rockbox/firmware/target/arm/s5l8702/ipod6g/lcd-ipod6g.c
Bertrik Sikken 0dfce1972b ipod6g: make functions and variables static where possible
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@29767 a1c6a512-1295-4272-9138-f99709370657
2011-04-22 21:39:17 +00:00

311 lines
8.4 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id: lcd-nano2g.c 28868 2010-12-21 06:59:17Z Buschel $
*
* Copyright (C) 2009 by Dave Chapman
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "hwcompat.h"
#include "kernel.h"
#include "lcd.h"
#include "system.h"
#include "cpu.h"
#include "pmu-target.h"
#include "power.h"
#include "string.h"
#define R_HORIZ_GRAM_ADDR_SET 0x200
#define R_VERT_GRAM_ADDR_SET 0x201
#define R_WRITE_DATA_TO_GRAM 0x202
#define R_HORIZ_ADDR_START_POS 0x210
#define R_HORIZ_ADDR_END_POS 0x211
#define R_VERT_ADDR_START_POS 0x212
#define R_VERT_ADDR_END_POS 0x213
/* LCD type 1 register defines */
#define R_COLUMN_ADDR_SET 0x2a
#define R_ROW_ADDR_SET 0x2b
#define R_MEMORY_WRITE 0x2c
/** globals **/
int lcd_type; /* also needed in debug-s5l8702.c */
static struct dma_lli lcd_lli[(LCD_WIDTH * LCD_HEIGHT - 1) / 0xfff] CACHEALIGN_ATTR;
static struct semaphore lcd_wakeup;
static struct mutex lcd_mutex;
static uint16_t lcd_dblbuf[LCD_HEIGHT][LCD_WIDTH];
static inline void s5l_lcd_write_cmd_data(int cmd, int data)
{
while (LCD_STATUS & 0x10);
LCD_WCMD = cmd;
while (LCD_STATUS & 0x10);
LCD_WDATA = (data & 0xff) | ((data & 0x7f00) << 1);
}
static inline void s5l_lcd_write_cmd(unsigned short cmd)
{
while (LCD_STATUS & 0x10);
LCD_WCMD = cmd;
}
static inline void s5l_lcd_write_data(unsigned short data)
{
while (LCD_STATUS & 0x10);
LCD_WDATA = data;
}
/*** hardware configuration ***/
int lcd_default_contrast(void)
{
return 0x1f;
}
void lcd_set_contrast(int val)
{
(void)val;
}
void lcd_set_invert_display(bool yesno)
{
(void)yesno;
}
void lcd_set_flip(bool yesno)
{
(void)yesno;
}
bool lcd_active(void)
{
return true;
}
void lcd_shutdown(void)
{
mutex_lock(&lcd_mutex);
pmu_write(0x2b, 0); /* Kill the backlight, instantly. */
pmu_write(0x29, 0);
if (lcd_type & 2)
{
s5l_lcd_write_cmd_data(0x7, 0x172);
s5l_lcd_write_cmd_data(0x30, 0x3ff);
sleep(HZ / 10);
s5l_lcd_write_cmd_data(0x7, 0x120);
s5l_lcd_write_cmd_data(0x30, 0x0);
s5l_lcd_write_cmd_data(0x100, 0x780);
s5l_lcd_write_cmd_data(0x7, 0x0);
s5l_lcd_write_cmd_data(0x101, 0x260);
s5l_lcd_write_cmd_data(0x102, 0xa9);
sleep(HZ / 30);
s5l_lcd_write_cmd_data(0x100, 0x700);
s5l_lcd_write_cmd_data(0x100, 0x704);
}
else if (lcd_type == 1)
{
s5l_lcd_write_cmd(0x28);
s5l_lcd_write_cmd(0x10);
sleep(HZ / 10);
}
else
{
s5l_lcd_write_cmd(0x28);
sleep(HZ / 20);
s5l_lcd_write_cmd(0x10);
sleep(HZ / 20);
}
mutex_unlock(&lcd_mutex);
}
#ifdef HAVE_LCD_SLEEP
void lcd_sleep(void)
{
lcd_shutdown();
}
#endif
/* LCD init */
void lcd_init_device(void)
{
/* Detect lcd type */
semaphore_init(&lcd_wakeup, 1, 0);
mutex_init(&lcd_mutex);
lcd_type = (PDAT6 & 0x30) >> 4;
}
/*** Update functions ***/
static inline void lcd_write_pixel(fb_data pixel)
{
mutex_lock(&lcd_mutex);
LCD_WDATA = pixel;
mutex_unlock(&lcd_mutex);
}
/* Update the display.
This must be called after all other LCD functions that change the display. */
void lcd_update(void) ICODE_ATTR;
void lcd_update(void)
{
lcd_update_rect(0, 0, LCD_WIDTH, LCD_HEIGHT);
}
/* Line write helper function. */
extern void lcd_write_line(const fb_data *addr,
int pixelcount,
const unsigned int lcd_base_addr);
static void displaylcd_setup(int x, int y, int width, int height) ICODE_ATTR;
static void displaylcd_setup(int x, int y, int width, int height)
{
mutex_lock(&lcd_mutex);
while (DMAC0C4CONFIG & 1) semaphore_wait(&lcd_wakeup, HZ / 10);
int xe = (x + width) - 1; /* max horiz */
int ye = (y + height) - 1; /* max vert */
if (lcd_type & 2) {
s5l_lcd_write_cmd_data(R_HORIZ_ADDR_START_POS, x);
s5l_lcd_write_cmd_data(R_HORIZ_ADDR_END_POS, xe);
s5l_lcd_write_cmd_data(R_VERT_ADDR_START_POS, y);
s5l_lcd_write_cmd_data(R_VERT_ADDR_END_POS, ye);
s5l_lcd_write_cmd_data(R_HORIZ_GRAM_ADDR_SET, x);
s5l_lcd_write_cmd_data(R_VERT_GRAM_ADDR_SET, y);
s5l_lcd_write_cmd(R_WRITE_DATA_TO_GRAM);
} else {
s5l_lcd_write_cmd(R_COLUMN_ADDR_SET);
s5l_lcd_write_data(x >> 8);
s5l_lcd_write_data(x & 0xff);
s5l_lcd_write_data(xe >> 8);
s5l_lcd_write_data(xe & 0xff);
s5l_lcd_write_cmd(R_ROW_ADDR_SET);
s5l_lcd_write_data(y >> 8);
s5l_lcd_write_data(y & 0xff);
s5l_lcd_write_data(ye >> 8);
s5l_lcd_write_data(ye & 0xff);
s5l_lcd_write_cmd(R_MEMORY_WRITE);
}
}
static void displaylcd_dma(int pixels) ICODE_ATTR;
static void displaylcd_dma(int pixels)
{
int i;
void* data = lcd_dblbuf;
for (i = -1; i < (int)ARRAYLEN(lcd_lli) && pixels > 0; i++, pixels -= 0xfff)
{
bool last = i + 1 >= (int)ARRAYLEN(lcd_lli) || pixels <= 0xfff;
struct dma_lli* lli = i < 0 ? (struct dma_lli*)((int)&DMAC0C4LLI) : &lcd_lli[i];
lli->srcaddr = data;
lli->dstaddr = (void*)((int)&LCD_WDATA);
lli->nextlli = last ? NULL : &lcd_lli[i + 1];
lli->control = 0x70240000 | (last ? pixels : 0xfff)
| (last ? 0x80000000 : 0) | 0x4000000;
data += 0x1ffe;
}
clean_dcache();
DMAC0C4CONFIG = 0x88c1;
mutex_unlock(&lcd_mutex);
}
void INT_DMAC0C4(void) ICODE_ATTR;
void INT_DMAC0C4(void)
{
DMAC0INTTCCLR = 0x10;
semaphore_release(&lcd_wakeup);
}
/* Update a fraction of the display. */
void lcd_update_rect(int, int, int, int) ICODE_ATTR;
void lcd_update_rect(int x, int y, int width, int height)
{
int pixels = width * height;
fb_data* p = &lcd_framebuffer[y][x];
uint16_t* out = lcd_dblbuf[0];
displaylcd_setup(x, y, width, height);
/* Copy display bitmap to hardware */
if (LCD_WIDTH == width) {
/* Write all lines at once */
memcpy(out, p, pixels * 2);
} else {
do {
/* Write a single line */
memcpy(out, p, width * 2);
p += LCD_WIDTH;
out += width;
} while (--height);
}
displaylcd_dma(pixels);
}
/* Line write helper function for lcd_yuv_blit. Writes two lines of yuv420. */
extern void lcd_write_yuv420_lines(unsigned char const * const src[3],
uint16_t* outbuf,
int width,
int stride);
/* Blit a YUV bitmap directly to the LCD */
void lcd_blit_yuv(unsigned char * const src[3],
int src_x, int src_y, int stride,
int x, int y, int width, int height) ICODE_ATTR;
void lcd_blit_yuv(unsigned char * const src[3],
int src_x, int src_y, int stride,
int x, int y, int width, int height)
{
unsigned int z;
unsigned char const * yuv_src[3];
width = (width + 1) & ~1; /* ensure width is even */
int pixels = width * height;
uint16_t* out = lcd_dblbuf[0];
z = stride * src_y;
yuv_src[0] = src[0] + z + src_x;
yuv_src[1] = src[1] + (z >> 2) + (src_x >> 1);
yuv_src[2] = src[2] + (yuv_src[1] - src[1]);
displaylcd_setup(x, y, width, height);
height >>= 1;
do {
lcd_write_yuv420_lines(yuv_src, out, width, stride);
yuv_src[0] += stride << 1;
yuv_src[1] += stride >> 1; /* Skip down one chroma line */
yuv_src[2] += stride >> 1;
out += width << 1;
} while (--height);
displaylcd_dma(pixels);
}