rockbox/firmware/target/arm/s5l8700/ipodnano2g/nand-nano2g.c
2009-10-18 12:36:17 +00:00

495 lines
15 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2009 by Michael Sparmann
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "system.h"
#include "kernel.h"
#include "cpu.h"
#include "inttypes.h"
#include "nand-target.h"
#include <pmu-target.h>
#include <mmu-target.h>
#include <string.h>
#define NAND_CMD_READ 0x00
#define NAND_CMD_PROGCNFRM 0x10
#define NAND_CMD_READ2 0x30
#define NAND_CMD_BLOCKERASE 0x60
#define NAND_CMD_GET_STATUS 0x70
#define NAND_CMD_PROGRAM 0x80
#define NAND_CMD_ERASECNFRM 0xD0
#define NAND_CMD_RESET 0xFF
#define NAND_STATUS_READY 0x40
#define NAND_DEVICEINFOTABLE_ENTRIES 33
static const struct nand_device_info_type nand_deviceinfotable[] =
{
{0x1580F1EC, 1024, 968, 0x40, 6, 2, 1, 2, 1},
{0x1580DAEC, 2048, 1936, 0x40, 6, 2, 1, 2, 1},
{0x15C1DAEC, 2048, 1936, 0x40, 6, 2, 1, 2, 1},
{0x1510DCEC, 4096, 3872, 0x40, 6, 2, 1, 2, 1},
{0x95C1DCEC, 4096, 3872, 0x40, 6, 2, 1, 2, 1},
{0x2514DCEC, 2048, 1936, 0x80, 7, 2, 1, 2, 1},
{0x2514D3EC, 4096, 3872, 0x80, 7, 2, 1, 2, 1},
{0x2555D3EC, 4096, 3872, 0x80, 7, 2, 1, 2, 1},
{0x2555D5EC, 8192, 7744, 0x80, 7, 2, 1, 2, 1},
{0x2585D3AD, 4096, 3872, 0x80, 7, 3, 2, 3, 2},
{0x9580DCAD, 4096, 3872, 0x40, 6, 3, 2, 3, 2},
{0xA514D3AD, 4096, 3872, 0x80, 7, 3, 2, 3, 2},
{0xA550D3AD, 4096, 3872, 0x80, 7, 3, 2, 3, 2},
{0xA560D5AD, 4096, 3872, 0x80, 7, 3, 2, 3, 2},
{0xA555D5AD, 8192, 7744, 0x80, 7, 3, 2, 3, 2},
{0xA585D598, 8320, 7744, 0x80, 7, 3, 1, 2, 1},
{0xA584D398, 4160, 3872, 0x80, 7, 3, 1, 2, 1},
{0x95D1D32C, 8192, 7744, 0x40, 6, 2, 1, 2, 1},
{0x1580DC2C, 4096, 3872, 0x40, 6, 2, 1, 2, 1},
{0x15C1D32C, 8192, 7744, 0x40, 6, 2, 1, 2, 1},
{0x9590DC2C, 4096, 3872, 0x40, 6, 2, 1, 2, 1},
{0xA594D32C, 4096, 3872, 0x80, 7, 2, 1, 2, 1},
{0x2584DC2C, 2048, 1936, 0x80, 7, 2, 1, 2, 1},
{0xA5D5D52C, 8192, 7744, 0x80, 7, 3, 2, 2, 1},
{0x95D1D389, 8192, 7744, 0x40, 6, 2, 1, 2, 1},
{0x1580DC89, 4096, 3872, 0x40, 6, 2, 1, 2, 1},
{0x15C1D389, 8192, 7744, 0x40, 6, 2, 1, 2, 1},
{0x9590DC89, 4096, 3872, 0x40, 6, 2, 1, 2, 1},
{0xA594D389, 4096, 3872, 0x80, 7, 2, 1, 2, 1},
{0x2584DC89, 2048, 1936, 0x80, 7, 2, 1, 2, 1},
{0xA5D5D589, 8192, 7744, 0x80, 7, 2, 1, 2, 1},
{0xA514D320, 4096, 3872, 0x80, 7, 2, 1, 2, 1},
{0xA555D520, 8192, 3872, 0x80, 7, 2, 1, 2, 1}
};
uint8_t nand_tunk1[4];
uint8_t nand_twp[4];
uint8_t nand_tunk2[4];
uint8_t nand_tunk3[4];
uint32_t nand_type[4];
int nand_powered = 0;
static struct mutex nand_mtx;
static struct wakeup nand_wakeup;
static struct mutex ecc_mtx;
static struct wakeup ecc_wakeup;
static uint8_t nand_data[0x800] __attribute__((aligned(16)));
static uint8_t nand_ctrl[0x200] __attribute__((aligned(16)));
static uint8_t nand_spare[0x40] __attribute__((aligned(16)));
static uint8_t nand_ecc[0x30] __attribute__((aligned(16)));
uint32_t nand_unlock(uint32_t rc)
{
mutex_unlock(&nand_mtx);
return rc;
}
uint32_t ecc_unlock(uint32_t rc)
{
mutex_unlock(&ecc_mtx);
return rc;
}
uint32_t nand_timeout(long timeout)
{
if (TIME_AFTER(current_tick, timeout)) return 1;
else
{
yield();
return 0;
}
}
uint32_t nand_wait_rbbdone(void)
{
long timeout = current_tick + HZ / 50;
while (!(FMCSTAT & FMCSTAT_RBBDONE))
if (nand_timeout(timeout)) return 1;
FMCSTAT = FMCSTAT_RBBDONE;
return 0;
}
uint32_t nand_wait_cmddone(void)
{
long timeout = current_tick + HZ / 50;
while (!(FMCSTAT & FMCSTAT_CMDDONE))
if (nand_timeout(timeout)) return 1;
FMCSTAT = FMCSTAT_CMDDONE;
return 0;
}
uint32_t nand_wait_addrdone(void)
{
long timeout = current_tick + HZ / 50;
while (!(FMCSTAT & FMCSTAT_ADDRDONE))
if (nand_timeout(timeout)) return 1;
FMCSTAT = FMCSTAT_ADDRDONE;
return 0;
}
uint32_t nand_wait_chip_ready(uint32_t bank)
{
long timeout = current_tick + HZ / 50;
while (!(FMCSTAT & (FMCSTAT_BANK0READY << bank)))
if (nand_timeout(timeout)) return 1;
FMCSTAT = (FMCSTAT_BANK0READY << bank);
return 0;
}
void nand_set_fmctrl0(uint32_t bank, uint32_t flags)
{
FMCTRL0 = (nand_tunk1[bank] << 16) | (nand_twp[bank] << 12)
| (1 << 11) | 1 | (1 << (bank + 1)) | flags;
}
uint32_t nand_send_cmd(uint32_t cmd)
{
FMCMD = cmd;
return nand_wait_rbbdone();
}
uint32_t nand_send_address(uint32_t page, uint32_t offset)
{
FMANUM = 4;
FMADDR0 = (page << 16) | offset;
FMADDR1 = (page >> 16) & 0xFF;
FMCTRL1 = FMCTRL1_DOTRANSADDR;
return nand_wait_cmddone();
}
uint32_t nand_reset(uint32_t bank)
{
nand_set_fmctrl0(bank, 0);
if (nand_send_cmd(NAND_CMD_RESET)) return 1;
if (nand_wait_chip_ready(bank)) return 1;
FMCTRL1 = FMCTRL1_CLEARRFIFO | FMCTRL1_CLEARWFIFO;
return 0;
}
uint32_t nand_wait_status_ready(uint32_t bank)
{
long timeout = current_tick + HZ / 50;
nand_set_fmctrl0(bank, 0);
if ((FMCSTAT & (FMCSTAT_BANK0READY << bank)))
FMCSTAT = (FMCSTAT_BANK0READY << bank);
FMCTRL1 = FMCTRL1_CLEARRFIFO | FMCTRL1_CLEARWFIFO;
if (nand_send_cmd(NAND_CMD_GET_STATUS)) return 1;
while (1)
{
if (nand_timeout(timeout)) return 1;
FMDNUM = 0;
FMCTRL1 = FMCTRL1_DOREADDATA;
if (nand_wait_addrdone()) return 1;
if ((FMFIFO & NAND_STATUS_READY)) break;
FMCTRL1 = FMCTRL1_CLEARRFIFO;
}
FMCTRL1 = FMCTRL1_CLEARRFIFO;
return nand_send_cmd(NAND_CMD_READ);
}
uint32_t nand_transfer_data(uint32_t bank, uint32_t direction,
void* buffer, uint32_t size)
{
long timeout = current_tick + HZ / 50;
nand_set_fmctrl0(bank, FMCTRL0_ENABLEDMA);
FMDNUM = size - 1;
FMCTRL1 = FMCTRL1_DOREADDATA << direction;
DMACON3 = (2 << DMACON_DEVICE_SHIFT)
| (direction << DMACON_DIRECTION_SHIFT)
| (2 << DMACON_DATA_SIZE_SHIFT)
| (3 << DMACON_BURST_LEN_SHIFT);
while ((DMAALLST & DMAALLST_CHAN3_MASK))
DMACOM3 = DMACOM_CLEARBOTHDONE;
DMABASE3 = (uint32_t)buffer;
DMATCNT3 = (size >> 4) - 1;
clean_dcache();
DMACOM3 = 4;
while ((DMAALLST & DMAALLST_DMABUSY3))
if (nand_timeout(timeout)) return 1;
if (!direction) invalidate_dcache();
if (nand_wait_addrdone()) return 1;
if (!direction) FMCTRL1 = FMCTRL1_CLEARRFIFO | FMCTRL1_CLEARWFIFO;
return 0;
}
uint32_t ecc_decode(uint32_t size, void* databuffer, void* sparebuffer)
{
mutex_lock(&ecc_mtx);
long timeout = current_tick + HZ / 50;
ECC_INT_CLR = 1;
SRCPND = INTMSK_ECC;
ECC_UNK1 = size;
ECC_DATA_PTR = (uint32_t)databuffer;
ECC_SPARE_PTR = (uint32_t)sparebuffer;
clean_dcache();
ECC_CTRL = ECCCTRL_STARTDECODING;
while (!(SRCPND & INTMSK_ECC))
if (nand_timeout(timeout)) return ecc_unlock(1);
invalidate_dcache();
ECC_INT_CLR = 1;
SRCPND = INTMSK_ECC;
return ecc_unlock(ECC_RESULT);
}
uint32_t ecc_encode(uint32_t size, void* databuffer, void* sparebuffer)
{
mutex_lock(&ecc_mtx);
long timeout = current_tick + HZ / 50;
ECC_INT_CLR = 1;
SRCPND = INTMSK_ECC;
ECC_UNK1 = size;
ECC_DATA_PTR = (uint32_t)databuffer;
ECC_SPARE_PTR = (uint32_t)sparebuffer;
clean_dcache();
ECC_CTRL = ECCCTRL_STARTENCODING;
while (!(SRCPND & INTMSK_ECC))
if (nand_timeout(timeout)) return ecc_unlock(1);
invalidate_dcache();
ECC_INT_CLR = 1;
SRCPND = INTMSK_ECC;
return ecc_unlock(0);
}
uint32_t nand_check_empty(uint8_t* buffer)
{
uint32_t i, count;
count = 0;
for (i = 0; i < 0x40; i++) if (buffer[i] != 0xFF) count++;
if (count < 2) return 1;
return 0;
}
uint32_t nand_get_chip_type(uint32_t bank)
{
mutex_lock(&nand_mtx);
uint32_t result;
if (nand_reset(bank)) return nand_unlock(0xFFFFFFFF);
if (nand_send_cmd(0x90)) return nand_unlock(0xFFFFFFFF);
FMANUM = 0;
FMADDR0 = 0;
FMCTRL1 = FMCTRL1_DOTRANSADDR;
if (nand_wait_cmddone()) return nand_unlock(0xFFFFFFFF);
FMDNUM = 4;
FMCTRL1 = FMCTRL1_DOREADDATA;
if (nand_wait_addrdone()) return nand_unlock(0xFFFFFFFF);
result = FMFIFO;
FMCTRL1 = FMCTRL1_CLEARRFIFO | FMCTRL1_CLEARWFIFO;
return nand_unlock(result);
}
void nand_power_up(void)
{
uint32_t i;
mutex_lock(&nand_mtx);
PWRCONEXT &= ~0x40;
PWRCON &= ~0x100000;
PCON2 = 0x33333333;
PDAT2 = 0;
PCON3 = 0x11113333;
PDAT3 = 0;
PCON4 = 0x33333333;
PDAT4 = 0;
PCON5 = (PCON5 & ~0xF) | 3;
PUNK5 = 1;
pmu_ldo_set_voltage(4, 0x15);
pmu_ldo_power_on(4);
sleep(HZ / 20);
for (i = 0; i < 4; i++) nand_reset(i);
nand_powered = 1;
mutex_unlock(&nand_mtx);
}
void nand_power_down(void)
{
mutex_lock(&nand_mtx);
pmu_ldo_power_off(4);
PCON2 = 0x11111111;
PDAT2 = 0;
PCON3 = 0x11111111;
PDAT3 = 0;
PCON4 = 0x11111111;
PDAT4 = 0;
PCON5 = (PCON5 & ~0xF) | 1;
PUNK5 = 1;
PWRCONEXT |= 0x40;
PWRCON |= 0x100000;
nand_powered = 0;
mutex_unlock(&nand_mtx);
}
uint32_t nand_read_page(uint32_t bank, uint32_t page, void* databuffer,
void* sparebuffer, uint32_t doecc,
uint32_t checkempty)
{
uint8_t* data = nand_data;
uint8_t* spare = nand_spare;
if (databuffer && !((uint32_t)databuffer & 0xf))
data = (uint8_t*)databuffer;
if (sparebuffer && !((uint32_t)sparebuffer & 0xf))
spare = (uint8_t*)sparebuffer;
mutex_lock(&nand_mtx);
if (!nand_powered) nand_power_up();
uint32_t rc, eccresult;
nand_set_fmctrl0(bank, FMCTRL0_ENABLEDMA);
if (nand_send_cmd(NAND_CMD_READ)) return nand_unlock(1);
if (nand_send_address(page, databuffer ? 0 : 0x800))
return nand_unlock(1);
if (nand_send_cmd(NAND_CMD_READ2)) return nand_unlock(1);
if (nand_wait_status_ready(bank)) return nand_unlock(1);
if (databuffer)
if (nand_transfer_data(bank, 0, data, 0x800))
return nand_unlock(1);
rc = 0;
if (!doecc)
{
if (databuffer && data != databuffer) memcpy(databuffer, data, 0x800);
if (sparebuffer)
{
if (nand_transfer_data(bank, 0, spare, 0x40))
return nand_unlock(1);
if (sparebuffer && spare != sparebuffer)
memcpy(sparebuffer, spare, 0x800);
if (checkempty)
rc = nand_check_empty((uint8_t*)sparebuffer) << 1;
}
return nand_unlock(rc);
}
if (nand_transfer_data(bank, 0, spare, 0x40)) return nand_unlock(1);
memcpy(nand_ecc, &spare[0xC], 0x28);
rc |= (ecc_decode(3, data, nand_ecc) & 0xF) << 4;
if (databuffer && data != databuffer) memcpy(databuffer, data, 0x800);
memset(nand_ctrl, 0xFF, 0x200);
memcpy(nand_ctrl, spare, 0xC);
memcpy(nand_ecc, &spare[0x34], 0xC);
eccresult = ecc_decode(0, nand_ctrl, nand_ecc);
rc |= (eccresult & 0xF) << 8;
if (sparebuffer)
{
if (spare != sparebuffer) memcpy(sparebuffer, spare, 0x40);
if (eccresult & 1) memset(sparebuffer, 0xFF, 0xC);
else memcpy(sparebuffer, nand_ctrl, 0xC);
}
if (checkempty) rc |= nand_check_empty(spare) << 1;
return nand_unlock(rc);
}
uint32_t nand_write_page(uint32_t bank, uint32_t page, void* databuffer,
void* sparebuffer, uint32_t doecc)
{
uint8_t* data = nand_data;
uint8_t* spare = nand_spare;
if (databuffer && !((uint32_t)databuffer & 0xf))
data = (uint8_t*)databuffer;
if (sparebuffer && !((uint32_t)sparebuffer & 0xf))
spare = (uint8_t*)sparebuffer;
mutex_lock(&nand_mtx);
if (!nand_powered) nand_power_up();
if (sparebuffer)
{
if (spare != sparebuffer) memcpy(spare, sparebuffer, 0x40);
}
else memset(spare, 0xFF, 0x40);
if (doecc)
{
if (databuffer && data != databuffer) memcpy(data, databuffer, 0x800);
if (ecc_encode(3, data, nand_ecc)) return nand_unlock(1);
memcpy(&spare[0xC], nand_ecc, 0x28);
memset(nand_ctrl, 0xFF, 0x200);
memcpy(nand_ctrl, spare, 0xC);
if (ecc_encode(0, nand_ctrl, nand_ecc)) return nand_unlock(1);
memcpy(&spare[0x34], nand_ecc, 0xC);
}
nand_set_fmctrl0(bank, FMCTRL0_ENABLEDMA);
if (nand_send_cmd(NAND_CMD_PROGRAM)) return nand_unlock(1);
if (nand_send_address(page, databuffer ? 0 : 0x800))
return nand_unlock(1);
if (databuffer)
if (nand_transfer_data(bank, 1, data, 0x800))
return nand_unlock(1);
if (sparebuffer || doecc)
if (nand_transfer_data(bank, 1, spare, 0x40))
return nand_unlock(1);
if (nand_send_cmd(NAND_CMD_PROGCNFRM)) return nand_unlock(1);
return nand_unlock(nand_wait_status_ready(bank));
}
uint32_t nand_block_erase(uint32_t bank, uint32_t page)
{
mutex_lock(&nand_mtx);
if (!nand_powered) nand_power_up();
nand_set_fmctrl0(bank, 0);
if (nand_send_cmd(NAND_CMD_BLOCKERASE)) return nand_unlock(1);
FMANUM = 2;
FMADDR0 = page;
FMCTRL1 = FMCTRL1_DOTRANSADDR;
if (nand_wait_cmddone()) return nand_unlock(1);
if (nand_send_cmd(NAND_CMD_ERASECNFRM)) return nand_unlock(1);
if (nand_wait_status_ready(bank)) return nand_unlock(1);
return nand_unlock(0);
}
const struct nand_device_info_type* nand_get_device_type(uint32_t bank)
{
if (nand_type[bank] == 0xFFFFFFFF)
return (struct nand_device_info_type*)0;
return &nand_deviceinfotable[nand_type[bank]];
}
uint32_t nand_device_init(void)
{
mutex_init(&nand_mtx);
wakeup_init(&nand_wakeup);
mutex_init(&ecc_mtx);
wakeup_init(&ecc_wakeup);
uint32_t type;
uint32_t i, j;
if (!nand_powered) nand_power_up();
for (i = 0; i < 4; i++)
{
nand_tunk1[i] = 7;
nand_twp[i] = 7;
nand_tunk2[i] = 7;
nand_tunk3[i] = 7;
type = nand_get_chip_type(i);
nand_type[i] = 0xFFFFFFFF;
if (type == 0xFFFFFFFF) continue;
for (j = 0; ; j++)
{
if (j == ARRAYLEN(nand_deviceinfotable)) break;
else if (nand_deviceinfotable[j].id == type)
{
nand_type[i] = j;
break;
}
}
nand_tunk1[i] = nand_deviceinfotable[nand_type[i]].tunk1;
nand_twp[i] = nand_deviceinfotable[nand_type[i]].twp;
nand_tunk2[i] = nand_deviceinfotable[nand_type[i]].tunk2;
nand_tunk3[i] = nand_deviceinfotable[nand_type[i]].tunk3;
}
if (nand_type[0] == 0xFFFFFFFF) return 1;
return 0;
}