cb1b388a57
1) Consolidate charging types' code as much as possible at the moment. 2) Remove the iRiver code for the moment. It so happens that it isn't being compiled anyway so it's just noise. Grab it out of the revision history when needed again. 3) A small fix to CHARGING_CONTROL where changing of #defines somewhere in earlier revisions actually ended up having it use the wrong battery filter constant. A few state variables that were locals but stay in scope for the life of the power thread get static storage to help separate algorithms. git-svn-id: svn://svn.rockbox.org/rockbox/trunk@17580 a1c6a512-1295-4272-9138-f99709370657
1205 lines
37 KiB
C
1205 lines
37 KiB
C
/***************************************************************************
|
|
* __________ __ ___.
|
|
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
|
|
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
|
|
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
|
|
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
|
|
* \/ \/ \/ \/ \/
|
|
* $Id$
|
|
*
|
|
* Copyright (C) 2002 by Heikki Hannikainen, Uwe Freese
|
|
* Revisions copyright (C) 2005 by Gerald Van Baren
|
|
*
|
|
* All files in this archive are subject to the GNU General Public License.
|
|
* See the file COPYING in the source tree root for full license agreement.
|
|
*
|
|
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
|
|
* KIND, either express or implied.
|
|
*
|
|
****************************************************************************/
|
|
#include "config.h"
|
|
#include "cpu.h"
|
|
#include "kernel.h"
|
|
#include "thread.h"
|
|
#include "system.h"
|
|
#include "debug.h"
|
|
#include "panic.h"
|
|
#include "adc.h"
|
|
#include "string.h"
|
|
#include "sprintf.h"
|
|
#include "ata.h"
|
|
#include "power.h"
|
|
#include "button.h"
|
|
#include "audio.h"
|
|
#include "mp3_playback.h"
|
|
#include "usb.h"
|
|
#include "powermgmt.h"
|
|
#include "backlight.h"
|
|
#include "lcd.h"
|
|
#include "rtc.h"
|
|
#if CONFIG_TUNER
|
|
#include "fmradio.h"
|
|
#endif
|
|
#include "sound.h"
|
|
#ifdef HAVE_LCD_BITMAP
|
|
#include "font.h"
|
|
#endif
|
|
#if defined(HAVE_RECORDING) && (CONFIG_CODEC == SWCODEC)
|
|
#include "pcm_record.h"
|
|
#endif
|
|
#include "logf.h"
|
|
#include "lcd-remote.h"
|
|
#ifdef SIMULATOR
|
|
#include <time.h>
|
|
#endif
|
|
|
|
#if (defined(IAUDIO_X5) || defined(IAUDIO_M5)) && !defined (SIMULATOR)
|
|
#include "pcf50606.h"
|
|
#include "lcd-remote-target.h"
|
|
#endif
|
|
|
|
/*
|
|
* Define DEBUG_FILE to create a csv (spreadsheet) with battery information
|
|
* in it (one sample per minute). This is only for very low level debug.
|
|
*/
|
|
#undef DEBUG_FILE
|
|
#if defined(DEBUG_FILE) && (CONFIG_CHARGING == CHARGING_CONTROL)
|
|
#include "file.h"
|
|
#define DEBUG_FILE_NAME "/powermgmt.csv"
|
|
#define DEBUG_MESSAGE_LEN 133
|
|
static char debug_message[DEBUG_MESSAGE_LEN];
|
|
#define DEBUG_STACK ((0x1000)/sizeof(long))
|
|
static int fd = -1; /* write debug information to this file */
|
|
static int wrcount = 0;
|
|
#else
|
|
#define DEBUG_STACK 0
|
|
#endif
|
|
|
|
static int shutdown_timeout = 0;
|
|
#if CONFIG_CHARGING >= CHARGING_MONITOR
|
|
charge_state_type charge_state; /* charging mode */
|
|
#endif
|
|
|
|
static void send_battery_level_event(void);
|
|
static int last_sent_battery_level = 100;
|
|
|
|
#if CONFIG_CHARGING
|
|
charger_input_state_type charger_input_state IDATA_ATTR;
|
|
#endif
|
|
|
|
#ifdef SIMULATOR /***********************************************************/
|
|
|
|
#define BATT_MINMVOLT 2500 /* minimum millivolts of battery */
|
|
#define BATT_MAXMVOLT 4500 /* maximum millivolts of battery */
|
|
#define BATT_MAXRUNTIME (10 * 60) /* maximum runtime with full battery in minutes */
|
|
|
|
static unsigned int battery_millivolts = (unsigned int)BATT_MAXMVOLT;
|
|
static int battery_percent = 100; /* battery capacity level in percent */
|
|
static int powermgmt_est_runningtime_min = BATT_MAXRUNTIME; /* estimated remaining time in minutes */
|
|
|
|
static void battery_status_update(void)
|
|
{
|
|
static time_t last_change = 0;
|
|
static bool charging = false;
|
|
time_t now;
|
|
|
|
time(&now);
|
|
if (last_change < now)
|
|
{
|
|
last_change = now;
|
|
|
|
/* change the values: */
|
|
if (charging)
|
|
{
|
|
if (battery_millivolts >= BATT_MAXMVOLT)
|
|
{
|
|
/* Pretend the charger was disconnected */
|
|
charging = false;
|
|
queue_broadcast(SYS_CHARGER_DISCONNECTED, 0);
|
|
last_sent_battery_level = 100;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (battery_millivolts <= BATT_MINMVOLT)
|
|
{
|
|
/* Pretend the charger was connected */
|
|
charging = true;
|
|
queue_broadcast(SYS_CHARGER_CONNECTED, 0);
|
|
last_sent_battery_level = 0;
|
|
}
|
|
}
|
|
if (charging)
|
|
battery_millivolts += (BATT_MAXMVOLT - BATT_MINMVOLT) / 50;
|
|
else
|
|
battery_millivolts -= (BATT_MAXMVOLT - BATT_MINMVOLT) / 100;
|
|
|
|
battery_percent = 100 * (battery_millivolts - BATT_MINMVOLT) /
|
|
(BATT_MAXMVOLT - BATT_MINMVOLT);
|
|
powermgmt_est_runningtime_min = battery_percent * BATT_MAXRUNTIME / 100;
|
|
}
|
|
send_battery_level_event();
|
|
}
|
|
|
|
void battery_read_info(int *voltage, int *level)
|
|
{
|
|
battery_status_update();
|
|
|
|
if (voltage)
|
|
*voltage = battery_millivolts;
|
|
|
|
if (level)
|
|
*level = battery_percent;
|
|
}
|
|
|
|
unsigned int battery_voltage(void)
|
|
{
|
|
battery_status_update();
|
|
return battery_millivolts;
|
|
}
|
|
|
|
int battery_level(void)
|
|
{
|
|
battery_status_update();
|
|
return battery_percent;
|
|
}
|
|
|
|
int battery_time(void)
|
|
{
|
|
battery_status_update();
|
|
return powermgmt_est_runningtime_min;
|
|
}
|
|
|
|
bool battery_level_safe(void)
|
|
{
|
|
return battery_level() >= 10;
|
|
}
|
|
|
|
void set_poweroff_timeout(int timeout)
|
|
{
|
|
(void)timeout;
|
|
}
|
|
|
|
void set_battery_capacity(int capacity)
|
|
{
|
|
(void)capacity;
|
|
}
|
|
|
|
#if BATTERY_TYPES_COUNT > 1
|
|
void set_battery_type(int type)
|
|
{
|
|
(void)type;
|
|
}
|
|
#endif
|
|
|
|
void reset_poweroff_timer(void)
|
|
{
|
|
}
|
|
|
|
#ifdef HAVE_ACCESSORY_SUPPLY
|
|
void accessory_supply_set(bool enable)
|
|
{
|
|
(void)enable;
|
|
}
|
|
#endif
|
|
|
|
#else /* not SIMULATOR ******************************************************/
|
|
|
|
static void power_thread_sleep(int ticks);
|
|
|
|
/*
|
|
* Average battery voltage and charger voltage, filtered via a digital
|
|
* exponential filter (aka. exponential moving average, scaled):
|
|
* avgbat = y[n] = (N-1)/N*y[n-1] + x[n]. battery_millivolts = y[n] / N.
|
|
*/
|
|
static unsigned int avgbat; /* average battery voltage (filtering) */
|
|
static unsigned int battery_millivolts;/* filtered battery voltage, millivolts */
|
|
|
|
/* battery level (0-100%) of this minute, updated once per minute */
|
|
static int battery_percent = -1;
|
|
static int battery_capacity = BATTERY_CAPACITY_DEFAULT; /* default value, mAh */
|
|
#if BATTERY_TYPES_COUNT > 1
|
|
static int battery_type = 0;
|
|
#else
|
|
#define battery_type 0
|
|
#endif
|
|
|
|
/* Power history: power_history[0] is the newest sample */
|
|
unsigned short power_history[POWER_HISTORY_LEN];
|
|
|
|
static char power_stack[DEFAULT_STACK_SIZE/2 + DEBUG_STACK];
|
|
static const char power_thread_name[] = "power";
|
|
|
|
static int poweroff_timeout = 0;
|
|
static int powermgmt_est_runningtime_min = -1;
|
|
|
|
static bool sleeptimer_active = false;
|
|
static long sleeptimer_endtick;
|
|
|
|
static long last_event_tick;
|
|
|
|
static int voltage_to_battery_level(int battery_millivolts);
|
|
static void battery_status_update(void);
|
|
static int runcurrent(void);
|
|
|
|
void battery_read_info(int *voltage, int *level)
|
|
{
|
|
int millivolts = battery_adc_voltage();
|
|
|
|
if (voltage)
|
|
*voltage = millivolts;
|
|
|
|
if (level)
|
|
*level = voltage_to_battery_level(millivolts);
|
|
}
|
|
|
|
void reset_poweroff_timer(void)
|
|
{
|
|
last_event_tick = current_tick;
|
|
}
|
|
|
|
#if BATTERY_TYPES_COUNT > 1
|
|
void set_battery_type(int type)
|
|
{
|
|
if (type != battery_type) {
|
|
battery_type = type;
|
|
battery_status_update(); /* recalculate the battery status */
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void set_battery_capacity(int capacity)
|
|
{
|
|
battery_capacity = capacity;
|
|
if (battery_capacity > BATTERY_CAPACITY_MAX)
|
|
battery_capacity = BATTERY_CAPACITY_MAX;
|
|
if (battery_capacity < BATTERY_CAPACITY_MIN)
|
|
battery_capacity = BATTERY_CAPACITY_MIN;
|
|
battery_status_update(); /* recalculate the battery status */
|
|
}
|
|
|
|
int battery_time(void)
|
|
{
|
|
return powermgmt_est_runningtime_min;
|
|
}
|
|
|
|
/* Returns battery level in percent */
|
|
int battery_level(void)
|
|
{
|
|
return battery_percent;
|
|
}
|
|
|
|
/* Returns filtered battery voltage [millivolts] */
|
|
unsigned int battery_voltage(void)
|
|
{
|
|
return battery_millivolts;
|
|
}
|
|
|
|
/* Tells if the battery level is safe for disk writes */
|
|
bool battery_level_safe(void)
|
|
{
|
|
return battery_millivolts > battery_level_dangerous[battery_type];
|
|
}
|
|
|
|
void set_poweroff_timeout(int timeout)
|
|
{
|
|
poweroff_timeout = timeout;
|
|
}
|
|
|
|
void set_sleep_timer(int seconds)
|
|
{
|
|
if(seconds) {
|
|
sleeptimer_active = true;
|
|
sleeptimer_endtick = current_tick + seconds * HZ;
|
|
}
|
|
else {
|
|
sleeptimer_active = false;
|
|
sleeptimer_endtick = 0;
|
|
}
|
|
}
|
|
|
|
int get_sleep_timer(void)
|
|
{
|
|
if(sleeptimer_active)
|
|
return (sleeptimer_endtick - current_tick) / HZ;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* look into the percent_to_volt_* table and get a realistic battery level */
|
|
static int voltage_to_percent(int voltage, const short* table)
|
|
{
|
|
if (voltage <= table[0])
|
|
return 0;
|
|
else
|
|
if (voltage >= table[10])
|
|
return 100;
|
|
else {
|
|
/* search nearest value */
|
|
int i = 0;
|
|
while ((i < 10) && (table[i+1] < voltage))
|
|
i++;
|
|
/* interpolate linear between the smaller and greater value */
|
|
return (i * 10) /* Tens digit, 10% per entry */
|
|
+ (((voltage - table[i]) * 10)
|
|
/ (table[i+1] - table[i])); /* Ones digit: interpolated */
|
|
}
|
|
}
|
|
|
|
/* update battery level and estimated runtime, called once per minute or
|
|
* when battery capacity / type settings are changed */
|
|
static int voltage_to_battery_level(int battery_millivolts)
|
|
{
|
|
int level;
|
|
|
|
#if CONFIG_CHARGING >= CHARGING_MONITOR
|
|
if (charge_state == DISCHARGING) {
|
|
level = voltage_to_percent(battery_millivolts,
|
|
percent_to_volt_discharge[battery_type]);
|
|
}
|
|
else if (charge_state == CHARGING) {
|
|
/* battery level is defined to be < 100% until charging is finished */
|
|
level = MIN(voltage_to_percent(battery_millivolts,
|
|
percent_to_volt_charge), 99);
|
|
}
|
|
else { /* in topoff/trickle charge, battery is by definition 100% full */
|
|
level = 100;
|
|
}
|
|
#else
|
|
/* always use the discharge table */
|
|
level = voltage_to_percent(battery_millivolts,
|
|
percent_to_volt_discharge[battery_type]);
|
|
#endif /* CONFIG_CHARGING ... */
|
|
|
|
return level;
|
|
}
|
|
|
|
static void battery_status_update(void)
|
|
{
|
|
int level = voltage_to_battery_level(battery_millivolts);
|
|
|
|
/* calculate estimated remaining running time */
|
|
/* discharging: remaining running time */
|
|
/* charging: remaining charging time */
|
|
#if CONFIG_CHARGING >= CHARGING_MONITOR
|
|
if (charge_state == CHARGING) {
|
|
powermgmt_est_runningtime_min = (100 - level) * battery_capacity * 60
|
|
/ 100 / (CURRENT_MAX_CHG - runcurrent());
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
if ((battery_millivolts + 20) > percent_to_volt_discharge[0][0])
|
|
powermgmt_est_runningtime_min = (level + battery_percent) * 60 *
|
|
battery_capacity / 200 / runcurrent();
|
|
|
|
else if (battery_millivolts <= battery_level_shutoff[0])
|
|
powermgmt_est_runningtime_min = 0;
|
|
|
|
else
|
|
powermgmt_est_runningtime_min = (battery_millivolts -
|
|
battery_level_shutoff[0]) / 2;
|
|
}
|
|
|
|
battery_percent = level;
|
|
send_battery_level_event();
|
|
}
|
|
|
|
/*
|
|
* We shut off in the following cases:
|
|
* 1) The unit is idle, not playing music
|
|
* 2) The unit is playing music, but is paused
|
|
* 3) The battery level has reached shutdown limit
|
|
*
|
|
* We do not shut off in the following cases:
|
|
* 1) The USB is connected
|
|
* 2) The charger is connected
|
|
* 3) We are recording, or recording with pause
|
|
* 4) The radio is playing
|
|
*/
|
|
static void handle_auto_poweroff(void)
|
|
{
|
|
long timeout = poweroff_timeout*60*HZ;
|
|
int audio_stat = audio_status();
|
|
|
|
#if CONFIG_CHARGING
|
|
/*
|
|
* Inhibit shutdown as long as the charger is plugged in. If it is
|
|
* unplugged, wait for a timeout period and then shut down.
|
|
*/
|
|
if(charger_input_state == CHARGER || audio_stat == AUDIO_STATUS_PLAY) {
|
|
last_event_tick = current_tick;
|
|
}
|
|
#endif
|
|
|
|
#ifndef NO_LOW_BATTERY_SHUTDOWN
|
|
/* switch off unit if battery level is too low for reliable operation */
|
|
if(battery_millivolts < battery_level_shutoff[battery_type]) {
|
|
if(!shutdown_timeout) {
|
|
backlight_on();
|
|
sys_poweroff();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if(timeout &&
|
|
#if CONFIG_TUNER && !defined(BOOTLOADER)
|
|
(!(get_radio_status() & FMRADIO_PLAYING)) &&
|
|
#endif
|
|
!usb_inserted() &&
|
|
((audio_stat == 0) ||
|
|
((audio_stat == (AUDIO_STATUS_PLAY | AUDIO_STATUS_PAUSE)) &&
|
|
!sleeptimer_active)))
|
|
{
|
|
if(TIME_AFTER(current_tick, last_event_tick + timeout) &&
|
|
TIME_AFTER(current_tick, last_disk_activity + timeout))
|
|
{
|
|
sys_poweroff();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Handle sleeptimer */
|
|
if(sleeptimer_active && !usb_inserted())
|
|
{
|
|
if(TIME_AFTER(current_tick, sleeptimer_endtick))
|
|
{
|
|
audio_stop();
|
|
#if CONFIG_CHARGING && !defined(HAVE_POWEROFF_WHILE_CHARGING)
|
|
if((charger_input_state == CHARGER) ||
|
|
(charger_input_state == CHARGER_PLUGGED))
|
|
{
|
|
DEBUGF("Sleep timer timeout. Stopping...\n");
|
|
set_sleep_timer(0);
|
|
backlight_off(); /* Nighty, nighty... */
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
DEBUGF("Sleep timer timeout. Shutting off...\n");
|
|
sys_poweroff();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Estimate how much current we are drawing just to run.
|
|
*/
|
|
static int runcurrent(void)
|
|
{
|
|
int current;
|
|
|
|
#if MEM == 8 && !defined(HAVE_MMC)
|
|
/* assuming 192 kbps, the running time is 22% longer with 8MB */
|
|
current = (CURRENT_NORMAL*100/122);
|
|
#else
|
|
current = CURRENT_NORMAL;
|
|
#endif /* MEM == 8 */
|
|
|
|
if(usb_inserted()
|
|
#if defined(HAVE_USB_POWER)
|
|
#if (CURRENT_USB < CURRENT_NORMAL)
|
|
|| usb_powered()
|
|
#else
|
|
&& !usb_powered()
|
|
#endif
|
|
#endif
|
|
)
|
|
{
|
|
current = CURRENT_USB;
|
|
}
|
|
|
|
#if defined(HAVE_BACKLIGHT) && !defined(BOOTLOADER)
|
|
if (backlight_get_current_timeout() == 0) /* LED always on */
|
|
current += CURRENT_BACKLIGHT;
|
|
#endif
|
|
|
|
#if defined(HAVE_RECORDING) && defined(CURRENT_RECORD)
|
|
if (audio_status() & AUDIO_STATUS_RECORD)
|
|
current += CURRENT_RECORD;
|
|
#endif
|
|
|
|
#ifdef HAVE_SPDIF_POWER
|
|
if (spdif_powered())
|
|
current += CURRENT_SPDIF_OUT;
|
|
#endif
|
|
|
|
#ifdef HAVE_REMOTE_LCD
|
|
if (remote_detect())
|
|
current += CURRENT_REMOTE;
|
|
#endif
|
|
|
|
return(current);
|
|
}
|
|
|
|
|
|
/* Check to see whether or not we've received an alarm in the last second */
|
|
#ifdef HAVE_RTC_ALARM
|
|
static void power_thread_rtc_process(void)
|
|
{
|
|
if (rtc_check_alarm_flag()) {
|
|
rtc_enable_alarm(false);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This power thread maintains a history of battery voltage
|
|
* and implements a charging algorithm.
|
|
*/
|
|
#if CONFIG_CHARGING == CHARGING_CONTROL
|
|
#define BATT_AVE_SAMPLES 32 /* filter constant / @ 2Hz sample rate */
|
|
|
|
/*
|
|
* For a complete description of the charging algorithm read
|
|
* docs/CHARGING_ALGORITHM.
|
|
*/
|
|
int long_delta; /* long term delta battery voltage */
|
|
int short_delta; /* short term delta battery voltage */
|
|
bool disk_activity_last_cycle = false; /* flag set to aid charger time
|
|
* calculation */
|
|
char power_message[POWER_MESSAGE_LEN] = ""; /* message that's shown in
|
|
debug menu */
|
|
/* percentage at which charging
|
|
starts */
|
|
int powermgmt_last_cycle_startstop_min = 0; /* how many minutes ago was the
|
|
charging started or
|
|
stopped? */
|
|
int powermgmt_last_cycle_level = 0; /* which level had the
|
|
batteries at this time? */
|
|
int trickle_sec = 0; /* how many seconds should the
|
|
charger be enabled per
|
|
minute for trickle
|
|
charging? */
|
|
int pid_p = 0; /* PID proportional term */
|
|
int pid_i = 0; /* PID integral term */
|
|
|
|
static inline void charging_algorithm_small_step(void)
|
|
{
|
|
if (ata_disk_is_active()) {
|
|
/* flag hdd use for charging calculation */
|
|
disk_activity_last_cycle = true;
|
|
}
|
|
|
|
#if defined(DEBUG_FILE)
|
|
/*
|
|
* If we have a lot of pending writes or if the disk is spining,
|
|
* fsync the debug log file.
|
|
*/
|
|
if((wrcount > 10) || ((wrcount > 0) && ata_disk_is_active())) {
|
|
fsync(fd);
|
|
wrcount = 0;
|
|
}
|
|
#endif /* defined(DEBUG_FILE) */
|
|
}
|
|
|
|
static inline void charging_algorithm_big_step(void)
|
|
{
|
|
static unsigned int target_voltage = TRICKLE_VOLTAGE; /* desired topoff/trickle
|
|
* voltage level */
|
|
static int charge_max_time_idle = 0; /* max. charging duration, calculated at
|
|
* beginning of charging */
|
|
static int charge_max_time_now = 0; /* max. charging duration including
|
|
* hdd activity */
|
|
static int minutes_disk_activity = 0; /* count minutes of hdd use during
|
|
* charging */
|
|
static int last_disk_activity = CHARGE_END_LONGD + 1; /* last hdd use x mins ago */
|
|
int i;
|
|
|
|
if (charger_input_state == CHARGER_PLUGGED) {
|
|
pid_p = 0;
|
|
pid_i = 0;
|
|
snprintf(power_message, POWER_MESSAGE_LEN, "Charger plugged in");
|
|
/*
|
|
* The charger was just plugged in. If the battery level is
|
|
* nearly charged, just trickle. If the battery is low, start
|
|
* a full charge cycle. If the battery level is in between,
|
|
* top-off and then trickle.
|
|
*/
|
|
if(battery_percent > START_TOPOFF_CHG) {
|
|
powermgmt_last_cycle_level = battery_percent;
|
|
powermgmt_last_cycle_startstop_min = 0;
|
|
if(battery_percent >= START_TRICKLE_CHG) {
|
|
charge_state = TRICKLE;
|
|
target_voltage = TRICKLE_VOLTAGE;
|
|
} else {
|
|
charge_state = TOPOFF;
|
|
target_voltage = TOPOFF_VOLTAGE;
|
|
}
|
|
} else {
|
|
/*
|
|
* Start the charger full strength
|
|
*/
|
|
i = CHARGE_MAX_TIME_1500 * battery_capacity / 1500;
|
|
charge_max_time_idle =
|
|
i * (100 + 35 - battery_percent) / 100;
|
|
if (charge_max_time_idle > i) {
|
|
charge_max_time_idle = i;
|
|
}
|
|
charge_max_time_now = charge_max_time_idle;
|
|
|
|
snprintf(power_message, POWER_MESSAGE_LEN,
|
|
"ChgAt %d%% max %dm", battery_level(),
|
|
charge_max_time_now);
|
|
|
|
/* enable the charger after the max time calc is done,
|
|
because battery_level depends on if the charger is
|
|
on */
|
|
DEBUGF("power: charger inserted and battery"
|
|
" not full, charging\n");
|
|
powermgmt_last_cycle_level = battery_percent;
|
|
powermgmt_last_cycle_startstop_min = 0;
|
|
trickle_sec = 60;
|
|
long_delta = short_delta = 999999;
|
|
charge_state = CHARGING;
|
|
}
|
|
}
|
|
|
|
if (charge_state == CHARGING) {
|
|
/* alter charge time max length with extra disk use */
|
|
if (disk_activity_last_cycle) {
|
|
minutes_disk_activity++;
|
|
charge_max_time_now = charge_max_time_idle +
|
|
(minutes_disk_activity * 2 / 5);
|
|
disk_activity_last_cycle = false;
|
|
last_disk_activity = 0;
|
|
} else {
|
|
last_disk_activity++;
|
|
}
|
|
/*
|
|
* Check the delta voltage over the last X minutes so we can do
|
|
* our end-of-charge logic based on the battery level change.
|
|
*(no longer use minimum time as logic for charge end has 50
|
|
* minutes minimum charge built in)
|
|
*/
|
|
if (powermgmt_last_cycle_startstop_min > CHARGE_END_SHORTD) {
|
|
short_delta = power_history[0] -
|
|
power_history[CHARGE_END_SHORTD - 1];
|
|
}
|
|
|
|
if (powermgmt_last_cycle_startstop_min > CHARGE_END_LONGD) {
|
|
/*
|
|
* Scan the history: the points where measurement is taken need to
|
|
* be fairly static. (check prior to short delta 'area')
|
|
* (also only check first and last 10 cycles - delta in middle OK)
|
|
*/
|
|
long_delta = power_history[0] -
|
|
power_history[CHARGE_END_LONGD - 1];
|
|
|
|
for(i = CHARGE_END_SHORTD; i < CHARGE_END_SHORTD + 10; i++) {
|
|
if(((power_history[i] - power_history[i+1]) > 50) ||
|
|
((power_history[i] - power_history[i+1]) < -50)) {
|
|
long_delta = 777777;
|
|
break;
|
|
}
|
|
}
|
|
for(i = CHARGE_END_LONGD - 11; i < CHARGE_END_LONGD - 1 ; i++) {
|
|
if(((power_history[i] - power_history[i+1]) > 50) ||
|
|
((power_history[i] - power_history[i+1]) < -50)) {
|
|
long_delta = 888888;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
snprintf(power_message, POWER_MESSAGE_LEN,
|
|
"Chg %dm, max %dm", powermgmt_last_cycle_startstop_min,
|
|
charge_max_time_now);
|
|
/*
|
|
* End of charge criteria (any qualify):
|
|
* 1) Charged a long time
|
|
* 2) DeltaV went negative for a short time ( & long delta static)
|
|
* 3) DeltaV was negative over a longer period (no disk use only)
|
|
* Note: short_delta and long_delta are millivolts
|
|
*/
|
|
if ((powermgmt_last_cycle_startstop_min >= charge_max_time_now) ||
|
|
(short_delta <= -50 && long_delta < 50 ) || (long_delta < -20 &&
|
|
last_disk_activity > CHARGE_END_LONGD)) {
|
|
if (powermgmt_last_cycle_startstop_min > charge_max_time_now) {
|
|
DEBUGF("power: powermgmt_last_cycle_startstop_min > charge_max_time_now, "
|
|
"enough!\n");
|
|
/*
|
|
*have charged too long and deltaV detection did not
|
|
*work!
|
|
*/
|
|
snprintf(power_message, POWER_MESSAGE_LEN,
|
|
"Chg tmout %d min", charge_max_time_now);
|
|
/*
|
|
* Switch to trickle charging. We skip the top-off
|
|
* since we've effectively done the top-off operation
|
|
* already since we charged for the maximum full
|
|
* charge time.
|
|
*/
|
|
powermgmt_last_cycle_level = battery_percent;
|
|
powermgmt_last_cycle_startstop_min = 0;
|
|
charge_state = TRICKLE;
|
|
|
|
/*
|
|
* set trickle charge target to a relative voltage instead
|
|
* of an arbitrary value - the fully charged voltage may
|
|
* vary according to ambient temp, battery condition etc
|
|
* trickle target is -0.15v from full voltage acheived
|
|
* topup target is -0.05v from full voltage
|
|
*/
|
|
target_voltage = power_history[0] - 150;
|
|
|
|
} else {
|
|
if(short_delta <= -5) {
|
|
DEBUGF("power: short-term negative"
|
|
" delta, enough!\n");
|
|
snprintf(power_message, POWER_MESSAGE_LEN,
|
|
"end negd %d %dmin", short_delta,
|
|
powermgmt_last_cycle_startstop_min);
|
|
target_voltage = power_history[CHARGE_END_SHORTD - 1]
|
|
- 50;
|
|
} else {
|
|
DEBUGF("power: long-term small "
|
|
"positive delta, enough!\n");
|
|
snprintf(power_message, POWER_MESSAGE_LEN,
|
|
"end lowd %d %dmin", long_delta,
|
|
powermgmt_last_cycle_startstop_min);
|
|
target_voltage = power_history[CHARGE_END_LONGD - 1]
|
|
- 50;
|
|
}
|
|
/*
|
|
* Switch to top-off charging.
|
|
*/
|
|
powermgmt_last_cycle_level = battery_percent;
|
|
powermgmt_last_cycle_startstop_min = 0;
|
|
charge_state = TOPOFF;
|
|
}
|
|
}
|
|
}
|
|
else if (charge_state != DISCHARGING) /* top off or trickle */
|
|
{
|
|
/*
|
|
*Time to switch from topoff to trickle?
|
|
*/
|
|
if ((charge_state == TOPOFF) &&
|
|
(powermgmt_last_cycle_startstop_min > TOPOFF_MAX_TIME))
|
|
{
|
|
powermgmt_last_cycle_level = battery_percent;
|
|
powermgmt_last_cycle_startstop_min = 0;
|
|
charge_state = TRICKLE;
|
|
target_voltage = target_voltage - 100;
|
|
}
|
|
/*
|
|
* Adjust trickle charge time (proportional and integral terms).
|
|
* Note: I considered setting the level higher if the USB is
|
|
* plugged in, but it doesn't appear to be necessary and will
|
|
* generate more heat [gvb].
|
|
*/
|
|
|
|
pid_p = ((signed)target_voltage - (signed)battery_millivolts) / 5;
|
|
if((pid_p <= PID_DEADZONE) && (pid_p >= -PID_DEADZONE))
|
|
pid_p = 0;
|
|
|
|
if((unsigned) battery_millivolts < target_voltage) {
|
|
if(pid_i < 60) {
|
|
pid_i++; /* limit so it doesn't "wind up" */
|
|
}
|
|
} else {
|
|
if(pid_i > 0) {
|
|
pid_i--; /* limit so it doesn't "wind up" */
|
|
}
|
|
}
|
|
|
|
trickle_sec = pid_p + pid_i;
|
|
|
|
if(trickle_sec > 60) {
|
|
trickle_sec = 60;
|
|
}
|
|
if(trickle_sec < 0) {
|
|
trickle_sec = 0;
|
|
}
|
|
|
|
} else if (charge_state == DISCHARGING) {
|
|
trickle_sec = 0;
|
|
/*
|
|
* The charger is enabled here only in one case: if it was
|
|
* turned on at boot time (power_init). Turn it off now.
|
|
*/
|
|
if (charger_enabled)
|
|
charger_enable(false);
|
|
}
|
|
|
|
if (charger_input_state == CHARGER_UNPLUGGED) {
|
|
/*
|
|
* The charger was just unplugged.
|
|
*/
|
|
DEBUGF("power: charger disconnected, disabling\n");
|
|
|
|
charger_enable(false);
|
|
powermgmt_last_cycle_level = battery_percent;
|
|
powermgmt_last_cycle_startstop_min = 0;
|
|
trickle_sec = 0;
|
|
pid_p = 0;
|
|
pid_i = 0;
|
|
charge_state = DISCHARGING;
|
|
snprintf(power_message, POWER_MESSAGE_LEN, "Charger: discharge");
|
|
}
|
|
|
|
/* sleep for a minute */
|
|
if(trickle_sec > 0) {
|
|
charger_enable(true);
|
|
power_thread_sleep(HZ * trickle_sec);
|
|
}
|
|
if(trickle_sec < 60)
|
|
charger_enable(false);
|
|
power_thread_sleep(HZ * (60 - trickle_sec));
|
|
|
|
#if defined(DEBUG_FILE)
|
|
if(usb_inserted()) {
|
|
if(fd >= 0) {
|
|
/* It is probably too late to close the file but we can try...*/
|
|
close(fd);
|
|
fd = -1;
|
|
}
|
|
} else {
|
|
if(fd < 0) {
|
|
fd = open(DEBUG_FILE_NAME, O_WRONLY | O_APPEND | O_CREAT);
|
|
if(fd >= 0) {
|
|
snprintf(debug_message, DEBUG_MESSAGE_LEN,
|
|
"cycle_min, bat_millivolts, bat_percent, chgr_state"
|
|
" ,charge_state, pid_p, pid_i, trickle_sec\n");
|
|
write(fd, debug_message, strlen(debug_message));
|
|
wrcount = 99; /* force a flush */
|
|
}
|
|
}
|
|
if(fd >= 0) {
|
|
snprintf(debug_message, DEBUG_MESSAGE_LEN,
|
|
"%d, %d, %d, %d, %d, %d, %d, %d\n",
|
|
powermgmt_last_cycle_startstop_min, battery_millivolts,
|
|
battery_percent, charger_input_state, charge_state,
|
|
pid_p, pid_i, trickle_sec);
|
|
write(fd, debug_message, strlen(debug_message));
|
|
wrcount++;
|
|
}
|
|
}
|
|
#endif /* defined(DEBUG_FILE) */
|
|
|
|
powermgmt_last_cycle_startstop_min++;
|
|
}
|
|
|
|
/*
|
|
* Prepare charging for poweroff
|
|
*/
|
|
static inline void charging_algorithm_close(void)
|
|
{
|
|
#if defined(DEBUG_FILE)
|
|
if(fd >= 0) {
|
|
close(fd);
|
|
fd = -1;
|
|
}
|
|
#endif
|
|
}
|
|
#else
|
|
#define BATT_AVE_SAMPLES 128 /* slw filter constant for all others */
|
|
|
|
static inline void charging_algorithm_small_step(void)
|
|
{
|
|
#if CONFIG_CHARGING == CHARGING_MONITOR
|
|
switch (charger_input_state)
|
|
{
|
|
case CHARGER_UNPLUGGED:
|
|
case NO_CHARGER:
|
|
charge_state = DISCHARGING;
|
|
break;
|
|
case CHARGER_PLUGGED:
|
|
case CHARGER:
|
|
if (charging_state()) {
|
|
charge_state = CHARGING;
|
|
} else {
|
|
charge_state = DISCHARGING;
|
|
}
|
|
break;
|
|
}
|
|
#endif /* CONFIG_CHARGING == CHARGING_MONITOR */
|
|
}
|
|
|
|
static inline void charging_algorithm_big_step(void)
|
|
{
|
|
/* sleep for a minute */
|
|
power_thread_sleep(HZ * 60);
|
|
}
|
|
|
|
/*
|
|
* Prepare charging for poweroff
|
|
*/
|
|
static inline void charging_algorithm_close(void)
|
|
{
|
|
/* Nothing to do */
|
|
}
|
|
#endif /* CONFIG_CHARGING == CHARGING_CONTROL */
|
|
|
|
/*
|
|
* This function is called to do the relativly long sleep waits from within the
|
|
* main power_thread loop while at the same time servicing any other periodic
|
|
* functions in the power thread which need to be called at a faster periodic
|
|
* rate than the slow periodic rate of the main power_thread loop.
|
|
*
|
|
* While we are waiting for the time to expire, we average the battery
|
|
* voltages.
|
|
*/
|
|
static void power_thread_sleep(int ticks)
|
|
{
|
|
int small_ticks;
|
|
|
|
while (ticks > 0) {
|
|
|
|
#if CONFIG_CHARGING
|
|
/*
|
|
* Detect charger plugged/unplugged transitions. On a plugged or
|
|
* unplugged event, we return immediately, run once through the main
|
|
* loop (including the subroutines), and end up back here where we
|
|
* transition to the appropriate steady state charger on/off state.
|
|
*/
|
|
if(charger_inserted()
|
|
#ifdef HAVE_USB_POWER /* USB powered or USB inserted both provide power */
|
|
|| usb_powered()
|
|
|| (usb_inserted() && usb_charging_enabled())
|
|
#endif
|
|
) {
|
|
switch(charger_input_state) {
|
|
case NO_CHARGER:
|
|
case CHARGER_UNPLUGGED:
|
|
charger_input_state = CHARGER_PLUGGED;
|
|
return;
|
|
case CHARGER_PLUGGED:
|
|
queue_broadcast(SYS_CHARGER_CONNECTED, 0);
|
|
last_sent_battery_level = 0;
|
|
charger_input_state = CHARGER;
|
|
break;
|
|
case CHARGER:
|
|
break;
|
|
}
|
|
} else { /* charger not inserted */
|
|
switch(charger_input_state) {
|
|
case NO_CHARGER:
|
|
break;
|
|
case CHARGER_UNPLUGGED:
|
|
queue_broadcast(SYS_CHARGER_DISCONNECTED, 0);
|
|
last_sent_battery_level = 100;
|
|
charger_input_state = NO_CHARGER;
|
|
break;
|
|
case CHARGER_PLUGGED:
|
|
case CHARGER:
|
|
charger_input_state = CHARGER_UNPLUGGED;
|
|
return;
|
|
}
|
|
}
|
|
#endif /* CONFIG_CHARGING */
|
|
|
|
small_ticks = MIN(HZ/2, ticks);
|
|
sleep(small_ticks);
|
|
ticks -= small_ticks;
|
|
|
|
/* If the power off timeout expires, the main thread has failed
|
|
to shut down the system, and we need to force a power off */
|
|
if(shutdown_timeout) {
|
|
shutdown_timeout -= small_ticks;
|
|
if(shutdown_timeout <= 0)
|
|
power_off();
|
|
}
|
|
|
|
#ifdef HAVE_RTC_ALARM
|
|
power_thread_rtc_process();
|
|
#endif
|
|
|
|
/*
|
|
* Do a digital exponential filter. We don't sample the battery if
|
|
* the disk is spinning unless we are in USB mode (the disk will most
|
|
* likely always be spinning in USB mode).
|
|
*/
|
|
if (!ata_disk_is_active() || usb_inserted()) {
|
|
avgbat += battery_adc_voltage() - (avgbat / BATT_AVE_SAMPLES);
|
|
/*
|
|
* battery_millivolts is the millivolt-scaled filtered battery value.
|
|
*/
|
|
battery_millivolts = avgbat / BATT_AVE_SAMPLES;
|
|
|
|
/* update battery status every time an update is available */
|
|
battery_status_update();
|
|
}
|
|
else if (battery_percent < 8) {
|
|
/* If battery is low, observe voltage during disk activity.
|
|
* Shut down if voltage drops below shutoff level and we are not
|
|
* using NiMH or Alkaline batteries.
|
|
*/
|
|
battery_millivolts = (battery_adc_voltage() +
|
|
battery_millivolts + 1) / 2;
|
|
|
|
/* update battery status every time an update is available */
|
|
battery_status_update();
|
|
|
|
#ifndef NO_LOW_BATTERY_SHUTDOWN
|
|
if (!shutdown_timeout &&
|
|
(battery_millivolts < battery_level_shutoff[battery_type]))
|
|
sys_poweroff();
|
|
else
|
|
#endif
|
|
avgbat += battery_millivolts - (avgbat / BATT_AVE_SAMPLES);
|
|
}
|
|
|
|
charging_algorithm_small_step();
|
|
}
|
|
}
|
|
|
|
static void power_thread(void)
|
|
{
|
|
/* Delay reading the first battery level */
|
|
#ifdef MROBE_100
|
|
while(battery_adc_voltage()>4200) /* gives false readings initially */
|
|
#endif
|
|
sleep(HZ/100);
|
|
|
|
/* initialize the voltages for the exponential filter */
|
|
avgbat = battery_adc_voltage() + 15;
|
|
|
|
#ifndef HAVE_MMC /* this adjustment is only needed for HD based */
|
|
/* The battery voltage is usually a little lower directly after
|
|
turning on, because the disk was used heavily. Raise it by 5% */
|
|
#ifdef HAVE_CHARGING
|
|
if(!charger_inserted()) /* only if charger not connected */
|
|
#endif
|
|
avgbat += (percent_to_volt_discharge[battery_type][6] -
|
|
percent_to_volt_discharge[battery_type][5]) / 2;
|
|
#endif /* not HAVE_MMC */
|
|
|
|
avgbat = avgbat * BATT_AVE_SAMPLES;
|
|
battery_millivolts = avgbat / BATT_AVE_SAMPLES;
|
|
|
|
#if CONFIG_CHARGING
|
|
if(charger_inserted()) {
|
|
battery_percent = voltage_to_percent(battery_millivolts,
|
|
percent_to_volt_charge);
|
|
} else
|
|
#endif
|
|
{ battery_percent = voltage_to_percent(battery_millivolts,
|
|
percent_to_volt_discharge[battery_type]);
|
|
battery_percent += (battery_percent < 100);
|
|
}
|
|
|
|
while (1)
|
|
{
|
|
/* rotate the power history */
|
|
memmove(power_history + 1, power_history,
|
|
sizeof(power_history) - sizeof(power_history[0]));
|
|
|
|
/* insert new value at the start, in millivolts 8-) */
|
|
power_history[0] = battery_millivolts;
|
|
|
|
charging_algorithm_big_step();
|
|
|
|
handle_auto_poweroff();
|
|
}
|
|
}
|
|
|
|
void powermgmt_init(void)
|
|
{
|
|
/* init history to 0 */
|
|
memset(power_history, 0x00, sizeof(power_history));
|
|
create_thread(power_thread, power_stack, sizeof(power_stack), 0,
|
|
power_thread_name IF_PRIO(, PRIORITY_SYSTEM)
|
|
IF_COP(, CPU));
|
|
}
|
|
|
|
#endif /* SIMULATOR */
|
|
|
|
void sys_poweroff(void)
|
|
{
|
|
logf("sys_poweroff()");
|
|
/* If the main thread fails to shut down the system, we will force a
|
|
power off after an 20 second timeout - 28 seconds if recording */
|
|
if (shutdown_timeout == 0)
|
|
{
|
|
#if (defined(IAUDIO_X5) || defined(IAUDIO_M5)) && !defined (SIMULATOR)
|
|
pcf50606_reset_timeout(); /* Reset timer on first attempt only */
|
|
#endif
|
|
#ifdef HAVE_RECORDING
|
|
if (audio_status() & AUDIO_STATUS_RECORD)
|
|
shutdown_timeout += HZ*8;
|
|
#endif
|
|
shutdown_timeout += HZ*20;
|
|
}
|
|
|
|
queue_broadcast(SYS_POWEROFF, 0);
|
|
}
|
|
|
|
void cancel_shutdown(void)
|
|
{
|
|
logf("sys_cancel_shutdown()");
|
|
|
|
#if (defined(IAUDIO_X5) || defined(IAUDIO_M5)) && !defined (SIMULATOR)
|
|
/* TODO: Move some things to target/ tree */
|
|
if (shutdown_timeout)
|
|
pcf50606_reset_timeout();
|
|
#endif
|
|
|
|
shutdown_timeout = 0;
|
|
}
|
|
|
|
/* Various hardware housekeeping tasks relating to shutting down the jukebox */
|
|
void shutdown_hw(void)
|
|
{
|
|
#ifndef SIMULATOR
|
|
charging_algorithm_close();
|
|
audio_stop();
|
|
if (battery_level_safe()) { /* do not save on critical battery */
|
|
#ifdef HAVE_LCD_BITMAP
|
|
glyph_cache_save();
|
|
#endif
|
|
if(ata_disk_is_active())
|
|
ata_spindown(1);
|
|
}
|
|
while(ata_disk_is_active())
|
|
sleep(HZ/10);
|
|
|
|
#if CONFIG_CODEC != SWCODEC
|
|
mp3_shutdown();
|
|
#else
|
|
audiohw_close();
|
|
#endif
|
|
|
|
/* If HD is still active we try to wait for spindown, otherwise the
|
|
shutdown_timeout in power_thread_sleep will force a power off */
|
|
while(ata_disk_is_active())
|
|
sleep(HZ/10);
|
|
#ifndef IAUDIO_X5
|
|
lcd_set_contrast(0);
|
|
#endif /* IAUDIO_X5 */
|
|
#ifdef HAVE_REMOTE_LCD
|
|
lcd_remote_set_contrast(0);
|
|
#endif
|
|
|
|
#ifdef HAVE_LCD_SHUTDOWN
|
|
lcd_shutdown();
|
|
#endif
|
|
|
|
/* Small delay to make sure all HW gets time to flush. Especially
|
|
eeprom chips are quite slow and might be still writing the last
|
|
byte. */
|
|
sleep(HZ/4);
|
|
power_off();
|
|
#endif /* #ifndef SIMULATOR */
|
|
}
|
|
|
|
/* Send system battery level update events on reaching certain significant
|
|
levels. This must be called after battery_percent has been updated. */
|
|
static void send_battery_level_event(void)
|
|
{
|
|
static const int levels[] = { 5, 15, 30, 50, 0 };
|
|
const int *level = levels;
|
|
while (*level)
|
|
{
|
|
if (battery_percent <= *level && last_sent_battery_level > *level)
|
|
{
|
|
last_sent_battery_level = *level;
|
|
queue_broadcast(SYS_BATTERY_UPDATE, last_sent_battery_level);
|
|
break;
|
|
}
|
|
level++;
|
|
}
|
|
}
|