0e1a90ea1d
This streamlines the boot code a bit and reduces target specific boilerplate. The clock init hack used by the bootloader has been "standardized" and works for the main Rockbox binary now, so you can boot rockbox.bin over USB without special hacks. Change-Id: I7c1fac37df5a45873583ce6818eaedb9f71a782b
355 lines
11 KiB
C
355 lines
11 KiB
C
/***************************************************************************
|
|
* __________ __ ___.
|
|
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
|
|
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
|
|
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
|
|
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
|
|
* \/ \/ \/ \/ \/
|
|
* $Id$
|
|
*
|
|
* Copyright (C) 2021 Aidan MacDonald
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
|
|
* KIND, either express or implied.
|
|
*
|
|
****************************************************************************/
|
|
|
|
#include "system.h"
|
|
#include "clk-x1000.h"
|
|
#include "boot-x1000.h"
|
|
#include "x1000/cpm.h"
|
|
#include "x1000/msc.h"
|
|
#include "x1000/aic.h"
|
|
|
|
struct clk_info {
|
|
uint8_t mux_reg; /* offset from CPM_BASE for mux register */
|
|
uint8_t mux_shift; /* shift to get mux */
|
|
uint8_t mux_mask; /* mask to get mux after shifting */
|
|
uint8_t mux_type; /* type of mux, maps register bits to clock source */
|
|
uint8_t div_reg; /* offset from CPM_BASE for divider register */
|
|
uint8_t div_shift; /* shift to get divider */
|
|
uint8_t div_mask; /* mask to get divider after shifting */
|
|
uint8_t miscbits; /* inclk shift, clkgr bit, and fake mux value */
|
|
};
|
|
|
|
/* Ugliness to pack/unpack stuff in clk_info->miscbits */
|
|
#define INCLK_SHIFT(n) ((n) & 1)
|
|
#define CLKGR_BIT(n) (((n) & 0x1f) << 1)
|
|
#define FAKEMUX(n) (((n) & 3) << 6)
|
|
#define GET_INCLK_SHIFT(miscbits) ((miscbits) & 1)
|
|
#define GET_CLKGR_BIT(miscbits) (((miscbits) >> 1) & 0x1f)
|
|
#define GET_FAKEMUX(miscbits) (((miscbits) >> 6) & 3)
|
|
|
|
/* Clock sources -- the order here is important! */
|
|
#define S_STOP 0
|
|
#define S_EXCLK 1
|
|
#define S_APLL 2
|
|
#define S_MPLL 3
|
|
#define S_SCLK_A 4
|
|
|
|
/* Muxes */
|
|
#define MUX_TWOBIT 0
|
|
#define MUX_ONEBIT 1
|
|
#define MUX_USB 2
|
|
#define MUX_PHONY 3
|
|
#define MUX_NUM_TYPES 4
|
|
|
|
/* Ugliness to define muxes */
|
|
#define MKSEL(x,i) (((x) & 0xf) << ((i)*4))
|
|
#define GETSEL(x,i) (((x) >> ((i)*4)) & 0xf)
|
|
#define STOP(i) MKSEL(S_STOP, i)
|
|
#define EXCLK(i) MKSEL(S_EXCLK, i)
|
|
#define APLL(i) MKSEL(S_APLL, i)
|
|
#define MPLL(i) MKSEL(S_MPLL, i)
|
|
#define SCLK_A(i) MKSEL(S_SCLK_A, i)
|
|
#define MKMUX(a,b,c,d) (a(0)|b(1)|c(2)|d(3))
|
|
|
|
/* Ugliness to shorten the clk_info table */
|
|
#define JA(x) (JA_CPM_##x & 0xff)
|
|
#define BM(x) ((BM_CPM_##x) >> (BP_CPM_##x))
|
|
#define BP(x) (BP_CPM_##x)
|
|
#define CG(x) CLKGR_BIT(BP_CPM_CLKGR_##x)
|
|
#define M(r,f,t) JA(r), BP(r##_##f), BM(r##_##f), t
|
|
#define D(r,f) JA(r), BP(r##_##f), BM(r##_##f)
|
|
|
|
static const uint16_t clk_mux[MUX_NUM_TYPES] = {
|
|
/* 00 01 10 11 */
|
|
MKMUX(STOP, SCLK_A, MPLL, STOP), /* MUX_TWOBIT */
|
|
MKMUX(SCLK_A, MPLL, STOP, STOP), /* MUX_ONEBIT */
|
|
MKMUX(EXCLK, EXCLK, SCLK_A, MPLL), /* MUX_USB */
|
|
MKMUX(EXCLK, APLL, MPLL, SCLK_A), /* MUX_PHONY */
|
|
};
|
|
|
|
/* Keep in order with enum x1000_clk_t */
|
|
const struct clk_info clk_info[X1000_NUM_SIMPLE_CLKS] = {
|
|
{0, 0, 0, MUX_PHONY, 0, 0, 0, CG(CPU_BIT)|FAKEMUX(0)},
|
|
{0, 0, 0, MUX_PHONY, 0, 0, 0, CG(CPU_BIT)|FAKEMUX(1)},
|
|
{0, 0, 0, MUX_PHONY, 0, 0, 0, CG(CPU_BIT)|FAKEMUX(2)},
|
|
{0, 0, 0, MUX_PHONY, 0, 0, 0, CG(CPU_BIT)|FAKEMUX(3)},
|
|
{M(CCR, SEL_CPLL, MUX_TWOBIT), D(CCR, CDIV), CG(CPU_BIT)},
|
|
{M(CCR, SEL_CPLL, MUX_TWOBIT), D(CCR, L2DIV), CG(CPU_BIT)},
|
|
{M(CCR, SEL_H0PLL, MUX_TWOBIT), D(CCR, H0DIV), CG(AHB0)},
|
|
{M(CCR, SEL_H2PLL, MUX_TWOBIT), D(CCR, H2DIV), CG(APB0)},
|
|
{M(CCR, SEL_H2PLL, MUX_TWOBIT), D(CCR, PDIV), CG(APB0)},
|
|
{M(DDRCDR, CLKSRC, MUX_TWOBIT), D(DDRCDR, CLKDIV), CG(DDR)},
|
|
{M(LPCDR, CLKSRC, MUX_ONEBIT), D(LPCDR, CLKDIV), CG(LCD)},
|
|
{M(MSC0CDR, CLKSRC, MUX_ONEBIT), D(MSC0CDR, CLKDIV), CG(MSC0)|INCLK_SHIFT(1)},
|
|
{M(MSC0CDR, CLKSRC, MUX_ONEBIT), D(MSC1CDR, CLKDIV), CG(MSC1)|INCLK_SHIFT(1)},
|
|
{M(SSICDR, SFC_CS, MUX_ONEBIT), D(SSICDR, CLKDIV), CG(SFC)},
|
|
{M(USBCDR, CLKSRC, MUX_USB), D(USBCDR, CLKDIV), CG(OTG)},
|
|
};
|
|
|
|
static uint32_t clk_get_in_rate(uint8_t mux_type, uint32_t mux)
|
|
{
|
|
uint32_t reg, onbit;
|
|
uint32_t src = GETSEL(clk_mux[mux_type], mux);
|
|
again:
|
|
switch(src) {
|
|
default: return 0;
|
|
case S_EXCLK: return X1000_EXCLK_FREQ;
|
|
case S_APLL: reg = REG_CPM_APCR; onbit = BM_CPM_APCR_ON; break;
|
|
case S_MPLL: reg = REG_CPM_MPCR; onbit = BM_CPM_MPCR_ON; break;
|
|
case S_SCLK_A: src = jz_readf(CPM_CCR, SEL_SRC); goto again;
|
|
}
|
|
|
|
if(!(reg & onbit))
|
|
return 0;
|
|
|
|
uint32_t rate = X1000_EXCLK_FREQ;
|
|
rate *= jz_vreadf(reg, CPM_APCR, PLLM) + 1;
|
|
rate /= jz_vreadf(reg, CPM_APCR, PLLN) + 1;
|
|
rate >>= jz_vreadf(reg, CPM_APCR, PLLOD);
|
|
return rate;
|
|
}
|
|
|
|
static uint32_t clk_get_simple(const struct clk_info* info)
|
|
{
|
|
if(REG_CPM_CLKGR & (1 << GET_CLKGR_BIT(info->miscbits)))
|
|
return 0;
|
|
|
|
uint32_t base = 0xb0000000;
|
|
uint32_t mux_reg = *(const volatile uint32_t*)(base + info->mux_reg);
|
|
uint32_t div_reg = *(const volatile uint32_t*)(base + info->div_reg);
|
|
|
|
uint32_t mux = (mux_reg >> info->mux_shift) & info->mux_mask;
|
|
uint32_t div = (div_reg >> info->div_shift) & info->div_mask;
|
|
|
|
mux |= GET_FAKEMUX(info->miscbits);
|
|
|
|
uint32_t rate = clk_get_in_rate(info->mux_type, mux);
|
|
rate >>= GET_INCLK_SHIFT(info->miscbits);
|
|
rate /= (div + 1);
|
|
return rate;
|
|
}
|
|
|
|
#ifndef BOOTLOADER
|
|
static uint32_t clk_get_i2s_mclk(void)
|
|
{
|
|
if(jz_readf(CPM_CLKGR, AIC))
|
|
return 0;
|
|
|
|
uint32_t reg = REG_CPM_I2SCDR;
|
|
unsigned long long rate;
|
|
if(jz_vreadf(reg, CPM_I2SCDR, CS) == 0)
|
|
rate = X1000_EXCLK_FREQ;
|
|
else {
|
|
if(jz_vreadf(reg, CPM_I2SCDR, PCS) == 0)
|
|
rate = clk_get(X1000_CLK_SCLK_A);
|
|
else
|
|
rate = clk_get(X1000_CLK_MPLL);
|
|
|
|
rate *= jz_vreadf(reg, CPM_I2SCDR, DIV_M);
|
|
rate /= jz_vreadf(reg, CPM_I2SCDR, DIV_N);
|
|
}
|
|
|
|
/* Clamp invalid setting to 32 bits */
|
|
if(rate > 0xffffffffull)
|
|
rate = 0xffffffff;
|
|
|
|
return rate;
|
|
}
|
|
|
|
static uint32_t clk_get_i2s_bclk(void)
|
|
{
|
|
return clk_get_i2s_mclk() / (REG_AIC_I2SDIV + 1);
|
|
}
|
|
|
|
static uint32_t clk_get_decimal(x1000_clk_t clk)
|
|
{
|
|
switch(clk) {
|
|
case X1000_CLK_I2S_MCLK: return clk_get_i2s_mclk();
|
|
case X1000_CLK_I2S_BCLK: return clk_get_i2s_bclk();
|
|
default: return 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
uint32_t clk_get(x1000_clk_t clk)
|
|
{
|
|
#ifndef BOOTLOADER
|
|
if(clk >= X1000_NUM_SIMPLE_CLKS)
|
|
return clk_get_decimal(clk);
|
|
#endif
|
|
|
|
return clk_get_simple(&clk_info[clk]);
|
|
}
|
|
|
|
const char* clk_get_name(x1000_clk_t clk)
|
|
{
|
|
switch(clk) {
|
|
#define CASE(x) case X1000_CLK_##x: return #x
|
|
CASE(EXCLK);
|
|
CASE(APLL);
|
|
CASE(MPLL);
|
|
CASE(SCLK_A);
|
|
CASE(CPU);
|
|
CASE(L2CACHE);
|
|
CASE(AHB0);
|
|
CASE(AHB2);
|
|
CASE(PCLK);
|
|
CASE(DDR);
|
|
CASE(LCD);
|
|
CASE(MSC0);
|
|
CASE(MSC1);
|
|
CASE(SFC);
|
|
CASE(USB);
|
|
CASE(I2S_MCLK);
|
|
CASE(I2S_BCLK);
|
|
#undef CASE
|
|
default:
|
|
return "NONE";
|
|
}
|
|
}
|
|
|
|
/* At present we've only got 24 MHz targets, and they are all using
|
|
* the same "standard" configuration. */
|
|
#if X1000_EXCLK_FREQ == 24000000
|
|
void clk_init_early(void)
|
|
{
|
|
jz_writef(CPM_MPCR, ENABLE(0));
|
|
while(jz_readf(CPM_MPCR, ON));
|
|
|
|
/* 24 MHz * 25 = 600 MHz */
|
|
jz_writef(CPM_MPCR, BS(1), PLLM(25 - 1), PLLN(0), PLLOD(0), ENABLE(1));
|
|
while(jz_readf(CPM_MPCR, ON) == 0);
|
|
|
|
/* 600 MHz / 3 = 200 MHz */
|
|
clk_set_ddr(X1000_CLK_MPLL, 3);
|
|
}
|
|
|
|
void clk_init(void)
|
|
{
|
|
/* make sure we only initialize the clocks once */
|
|
if(get_boot_flag(BOOT_FLAG_CLK_INIT))
|
|
return;
|
|
|
|
clk_set_ccr_mux(CLKMUX_SCLK_A(EXCLK) |
|
|
CLKMUX_CPU(SCLK_A) |
|
|
CLKMUX_AHB0(SCLK_A) |
|
|
CLKMUX_AHB2(SCLK_A));
|
|
clk_set_ccr_div(CLKDIV_CPU(1) |
|
|
CLKDIV_L2(1) |
|
|
CLKDIV_AHB0(1) |
|
|
CLKDIV_AHB2(1) |
|
|
CLKDIV_PCLK(1));
|
|
|
|
jz_writef(CPM_APCR, ENABLE(0));
|
|
while(jz_readf(CPM_APCR, ON));
|
|
|
|
/* 24 MHz * 42 = 1008 MHz */
|
|
jz_writef(CPM_APCR, BS(1), PLLM(42 - 1), PLLN(0), PLLOD(0), ENABLE(1));
|
|
while(jz_readf(CPM_APCR, ON) == 0);
|
|
|
|
#if defined(FIIO_M3K)
|
|
/* TODO: Allow targets to define their clock frequencies in their config,
|
|
* instead of having this be a random special case. */
|
|
if(get_boot_option() == BOOT_OPTION_ROCKBOX) {
|
|
clk_set_ccr_div(CLKDIV_CPU(1) | /* 1008 MHz */
|
|
CLKDIV_L2(2) | /* 504 MHz */
|
|
CLKDIV_AHB0(5) | /* 201.6 MHz */
|
|
CLKDIV_AHB2(5) | /* 201.6 MHz */
|
|
CLKDIV_PCLK(10)); /* 100.8 MHz */
|
|
clk_set_ccr_mux(CLKMUX_SCLK_A(APLL) |
|
|
CLKMUX_CPU(SCLK_A) |
|
|
CLKMUX_AHB0(SCLK_A) |
|
|
CLKMUX_AHB2(SCLK_A));
|
|
|
|
/* DDR to 201.6 MHz */
|
|
clk_set_ddr(X1000_CLK_SCLK_A, 5);
|
|
|
|
/* Disable MPLL */
|
|
jz_writef(CPM_MPCR, ENABLE(0));
|
|
while(jz_readf(CPM_MPCR, ON));
|
|
} else {
|
|
#endif
|
|
clk_set_ccr_div(CLKDIV_CPU(1) | /* 1008 MHz */
|
|
CLKDIV_L2(2) | /* 504 MHz */
|
|
CLKDIV_AHB0(3) | /* 200 MHz */
|
|
CLKDIV_AHB2(3) | /* 200 MHz */
|
|
CLKDIV_PCLK(6)); /* 100 MHz */
|
|
clk_set_ccr_mux(CLKMUX_SCLK_A(APLL) |
|
|
CLKMUX_CPU(SCLK_A) |
|
|
CLKMUX_AHB0(MPLL) |
|
|
CLKMUX_AHB2(MPLL));
|
|
#if defined(FIIO_M3K)
|
|
}
|
|
#endif
|
|
|
|
/* mark that clocks have been initialized */
|
|
set_boot_flag(BOOT_FLAG_CLK_INIT);
|
|
}
|
|
#else
|
|
# error "please write a new clk_init() for this EXCLK frequency"
|
|
#endif
|
|
|
|
#define CCR_MUX_BITS jz_orm(CPM_CCR, SEL_SRC, SEL_CPLL, SEL_H0PLL, SEL_H2PLL)
|
|
#define CCR_DIV_BITS jz_orm(CPM_CCR, CDIV, L2DIV, H0DIV, H2DIV, PDIV)
|
|
#define CSR_MUX_BITS jz_orm(CPM_CSR, SRC_MUX, CPU_MUX, AHB0_MUX, AHB2_MUX)
|
|
#define CSR_DIV_BITS jz_orm(CPM_CSR, H2DIV_BUSY, H0DIV_BUSY, CDIV_BUSY)
|
|
|
|
void clk_set_ccr_mux(uint32_t muxbits)
|
|
{
|
|
/* Set new mux configuration */
|
|
uint32_t reg = REG_CPM_CCR;
|
|
reg &= ~CCR_MUX_BITS;
|
|
reg |= muxbits & CCR_MUX_BITS;
|
|
REG_CPM_CCR = reg;
|
|
|
|
/* Wait for mux change to complete */
|
|
while((REG_CPM_CSR & CSR_MUX_BITS) != CSR_MUX_BITS);
|
|
}
|
|
|
|
void clk_set_ccr_div(uint32_t divbits)
|
|
{
|
|
/* Set new divider configuration */
|
|
uint32_t reg = REG_CPM_CCR;
|
|
reg &= ~CCR_DIV_BITS;
|
|
reg |= divbits & CCR_DIV_BITS;
|
|
reg |= jz_orm(CPM_CCR, CE_CPU, CE_AHB0, CE_AHB2);
|
|
REG_CPM_CCR = reg;
|
|
|
|
/* Wait until divider change completes */
|
|
while(REG_CPM_CSR & CSR_DIV_BITS);
|
|
|
|
/* Disable CE bits after change */
|
|
jz_writef(CPM_CCR, CE_CPU(0), CE_AHB0(0), CE_AHB2(0));
|
|
}
|
|
|
|
void clk_set_ddr(x1000_clk_t src, uint32_t div)
|
|
{
|
|
/* Write new configuration */
|
|
jz_writef(CPM_DDRCDR, CE(1), CLKDIV(div - 1),
|
|
CLKSRC(src == X1000_CLK_MPLL ? 2 : 1));
|
|
|
|
/* Wait until mux and divider change are complete */
|
|
while(jz_readf(CPM_CSR, DDR_MUX) == 0);
|
|
while(jz_readf(CPM_DDRCDR, BUSY));
|
|
|
|
/* Disable CE bit after change */
|
|
jz_writef(CPM_DDRCDR, CE(0));
|
|
}
|