)
|
|
pos = DETECT_SIZE-1;
|
|
if (pos == tonal->write_pos)
|
|
break;
|
|
info_out->bandwidth = IMAX(info_out->bandwidth, tonal->info[pos].bandwidth);
|
|
}
|
|
info_out->tonality = MAX32(tonality_avg/tonality_count, tonality_max-.2f);
|
|
|
|
mpos = vpos = pos0;
|
|
/* If we have enough look-ahead, compensate for the ~5-frame delay in the music prob and
|
|
~1 frame delay in the VAD prob. */
|
|
if (curr_lookahead > 15)
|
|
{
|
|
mpos += 5;
|
|
if (mpos>=DETECT_SIZE)
|
|
mpos -= DETECT_SIZE;
|
|
vpos += 1;
|
|
if (vpos>=DETECT_SIZE)
|
|
vpos -= DETECT_SIZE;
|
|
}
|
|
|
|
/* The following calculations attempt to minimize a "badness function"
|
|
for the transition. When switching from speech to music, the badness
|
|
of switching at frame k is
|
|
b_k = S*v_k + \sum_{i=0}^{k-1} v_i*(p_i - T)
|
|
where
|
|
v_i is the activity probability (VAD) at frame i,
|
|
p_i is the music probability at frame i
|
|
T is the probability threshold for switching
|
|
S is the penalty for switching during active audio rather than silence
|
|
the current frame has index i=0
|
|
|
|
Rather than apply badness to directly decide when to switch, what we compute
|
|
instead is the threshold for which the optimal switching point is now. When
|
|
considering whether to switch now (frame 0) or at frame k, we have:
|
|
S*v_0 = S*v_k + \sum_{i=0}^{k-1} v_i*(p_i - T)
|
|
which gives us:
|
|
T = ( \sum_{i=0}^{k-1} v_i*p_i + S*(v_k-v_0) ) / ( \sum_{i=0}^{k-1} v_i )
|
|
We take the min threshold across all positive values of k (up to the maximum
|
|
amount of lookahead we have) to give us the threshold for which the current
|
|
frame is the optimal switch point.
|
|
|
|
The last step is that we need to consider whether we want to switch at all.
|
|
For that we use the average of the music probability over the entire window.
|
|
If the threshold is higher than that average we're not going to
|
|
switch, so we compute a min with the average as well. The result of all these
|
|
min operations is music_prob_min, which gives the threshold for switching to music
|
|
if we're currently encoding for speech.
|
|
|
|
We do the exact opposite to compute music_prob_max which is used for switching
|
|
from music to speech.
|
|
*/
|
|
prob_min = 1.f;
|
|
prob_max = 0.f;
|
|
vad_prob = tonal->info[vpos].activity_probability;
|
|
prob_count = MAX16(.1f, vad_prob);
|
|
prob_avg = MAX16(.1f, vad_prob)*tonal->info[mpos].music_prob;
|
|
while (1)
|
|
{
|
|
float pos_vad;
|
|
mpos++;
|
|
if (mpos==DETECT_SIZE)
|
|
mpos = 0;
|
|
if (mpos == tonal->write_pos)
|
|
break;
|
|
vpos++;
|
|
if (vpos==DETECT_SIZE)
|
|
vpos = 0;
|
|
if (vpos == tonal->write_pos)
|
|
break;
|
|
pos_vad = tonal->info[vpos].activity_probability;
|
|
prob_min = MIN16((prob_avg - TRANSITION_PENALTY*(vad_prob - pos_vad))/prob_count, prob_min);
|
|
prob_max = MAX16((prob_avg + TRANSITION_PENALTY*(vad_prob - pos_vad))/prob_count, prob_max);
|
|
prob_count += MAX16(.1f, pos_vad);
|
|
prob_avg += MAX16(.1f, pos_vad)*tonal->info[mpos].music_prob;
|
|
}
|
|
info_out->music_prob = prob_avg/prob_count;
|
|
prob_min = MIN16(prob_avg/prob_count, prob_min);
|
|
prob_max = MAX16(prob_avg/prob_count, prob_max);
|
|
prob_min = MAX16(prob_min, 0.f);
|
|
prob_max = MIN16(prob_max, 1.f);
|
|
|
|
/* If we don't have enough look-ahead, do our best to make a decent decision. */
|
|
if (curr_lookahead < 10)
|
|
{
|
|
float pmin, pmax;
|
|
pmin = prob_min;
|
|
pmax = prob_max;
|
|
pos = pos0;
|
|
/* Look for min/max in the past. */
|
|
for (i=0;i<IMIN(tonal->count-1, 15);i++)
|
|
{
|
|
pos--;
|
|
if (pos < 0)
|
|
pos = DETECT_SIZE-1;
|
|
pmin = MIN16(pmin, tonal->info[pos].music_prob);
|
|
pmax = MAX16(pmax, tonal->info[pos].music_prob);
|
|
}
|
|
/* Bias against switching on active audio. */
|
|
pmin = MAX16(0.f, pmin - .1f*vad_prob);
|
|
pmax = MIN16(1.f, pmax + .1f*vad_prob);
|
|
prob_min += (1.f-.1f*curr_lookahead)*(pmin - prob_min);
|
|
prob_max += (1.f-.1f*curr_lookahead)*(pmax - prob_max);
|
|
}
|
|
info_out->music_prob_min = prob_min;
|
|
info_out->music_prob_max = prob_max;
|
|
|
|
/* printf("%f %f %f %f %f\n", prob_min, prob_max, prob_avg/prob_count, vad_prob, info_out->music_prob); */
|
|
tonal->read_subframe += len/(tonal->Fs/400);
|
|
while (tonal->read_subframe>=8)
|
|
{
|
|
tonal->read_subframe -= 8;
|
|
tonal->read_pos++;
|
|
}
|
|
if (tonal->read_pos>=DETECT_SIZE)
|
|
tonal->read_pos-=DETECT_SIZE;
|
|
}
|
|
|
|
static const float std_feature_bias[9] = {
|
|
5.684947f, 3.475288f, 1.770634f, 1.599784f, 3.773215f,
|
|
2.163313f, 1.260756f, 1.116868f, 1.918795f
|
|
};
|
|
|
|
#define LEAKAGE_OFFSET 2.5f
|
|
#define LEAKAGE_SLOPE 2.f
|
|
|
|
#ifdef FIXED_POINT
|
|
/* For fixed-point, the input is +/-2^15 shifted up by SIG_SHIFT, so we need to
|
|
compensate for that in the energy. */
|
|
#define SCALE_COMPENS (1.f/((opus_int32)1<<(15+SIG_SHIFT)))
|
|
#define SCALE_ENER(e) ((SCALE_COMPENS*SCALE_COMPENS)*(e))
|
|
#else
|
|
#define SCALE_ENER(e) (e)
|
|
#endif
|
|
|
|
static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt_mode, const void *x, int len, int offset, int c1, int c2, int C, int lsb_depth, downmix_func downmix)
|
|
{
|
|
int i, b;
|
|
const kiss_fft_state *kfft;
|
|
VARDECL(kiss_fft_cpx, in);
|
|
VARDECL(kiss_fft_cpx, out);
|
|
int N = 480, N2=240;
|
|
float * OPUS_RESTRICT A = tonal->angle;
|
|
float * OPUS_RESTRICT dA = tonal->d_angle;
|
|
float * OPUS_RESTRICT d2A = tonal->d2_angle;
|
|
VARDECL(float, tonality);
|
|
VARDECL(float, noisiness);
|
|
float band_tonality[NB_TBANDS];
|
|
float logE[NB_TBANDS];
|
|
float BFCC[8];
|
|
float features[25];
|
|
float frame_tonality;
|
|
float max_frame_tonality;
|
|
/*float tw_sum=0;*/
|
|
float frame_noisiness;
|
|
const float pi4 = (float)(M_PI*M_PI*M_PI*M_PI);
|
|
float slope=0;
|
|
float frame_stationarity;
|
|
float relativeE;
|
|
float frame_probs[2];
|
|
float alpha, alphaE, alphaE2;
|
|
float frame_loudness;
|
|
float bandwidth_mask;
|
|
int is_masked[NB_TBANDS+1];
|
|
int bandwidth=0;
|
|
float maxE = 0;
|
|
float noise_floor;
|
|
int remaining;
|
|
AnalysisInfo *info;
|
|
float hp_ener;
|
|
float tonality2[240];
|
|
float midE[8];
|
|
float spec_variability=0;
|
|
float band_log2[NB_TBANDS+1];
|
|
float leakage_from[NB_TBANDS+1];
|
|
float leakage_to[NB_TBANDS+1];
|
|
float layer_out[MAX_NEURONS];
|
|
float below_max_pitch;
|
|
float above_max_pitch;
|
|
SAVE_STACK;
|
|
|
|
alpha = 1.f/IMIN(10, 1+tonal->count);
|
|
alphaE = 1.f/IMIN(25, 1+tonal->count);
|
|
/* Noise floor related decay for bandwidth detection: -2.2 dB/second */
|
|
alphaE2 = 1.f/IMIN(100, 1+tonal->count);
|
|
if (tonal->count <= 1) alphaE2 = 1;
|
|
|
|
if (tonal->Fs == 48000)
|
|
{
|
|
/* len and offset are now at 24 kHz. */
|
|
len/= 2;
|
|
offset /= 2;
|
|
} else if (tonal->Fs == 16000) {
|
|
len = 3*len/2;
|
|
offset = 3*offset/2;
|
|
}
|
|
|
|
kfft = celt_mode->mdct.kfft[0];
|
|
if (tonal->count==0)
|
|
tonal->mem_fill = 240;
|
|
tonal->hp_ener_accum += (float)downmix_and_resample(downmix, x,
|
|
&tonal->inmem[tonal->mem_fill], tonal->downmix_state,
|
|
IMIN(len, ANALYSIS_BUF_SIZE-tonal->mem_fill), offset, c1, c2, C, tonal->Fs);
|
|
if (tonal->mem_fill+len < ANALYSIS_BUF_SIZE)
|
|
{
|
|
tonal->mem_fill += len;
|
|
/* Don't have enough to update the analysis */
|
|
RESTORE_STACK;
|
|
return;
|
|
}
|
|
hp_ener = tonal->hp_ener_accum;
|
|
info = &tonal->info[tonal->write_pos++];
|
|
if (tonal->write_pos>=DETECT_SIZE)
|
|
tonal->write_pos-=DETECT_SIZE;
|
|
|
|
ALLOC(in, 480, kiss_fft_cpx);
|
|
ALLOC(out, 480, kiss_fft_cpx);
|
|
ALLOC(tonality, 240, float);
|
|
ALLOC(noisiness, 240, float);
|
|
for (i=0;i<N2;i++)
|
|
{
|
|
float w = analysis_window[i];
|
|
in[i].r = (kiss_fft_scalar)(w*tonal->inmem[i]);
|
|
in[i].i = (kiss_fft_scalar)(w*tonal->inmem[N2+i]);
|
|
in[N-i-1].r = (kiss_fft_scalar)(w*tonal->inmem[N-i-1]);
|
|
in[N-i-1].i = (kiss_fft_scalar)(w*tonal->inmem[N+N2-i-1]);
|
|
}
|
|
OPUS_MOVE(tonal->inmem, tonal->inmem+ANALYSIS_BUF_SIZE-240, 240);
|
|
remaining = len - (ANALYSIS_BUF_SIZE-tonal->mem_fill);
|
|
tonal->hp_ener_accum = (float)downmix_and_resample(downmix, x,
|
|
&tonal->inmem[240], tonal->downmix_state, remaining,
|
|
offset+ANALYSIS_BUF_SIZE-tonal->mem_fill, c1, c2, C, tonal->Fs);
|
|
tonal->mem_fill = 240 + remaining;
|
|
opus_fft(kfft, in, out, tonal->arch);
|
|
#ifndef FIXED_POINT
|
|
/* If there's any NaN on the input, the entire output will be NaN, so we only need to check one value. */
|
|
if (celt_isnan(out[0].r))
|
|
{
|
|
info->valid = 0;
|
|
RESTORE_STACK;
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
for (i=1;i<N2;i++)
|
|
{
|
|
float X1r, X2r, X1i, X2i;
|
|
float angle, d_angle, d2_angle;
|
|
float angle2, d_angle2, d2_angle2;
|
|
float mod1, mod2, avg_mod;
|
|
X1r = (float)out[i].r+out[N-i].r;
|
|
X1i = (float)out[i].i-out[N-i].i;
|
|
X2r = (float)out[i].i+out[N-i].i;
|
|
X2i = (float)out[N-i].r-out[i].r;
|
|
|
|
angle = (float)(.5f/M_PI)*fast_atan2f(X1i, X1r);
|
|
d_angle = angle - A[i];
|
|
d2_angle = d_angle - dA[i];
|
|
|
|
angle2 = (float)(.5f/M_PI)*fast_atan2f(X2i, X2r);
|
|
d_angle2 = angle2 - angle;
|
|
d2_angle2 = d_angle2 - d_angle;
|
|
|
|
mod1 = d2_angle - (float)float2int(d2_angle);
|
|
noisiness[i] = ABS16(mod1);
|
|
mod1 *= mod1;
|
|
mod1 *= mod1;
|
|
|
|
mod2 = d2_angle2 - (float)float2int(d2_angle2);
|
|
noisiness[i] += ABS16(mod2);
|
|
mod2 *= mod2;
|
|
mod2 *= mod2;
|
|
|
|
avg_mod = .25f*(d2A[i]+mod1+2*mod2);
|
|
/* This introduces an extra delay of 2 frames in the detection. */
|
|
tonality[i] = 1.f/(1.f+40.f*16.f*pi4*avg_mod)-.015f;
|
|
/* No delay on this detection, but it's less reliable. */
|
|
tonality2[i] = 1.f/(1.f+40.f*16.f*pi4*mod2)-.015f;
|
|
|
|
A[i] = angle2;
|
|
dA[i] = d_angle2;
|
|
d2A[i] = mod2;
|
|
}
|
|
for (i=2;i<N2-1;i++)
|
|
{
|
|
float tt = MIN32(tonality2[i], MAX32(tonality2[i-1], tonality2[i+1]));
|
|
tonality[i] = .9f*MAX32(tonality[i], tt-.1f);
|
|
}
|
|
frame_tonality = 0;
|
|
max_frame_tonality = 0;
|
|
/*tw_sum = 0;*/
|
|
info->activity = 0;
|
|
frame_noisiness = 0;
|
|
frame_stationarity = 0;
|
|
if (!tonal->count)
|
|
{
|
|
for (b=0;b<NB_TBANDS;b++)
|
|
{
|
|
tonal->lowE[b] = 1e10;
|
|
tonal->highE[b] = -1e10;
|
|
}
|
|
}
|
|
relativeE = 0;
|
|
frame_loudness = 0;
|
|
/* The energy of the very first band is special because of DC. */
|
|
{
|
|
float E = 0;
|
|
float X1r, X2r;
|
|
X1r = 2*(float)out[0].r;
|
|
X2r = 2*(float)out[0].i;
|
|
E = X1r*X1r + X2r*X2r;
|
|
for (i=1;i<4;i++)
|
|
{
|
|
float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r
|
|
+ out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i;
|
|
E += binE;
|
|
}
|
|
E = SCALE_ENER(E);
|
|
band_log2[0] = .5f*1.442695f*(float)log(E+1e-10f);
|
|
}
|
|
for (b=0;b<NB_TBANDS;b++)
|
|
{
|
|
float E=0, tE=0, nE=0;
|
|
float L1, L2;
|
|
float stationarity;
|
|
for (i=tbands[b];i<tbands[b+1];i++)
|
|
{
|
|
float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r
|
|
+ out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i;
|
|
binE = SCALE_ENER(binE);
|
|
E += binE;
|
|
tE += binE*MAX32(0, tonality[i]);
|
|
nE += binE*2.f*(.5f-noisiness[i]);
|
|
}
|
|
#ifndef FIXED_POINT
|
|
/* Check for extreme band energies that could cause NaNs later. */
|
|
if (!(E<1e9f) || celt_isnan(E))
|
|
{
|
|
info->valid = 0;
|
|
RESTORE_STACK;
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
tonal->E[tonal->E_count][b] = E;
|
|
frame_noisiness += nE/(1e-15f+E);
|
|
|
|
frame_loudness += (float)sqrt(E+1e-10f);
|
|
logE[b] = (float)log(E+1e-10f);
|
|
band_log2[b+1] = .5f*1.442695f*(float)log(E+1e-10f);
|
|
tonal->logE[tonal->E_count][b] = logE[b];
|
|
if (tonal->count==0)
|
|
tonal->highE[b] = tonal->lowE[b] = logE[b];
|
|
if (tonal->highE[b] > tonal->lowE[b] + 7.5)
|
|
{
|
|
if (tonal->highE[b] - logE[b] > logE[b] - tonal->lowE[b])
|
|
tonal->highE[b] -= .01f;
|
|
else
|
|
tonal->lowE[b] += .01f;
|
|
}
|
|
if (logE[b] > tonal->highE[b])
|
|
{
|
|
tonal->highE[b] = logE[b];
|
|
tonal->lowE[b] = MAX32(tonal->highE[b]-15, tonal->lowE[b]);
|
|
} else if (logE[b] < tonal->lowE[b])
|
|
{
|
|
tonal->lowE[b] = logE[b];
|
|
tonal->highE[b] = MIN32(tonal->lowE[b]+15, tonal->highE[b]);
|
|
}
|
|
relativeE += (logE[b]-tonal->lowE[b])/(1e-15f + (tonal->highE[b]-tonal->lowE[b]));
|
|
|
|
L1=L2=0;
|
|
for (i=0;i<NB_FRAMES;i++)
|
|
{
|
|
L1 += (float)sqrt(tonal->E[i][b]);
|
|
L2 += tonal->E[i][b];
|
|
}
|
|
|
|
stationarity = MIN16(0.99f,L1/(float)sqrt(1e-15+NB_FRAMES*L2));
|
|
stationarity *= stationarity;
|
|
stationarity *= stationarity;
|
|
frame_stationarity += stationarity;
|
|
/*band_tonality[b] = tE/(1e-15+E)*/;
|
|
band_tonality[b] = MAX16(tE/(1e-15f+E), stationarity*tonal->prev_band_tonality[b]);
|
|
#if 0
|
|
if (b>=NB_TONAL_SKIP_BANDS)
|
|
{
|
|
frame_tonality += tweight[b]*band_tonality[b];
|
|
tw_sum += tweight[b];
|
|
}
|
|
#else
|
|
frame_tonality += band_tonality[b];
|
|
if (b>=NB_TBANDS-NB_TONAL_SKIP_BANDS)
|
|
frame_tonality -= band_tonality[b-NB_TBANDS+NB_TONAL_SKIP_BANDS];
|
|
#endif
|
|
max_frame_tonality = MAX16(max_frame_tonality, (1.f+.03f*(b-NB_TBANDS))*frame_tonality);
|
|
slope += band_tonality[b]*(b-8);
|
|
/*printf("%f %f ", band_tonality[b], stationarity);*/
|
|
tonal->prev_band_tonality[b] = band_tonality[b];
|
|
}
|
|
|
|
leakage_from[0] = band_log2[0];
|
|
leakage_to[0] = band_log2[0] - LEAKAGE_OFFSET;
|
|
for (b=1;b<NB_TBANDS+1;b++)
|
|
{
|
|
float leak_slope = LEAKAGE_SLOPE*(tbands[b]-tbands[b-1])/4;
|
|
leakage_from[b] = MIN16(leakage_from[b-1]+leak_slope, band_log2[b]);
|
|
leakage_to[b] = MAX16(leakage_to[b-1]-leak_slope, band_log2[b]-LEAKAGE_OFFSET);
|
|
}
|
|
for (b=NB_TBANDS-2;b>=0;b--)
|
|
{
|
|
float leak_slope = LEAKAGE_SLOPE*(tbands[b+1]-tbands[b])/4;
|
|
leakage_from[b] = MIN16(leakage_from[b+1]+leak_slope, leakage_from[b]);
|
|
leakage_to[b] = MAX16(leakage_to[b+1]-leak_slope, leakage_to[b]);
|
|
}
|
|
celt_assert(NB_TBANDS+1 <= LEAK_BANDS);
|
|
for (b=0;b<NB_TBANDS+1;b++)
|
|
{
|
|
/* leak_boost[] is made up of two terms. The first, based on leakage_to[],
|
|
represents the boost needed to overcome the amount of analysis leakage
|
|
cause in a weaker band b by louder neighbouring bands.
|
|
The second, based on leakage_from[], applies to a loud band b for
|
|
which the quantization noise causes synthesis leakage to the weaker
|
|
neighbouring bands. */
|
|
float boost = MAX16(0, leakage_to[b] - band_log2[b]) +
|
|
MAX16(0, band_log2[b] - (leakage_from[b]+LEAKAGE_OFFSET));
|
|
info->leak_boost[b] = IMIN(255, (int)floor(.5 + 64.f*boost));
|
|
}
|
|
for (;b<LEAK_BANDS;b++) info->leak_boost[b] = 0;
|
|
|
|
for (i=0;i<NB_FRAMES;i++)
|
|
{
|
|
int j;
|
|
float mindist = 1e15f;
|
|
for (j=0;j<NB_FRAMES;j++)
|
|
{
|
|
int k;
|
|
float dist=0;
|
|
for (k=0;k<NB_TBANDS;k++)
|
|
{
|
|
float tmp;
|
|
tmp = tonal->logE[i][k] - tonal->logE[j][k];
|
|
dist += tmp*tmp;
|
|
}
|
|
if (j!=i)
|
|
mindist = MIN32(mindist, dist);
|
|
}
|
|
spec_variability += mindist;
|
|
}
|
|
spec_variability = (float)sqrt(spec_variability/NB_FRAMES/NB_TBANDS);
|
|
bandwidth_mask = 0;
|
|
bandwidth = 0;
|
|
maxE = 0;
|
|
noise_floor = 5.7e-4f/(1<<(IMAX(0,lsb_depth-8)));
|
|
noise_floor *= noise_floor;
|
|
below_max_pitch=0;
|
|
above_max_pitch=0;
|
|
for (b=0;b<NB_TBANDS;b++)
|
|
{
|
|
float E=0;
|
|
float Em;
|
|
int band_start, band_end;
|
|
/* Keep a margin of 300 Hz for aliasing */
|
|
band_start = tbands[b];
|
|
band_end = tbands[b+1];
|
|
for (i=band_start;i<band_end;i++)
|
|
{
|
|
float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r
|
|
+ out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i;
|
|
E += binE;
|
|
}
|
|
E = SCALE_ENER(E);
|
|
maxE = MAX32(maxE, E);
|
|
if (band_start < 64)
|
|
{
|
|
below_max_pitch += E;
|
|
} else {
|
|
above_max_pitch += E;
|
|
}
|
|
tonal->meanE[b] = MAX32((1-alphaE2)*tonal->meanE[b], E);
|
|
Em = MAX32(E, tonal->meanE[b]);
|
|
/* Consider the band "active" only if all these conditions are met:
|
|
1) less than 90 dB below the peak band (maximal masking possible considering
|
|
both the ATH and the loudness-dependent slope of the spreading function)
|
|
2) above the PCM quantization noise floor
|
|
We use b+1 because the first CELT band isn't included in tbands[]
|
|
*/
|
|
if (E*1e9f > maxE && (Em > 3*noise_floor*(band_end-band_start) || E > noise_floor*(band_end-band_start)))
|
|
bandwidth = b+1;
|
|
/* Check if the band is masked (see below). */
|
|
is_masked[b] = E < (tonal->prev_bandwidth >= b+1 ? .01f : .05f)*bandwidth_mask;
|
|
/* Use a simple follower with 13 dB/Bark slope for spreading function. */
|
|
bandwidth_mask = MAX32(.05f*bandwidth_mask, E);
|
|
}
|
|
/* Special case for the last two bands, for which we don't have spectrum but only
|
|
the energy above 12 kHz. The difficulty here is that the high-pass we use
|
|
leaks some LF energy, so we need to increase the threshold without accidentally cutting
|
|
off the band. */
|
|
if (tonal->Fs == 48000) {
|
|
float noise_ratio;
|
|
float Em;
|
|
float E = hp_ener*(1.f/(60*60));
|
|
noise_ratio = tonal->prev_bandwidth==20 ? 10.f : 30.f;
|
|
|
|
#ifdef FIXED_POINT
|
|
/* silk_resampler_down2_hp() shifted right by an extra 8 bits. */
|
|
E *= 256.f*(1.f/Q15ONE)*(1.f/Q15ONE);
|
|
#endif
|
|
above_max_pitch += E;
|
|
tonal->meanE[b] = MAX32((1-alphaE2)*tonal->meanE[b], E);
|
|
Em = MAX32(E, tonal->meanE[b]);
|
|
if (Em > 3*noise_ratio*noise_floor*160 || E > noise_ratio*noise_floor*160)
|
|
bandwidth = 20;
|
|
/* Check if the band is masked (see below). */
|
|
is_masked[b] = E < (tonal->prev_bandwidth == 20 ? .01f : .05f)*bandwidth_mask;
|
|
}
|
|
if (above_max_pitch > below_max_pitch)
|
|
info->max_pitch_ratio = below_max_pitch/above_max_pitch;
|
|
else
|
|
info->max_pitch_ratio = 1;
|
|
/* In some cases, resampling aliasing can create a small amount of energy in the first band
|
|
being cut. So if the last band is masked, we don't include it. */
|
|
if (bandwidth == 20 && is_masked[NB_TBANDS])
|
|
bandwidth-=2;
|
|
else if (bandwidth > 0 && bandwidth <= NB_TBANDS && is_masked[bandwidth-1])
|
|
bandwidth--;
|
|
if (tonal->count<=2)
|
|
bandwidth = 20;
|
|
frame_loudness = 20*(float)log10(frame_loudness);
|
|
tonal->Etracker = MAX32(tonal->Etracker-.003f, frame_loudness);
|
|
tonal->lowECount *= (1-alphaE);
|
|
if (frame_loudness < tonal->Etracker-30)
|
|
tonal->lowECount += alphaE;
|
|
|
|
for (i=0;i<8;i++)
|
|
{
|
|
float sum=0;
|
|
for (b=0;b<16;b++)
|
|
sum += dct_table[i*16+b]*logE[b];
|
|
BFCC[i] = sum;
|
|
}
|
|
for (i=0;i<8;i++)
|
|
{
|
|
float sum=0;
|
|
for (b=0;b<16;b++)
|
|
sum += dct_table[i*16+b]*.5f*(tonal->highE[b]+tonal->lowE[b]);
|
|
midE[i] = sum;
|
|
}
|
|
|
|
frame_stationarity /= NB_TBANDS;
|
|
relativeE /= NB_TBANDS;
|
|
if (tonal->count<10)
|
|
relativeE = .5f;
|
|
frame_noisiness /= NB_TBANDS;
|
|
#if 1
|
|
info->activity = frame_noisiness + (1-frame_noisiness)*relativeE;
|
|
#else
|
|
info->activity = .5*(1+frame_noisiness-frame_stationarity);
|
|
#endif
|
|
frame_tonality = (max_frame_tonality/(NB_TBANDS-NB_TONAL_SKIP_BANDS));
|
|
frame_tonality = MAX16(frame_tonality, tonal->prev_tonality*.8f);
|
|
tonal->prev_tonality = frame_tonality;
|
|
|
|
slope /= 8*8;
|
|
info->tonality_slope = slope;
|
|
|
|
tonal->E_count = (tonal->E_count+1)%NB_FRAMES;
|
|
tonal->count = IMIN(tonal->count+1, ANALYSIS_COUNT_MAX);
|
|
info->tonality = frame_tonality;
|
|
|
|
for (i=0;i<4;i++)
|
|
features[i] = -0.12299f*(BFCC[i]+tonal->mem[i+24]) + 0.49195f*(tonal->mem[i]+tonal->mem[i+16]) + 0.69693f*tonal->mem[i+8] - 1.4349f*tonal->cmean[i];
|
|
|
|
for (i=0;i<4;i++)
|
|
tonal->cmean[i] = (1-alpha)*tonal->cmean[i] + alpha*BFCC[i];
|
|
|
|
for (i=0;i<4;i++)
|
|
features[4+i] = 0.63246f*(BFCC[i]-tonal->mem[i+24]) + 0.31623f*(tonal->mem[i]-tonal->mem[i+16]);
|
|
for (i=0;i<3;i++)
|
|
features[8+i] = 0.53452f*(BFCC[i]+tonal->mem[i+24]) - 0.26726f*(tonal->mem[i]+tonal->mem[i+16]) -0.53452f*tonal->mem[i+8];
|
|
|
|
if (tonal->count > 5)
|
|
{
|
|
for (i=0;i<9;i++)
|
|
tonal->std[i] = (1-alpha)*tonal->std[i] + alpha*features[i]*features[i];
|
|
}
|
|
for (i=0;i<4;i++)
|
|
features[i] = BFCC[i]-midE[i];
|
|
|
|
for (i=0;i<8;i++)
|
|
{
|
|
tonal->mem[i+24] = tonal->mem[i+16];
|
|
tonal->mem[i+16] = tonal->mem[i+8];
|
|
tonal->mem[i+8] = tonal->mem[i];
|
|
tonal->mem[i] = BFCC[i];
|
|
}
|
|
for (i=0;i<9;i++)
|
|
features[11+i] = (float)sqrt(tonal->std[i]) - std_feature_bias[i];
|
|
features[18] = spec_variability - 0.78f;
|
|
features[20] = info->tonality - 0.154723f;
|
|
features[21] = info->activity - 0.724643f;
|
|
features[22] = frame_stationarity - 0.743717f;
|
|
features[23] = info->tonality_slope + 0.069216f;
|
|
features[24] = tonal->lowECount - 0.067930f;
|
|
|
|
compute_dense(&layer0, layer_out, features);
|
|
compute_gru(&layer1, tonal->rnn_state, layer_out);
|
|
compute_dense(&layer2, frame_probs, tonal->rnn_state);
|
|
|
|
/* Probability of speech or music vs noise */
|
|
info->activity_probability = frame_probs[1];
|
|
info->music_prob = frame_probs[0];
|
|
|
|
/*printf("%f %f %f\n", frame_probs[0], frame_probs[1], info->music_prob);*/
|
|
#ifdef MLP_TRAINING
|
|
for (i=0;i<25;i++)
|
|
printf("%f ", features[i]);
|
|
printf("\n");
|
|
#endif
|
|
|
|
info->bandwidth = bandwidth;
|
|
tonal->prev_bandwidth = bandwidth;
|
|
/*printf("%d %d\n", info->bandwidth, info->opus_bandwidth);*/
|
|
info->noisiness = frame_noisiness;
|
|
info->valid = 1;
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
void run_analysis(TonalityAnalysisState *analysis, const CELTMode *celt_mode, const void *analysis_pcm,
|
|
int analysis_frame_size, int frame_size, int c1, int c2, int C, opus_int32 Fs,
|
|
int lsb_depth, downmix_func downmix, AnalysisInfo *analysis_info)
|
|
{
|
|
int offset;
|
|
int pcm_len;
|
|
|
|
analysis_frame_size -= analysis_frame_size&1;
|
|
if (analysis_pcm != NULL)
|
|
{
|
|
/* Avoid overflow/wrap-around of the analysis buffer */
|
|
analysis_frame_size = IMIN((DETECT_SIZE-5)*Fs/50, analysis_frame_size);
|
|
|
|
pcm_len = analysis_frame_size - analysis->analysis_offset;
|
|
offset = analysis->analysis_offset;
|
|
while (pcm_len>0) {
|
|
tonality_analysis(analysis, celt_mode, analysis_pcm, IMIN(Fs/50, pcm_len), offset, c1, c2, C, lsb_depth, downmix);
|
|
offset += Fs/50;
|
|
pcm_len -= Fs/50;
|
|
}
|
|
analysis->analysis_offset = analysis_frame_size;
|
|
|
|
analysis->analysis_offset -= frame_size;
|
|
}
|
|
|
|
analysis_info->valid = 0;
|
|
tonality_get_info(analysis, analysis_info, frame_size);
|
|
}
|
|
|
|
#endif /* DISABLE_FLOAT_API */
|