rockbox/apps/plugins/puzzles/flood.c
Franklin Wei 1a6a8b52f7 Port of Simon Tatham's Puzzle Collection
Original revision: 5123b1bf68777ffa86e651f178046b26a87cf2d9

MIT Licensed. Some games still crash and others are unplayable due to
issues with controls. Still need a "real" polygon filling algorithm.

Currently builds one plugin per puzzle (about 40 in total, around 100K
each on ARM), but can easily be made to build a single monolithic
overlay (800K or so on ARM).

The following games are at least partially broken for various reasons,
and have been disabled on this commit:

Cube:     failed assertion with "Icosahedron" setting
Keen:     input issues
Mines:    weird stuff happens on target
Palisade: input issues
Solo:     input issues, occasional crash on target
Towers:   input issues
Undead:   input issues
Unequal:  input and drawing issues (concave polys)
Untangle: input issues

Features left to do:
 - In-game help system
 - Figure out the weird bugs

Change-Id: I7c69b6860ab115f973c8d76799502e9bb3d52368
2016-12-18 18:13:22 +01:00

1372 lines
37 KiB
C

/*
* flood.c: puzzle in which you make a grid all the same colour by
* repeatedly flood-filling the top left corner, and try to do so in
* as few moves as possible.
*/
/*
* Possible further work:
*
* - UI: perhaps we should only permit clicking on regions that can
* actually be reached by the next flood-fill - i.e. a click is
* only interpreted as a move if it would cause the clicked-on
* square to become part of the controlled area. This provides a
* hint in cases where you mistakenly thought that would happen,
* and protects you against typos in cases where you just
* mis-aimed.
*
* - UI: perhaps mark the fill square in some way? Or even mark the
* whole connected component _containing_ the fill square. Pro:
* that would make it easier to tell apart cases where almost all
* the yellow squares in the grid are part of the target component
* (hence, yellow is _done_ and you never have to fill in that
* colour again) from cases where there's still one yellow square
* that's only diagonally adjacent and hence will need coming back
* to. Con: but it would almost certainly be ugly.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include "rbassert.h"
#include <ctype.h>
#include <math.h>
#include "puzzles.h"
enum {
COL_BACKGROUND, COL_SEPARATOR,
COL_1, COL_2, COL_3, COL_4, COL_5, COL_6, COL_7, COL_8, COL_9, COL_10,
COL_HIGHLIGHT, COL_LOWLIGHT,
NCOLOURS
};
struct game_params {
int w, h;
int colours;
int leniency;
};
/* Just in case I want to make this changeable later, I'll put the
* coordinates of the flood-fill point here so that it'll be easy to
* find everywhere later that has to change. */
#define FILLX 0
#define FILLY 0
typedef struct soln {
int refcount;
int nmoves;
char *moves;
} soln;
struct game_state {
int w, h, colours;
int moves, movelimit;
int complete;
char *grid;
int cheated;
int solnpos;
soln *soln;
};
static game_params *default_params(void)
{
game_params *ret = snew(game_params);
ret->w = ret->h = 12;
ret->colours = 6;
ret->leniency = 5;
return ret;
}
static const struct {
struct game_params preset;
const char *name;
} flood_presets[] = {
/* Default 12x12 size, three difficulty levels. */
{{12, 12, 6, 5}, "12x12 Easy"},
{{12, 12, 6, 2}, "12x12 Medium"},
{{12, 12, 6, 0}, "12x12 Hard"},
/* Larger puzzles, leaving off Easy in the expectation that people
* wanting a bigger grid will have played it enough to find Easy
* easy. */
{{16, 16, 6, 2}, "16x16 Medium"},
{{16, 16, 6, 0}, "16x16 Hard"},
/* A couple of different colour counts. It seems generally not too
* hard with fewer colours (probably because fewer choices), so no
* extra moves for these modes. */
{{12, 12, 3, 0}, "12x12, 3 colours"},
{{12, 12, 4, 0}, "12x12, 4 colours"},
};
static int game_fetch_preset(int i, char **name, game_params **params)
{
game_params *ret;
if (i < 0 || i >= lenof(flood_presets))
return FALSE;
ret = snew(game_params);
*ret = flood_presets[i].preset;
*name = dupstr(flood_presets[i].name);
*params = ret;
return TRUE;
}
static void free_params(game_params *params)
{
sfree(params);
}
static game_params *dup_params(const game_params *params)
{
game_params *ret = snew(game_params);
*ret = *params; /* structure copy */
return ret;
}
static void decode_params(game_params *ret, char const *string)
{
ret->w = ret->h = atoi(string);
while (*string && isdigit((unsigned char)*string)) string++;
if (*string == 'x') {
string++;
ret->h = atoi(string);
while (*string && isdigit((unsigned char)*string)) string++;
}
while (*string) {
if (*string == 'c') {
string++;
ret->colours = atoi(string);
while (string[1] && isdigit((unsigned char)string[1])) string++;
} else if (*string == 'm') {
string++;
ret->leniency = atoi(string);
while (string[1] && isdigit((unsigned char)string[1])) string++;
}
string++;
}
}
static char *encode_params(const game_params *params, int full)
{
char buf[256];
sprintf(buf, "%dx%d", params->w, params->h);
if (full)
sprintf(buf + strlen(buf), "c%dm%d",
params->colours, params->leniency);
return dupstr(buf);
}
static config_item *game_configure(const game_params *params)
{
config_item *ret;
char buf[80];
ret = snewn(5, config_item);
ret[0].name = "Width";
ret[0].type = C_STRING;
sprintf(buf, "%d", params->w);
ret[0].sval = dupstr(buf);
ret[0].ival = 0;
ret[1].name = "Height";
ret[1].type = C_STRING;
sprintf(buf, "%d", params->h);
ret[1].sval = dupstr(buf);
ret[1].ival = 0;
ret[2].name = "Colours";
ret[2].type = C_STRING;
sprintf(buf, "%d", params->colours);
ret[2].sval = dupstr(buf);
ret[2].ival = 0;
ret[3].name = "Extra moves permitted";
ret[3].type = C_STRING;
sprintf(buf, "%d", params->leniency);
ret[3].sval = dupstr(buf);
ret[3].ival = 0;
ret[4].name = NULL;
ret[4].type = C_END;
ret[4].sval = NULL;
ret[4].ival = 0;
return ret;
}
static game_params *custom_params(const config_item *cfg)
{
game_params *ret = snew(game_params);
ret->w = atoi(cfg[0].sval);
ret->h = atoi(cfg[1].sval);
ret->colours = atoi(cfg[2].sval);
ret->leniency = atoi(cfg[3].sval);
return ret;
}
static char *validate_params(const game_params *params, int full)
{
if (params->w < 2 && params->h < 2)
return "Grid must contain at least two squares";
if (params->colours < 3 || params->colours > 10)
return "Must have between 3 and 10 colours";
if (params->leniency < 0)
return "Leniency must be non-negative";
return NULL;
}
#if 0
/*
* Bodge to permit varying the recursion depth for testing purposes.
To test two Floods against each other:
paste <(./flood.1 --generate 100 12x12c6m0#12345 | cut -f2 -d,) <(./flood.2 --generate 100 12x12c6m0#12345 | cut -f2 -d,) | awk '{print $2-$1}' | sort -n | uniq -c | awk '{print $2,$1}' | tee z
and then run gnuplot and plot "z".
*/
static int rdepth = 0;
#define RECURSION_DEPTH (rdepth)
void check_recursion_depth(void)
{
if (!rdepth) {
const char *depthstr = getenv("FLOOD_DEPTH");
rdepth = depthstr ? atoi(depthstr) : 1;
rdepth = rdepth > 0 ? rdepth : 1;
}
}
#else
/*
* Last time I empirically checked this, depth 3 was a noticeable
* improvement on 2, but 4 only negligibly better than 3.
*/
#define RECURSION_DEPTH 3
#define check_recursion_depth() (void)0
#endif
struct solver_scratch {
int *queue[2];
int *dist;
char *grid, *grid2;
char *rgrids;
};
static struct solver_scratch *new_scratch(int w, int h)
{
int wh = w*h;
struct solver_scratch *scratch = snew(struct solver_scratch);
check_recursion_depth();
scratch->queue[0] = snewn(wh, int);
scratch->queue[1] = snewn(wh, int);
scratch->dist = snewn(wh, int);
scratch->grid = snewn(wh, char);
scratch->grid2 = snewn(wh, char);
scratch->rgrids = snewn(wh * RECURSION_DEPTH, char);
return scratch;
}
static void free_scratch(struct solver_scratch *scratch)
{
sfree(scratch->queue[0]);
sfree(scratch->queue[1]);
sfree(scratch->dist);
sfree(scratch->grid);
sfree(scratch->grid2);
sfree(scratch->rgrids);
sfree(scratch);
}
#if 0
/* Diagnostic routines you can uncomment if you need them */
void dump_grid(int w, int h, const char *grid, const char *titlefmt, ...)
{
int x, y;
if (titlefmt) {
va_list ap;
va_start(ap, titlefmt);
vprintf(titlefmt, ap);
va_end(ap);
printf(":\n");
} else {
printf("Grid:\n");
}
for (y = 0; y < h; y++) {
printf(" ");
for (x = 0; x < w; x++) {
printf("%1x", grid[y*w+x]);
}
printf("\n");
}
}
void dump_dist(int w, int h, const int *dists, const char *titlefmt, ...)
{
int x, y;
if (titlefmt) {
va_list ap;
va_start(ap, titlefmt);
vprintf(titlefmt, ap);
va_end(ap);
printf(":\n");
} else {
printf("Distances:\n");
}
for (y = 0; y < h; y++) {
printf(" ");
for (x = 0; x < w; x++) {
printf("%3d", dists[y*w+x]);
}
printf("\n");
}
}
#endif
/*
* Search a grid to find the most distant square(s). Return their
* distance and the number of them, and also the number of squares in
* the current controlled set (i.e. at distance zero).
*/
static void search(int w, int h, char *grid, int x0, int y0,
struct solver_scratch *scratch,
int *rdist, int *rnumber, int *rcontrol)
{
int wh = w*h;
int i, qcurr, qhead, qtail, qnext, currdist, remaining;
for (i = 0; i < wh; i++)
scratch->dist[i] = -1;
scratch->queue[0][0] = y0*w+x0;
scratch->queue[1][0] = y0*w+x0;
scratch->dist[y0*w+x0] = 0;
currdist = 0;
qcurr = 0;
qtail = 0;
qhead = 1;
qnext = 1;
remaining = wh - 1;
while (1) {
if (qtail == qhead) {
/* Switch queues. */
if (currdist == 0)
*rcontrol = qhead;
currdist++;
qcurr ^= 1; /* switch queues */
qhead = qnext;
qtail = 0;
qnext = 0;
#if 0
printf("switch queue, new dist %d, queue %d\n", currdist, qhead);
#endif
} else if (remaining == 0 && qnext == 0) {
break;
} else {
int pos = scratch->queue[qcurr][qtail++];
int y = pos / w;
int x = pos % w;
#if 0
printf("checking neighbours of %d,%d\n", x, y);
#endif
int dir;
for (dir = 0; dir < 4; dir++) {
int y1 = y + (dir == 1 ? 1 : dir == 3 ? -1 : 0);
int x1 = x + (dir == 0 ? 1 : dir == 2 ? -1 : 0);
if (0 <= x1 && x1 < w && 0 <= y1 && y1 < h) {
int pos1 = y1*w+x1;
#if 0
printf("trying %d,%d: colours %d-%d dist %d\n", x1, y1,
grid[pos], grid[pos1], scratch->dist[pos]);
#endif
if (scratch->dist[pos1] == -1 &&
((grid[pos1] == grid[pos] &&
scratch->dist[pos] == currdist) ||
(grid[pos1] != grid[pos] &&
scratch->dist[pos] == currdist - 1))) {
#if 0
printf("marking %d,%d dist %d\n", x1, y1, currdist);
#endif
scratch->queue[qcurr][qhead++] = pos1;
scratch->queue[qcurr^1][qnext++] = pos1;
scratch->dist[pos1] = currdist;
remaining--;
}
}
}
}
}
*rdist = currdist;
*rnumber = qhead;
if (currdist == 0)
*rcontrol = qhead;
}
/*
* Enact a flood-fill move on a grid.
*/
static void fill(int w, int h, char *grid, int x0, int y0, char newcolour,
int *queue)
{
char oldcolour;
int qhead, qtail;
oldcolour = grid[y0*w+x0];
assert(oldcolour != newcolour);
grid[y0*w+x0] = newcolour;
queue[0] = y0*w+x0;
qtail = 0;
qhead = 1;
while (qtail < qhead) {
int pos = queue[qtail++];
int y = pos / w;
int x = pos % w;
int dir;
for (dir = 0; dir < 4; dir++) {
int y1 = y + (dir == 1 ? 1 : dir == 3 ? -1 : 0);
int x1 = x + (dir == 0 ? 1 : dir == 2 ? -1 : 0);
if (0 <= x1 && x1 < w && 0 <= y1 && y1 < h) {
int pos1 = y1*w+x1;
if (grid[pos1] == oldcolour) {
grid[pos1] = newcolour;
queue[qhead++] = pos1;
}
}
}
}
}
/*
* Detect a completed grid.
*/
static int completed(int w, int h, char *grid)
{
int wh = w*h;
int i;
for (i = 1; i < wh; i++)
if (grid[i] != grid[0])
return FALSE;
return TRUE;
}
/*
* Try out every possible move on a grid, and choose whichever one
* reduced the result of search() by the most.
*/
static char choosemove_recurse(int w, int h, char *grid, int x0, int y0,
int maxmove, struct solver_scratch *scratch,
int depth, int *rbestdist, int *rbestnumber, int *rbestcontrol)
{
int wh = w*h;
char move, bestmove;
int dist, number, control, bestdist, bestnumber, bestcontrol;
char *tmpgrid;
assert(0 <= depth && depth < RECURSION_DEPTH);
tmpgrid = scratch->rgrids + depth*wh;
bestdist = wh + 1;
bestnumber = 0;
bestcontrol = 0;
bestmove = -1;
#if 0
dump_grid(w, h, grid, "before choosemove_recurse %d", depth);
#endif
for (move = 0; move < maxmove; move++) {
if (grid[y0*w+x0] == move)
continue;
memcpy(tmpgrid, grid, wh * sizeof(*grid));
fill(w, h, tmpgrid, x0, y0, move, scratch->queue[0]);
if (completed(w, h, tmpgrid)) {
/*
* A move that wins is immediately the best, so stop
* searching. Record what depth of recursion that happened
* at, so that higher levels will choose a move that gets
* to a winning position sooner.
*/
*rbestdist = -1;
*rbestnumber = depth;
*rbestcontrol = wh;
return move;
}
if (depth < RECURSION_DEPTH-1) {
choosemove_recurse(w, h, tmpgrid, x0, y0, maxmove, scratch,
depth+1, &dist, &number, &control);
} else {
#if 0
dump_grid(w, h, tmpgrid, "after move %d at depth %d",
move, depth);
#endif
search(w, h, tmpgrid, x0, y0, scratch, &dist, &number, &control);
#if 0
dump_dist(w, h, scratch->dist, "after move %d at depth %d",
move, depth);
printf("move %d at depth %d: %d at %d\n",
depth, move, number, dist);
#endif
}
if (dist < bestdist ||
(dist == bestdist &&
(number < bestnumber ||
(number == bestnumber &&
(control > bestcontrol))))) {
bestdist = dist;
bestnumber = number;
bestcontrol = control;
bestmove = move;
}
}
#if 0
printf("best at depth %d was %d (%d at %d, %d controlled)\n",
depth, bestmove, bestnumber, bestdist, bestcontrol);
#endif
*rbestdist = bestdist;
*rbestnumber = bestnumber;
*rbestcontrol = bestcontrol;
return bestmove;
}
static char choosemove(int w, int h, char *grid, int x0, int y0,
int maxmove, struct solver_scratch *scratch)
{
int tmp0, tmp1, tmp2;
return choosemove_recurse(w, h, grid, x0, y0, maxmove, scratch,
0, &tmp0, &tmp1, &tmp2);
}
static char *new_game_desc(const game_params *params, random_state *rs,
char **aux, int interactive)
{
int w = params->w, h = params->h, wh = w*h;
int i, moves;
char *desc;
struct solver_scratch *scratch;
scratch = new_scratch(w, h);
/*
* Invent a random grid.
*/
for (i = 0; i < wh; i++)
scratch->grid[i] = random_upto(rs, params->colours);
/*
* Run the solver, and count how many moves it uses.
*/
memcpy(scratch->grid2, scratch->grid, wh * sizeof(*scratch->grid2));
moves = 0;
check_recursion_depth();
while (!completed(w, h, scratch->grid2)) {
char move = choosemove(w, h, scratch->grid2, FILLX, FILLY,
params->colours, scratch);
fill(w, h, scratch->grid2, FILLX, FILLY, move, scratch->queue[0]);
moves++;
}
/*
* Adjust for difficulty.
*/
moves += params->leniency;
/*
* Encode the game id.
*/
desc = snewn(wh + 40, char);
for (i = 0; i < wh; i++) {
char colour = scratch->grid[i];
char textcolour = (colour > 9 ? 'A' : '0') + colour;
desc[i] = textcolour;
}
sprintf(desc+i, ",%d", moves);
free_scratch(scratch);
return desc;
}
static char *validate_desc(const game_params *params, const char *desc)
{
int w = params->w, h = params->h, wh = w*h;
int i;
for (i = 0; i < wh; i++) {
char c = *desc++;
if (c == 0)
return "Not enough data in grid description";
if (c >= '0' && c <= '9')
c -= '0';
else if (c >= 'A' && c <= 'Z')
c = 10 + (c - 'A');
else
return "Bad character in grid description";
if ((unsigned)c >= params->colours)
return "Colour out of range in grid description";
}
if (*desc != ',')
return "Expected ',' after grid description";
desc++;
if (desc[strspn(desc, "0123456789")])
return "Badly formatted move limit after grid description";
return NULL;
}
static game_state *new_game(midend *me, const game_params *params,
const char *desc)
{
int w = params->w, h = params->h, wh = w*h;
game_state *state = snew(game_state);
int i;
state->w = w;
state->h = h;
state->colours = params->colours;
state->moves = 0;
state->grid = snewn(wh, char);
for (i = 0; i < wh; i++) {
char c = *desc++;
assert(c);
if (c >= '0' && c <= '9')
c -= '0';
else if (c >= 'A' && c <= 'Z')
c = 10 + (c - 'A');
else
assert(!"bad colour");
state->grid[i] = c;
}
assert(*desc == ',');
desc++;
state->movelimit = atoi(desc);
state->complete = FALSE;
state->cheated = FALSE;
state->solnpos = 0;
state->soln = NULL;
return state;
}
static game_state *dup_game(const game_state *state)
{
game_state *ret = snew(game_state);
ret->w = state->w;
ret->h = state->h;
ret->colours = state->colours;
ret->moves = state->moves;
ret->movelimit = state->movelimit;
ret->complete = state->complete;
ret->grid = snewn(state->w * state->h, char);
memcpy(ret->grid, state->grid, state->w * state->h * sizeof(*ret->grid));
ret->cheated = state->cheated;
ret->soln = state->soln;
if (ret->soln)
ret->soln->refcount++;
ret->solnpos = state->solnpos;
return ret;
}
static void free_game(game_state *state)
{
if (state->soln && --state->soln->refcount == 0) {
sfree(state->soln->moves);
sfree(state->soln);
}
sfree(state->grid);
sfree(state);
}
static char *solve_game(const game_state *state, const game_state *currstate,
const char *aux, char **error)
{
int w = state->w, h = state->h, wh = w*h;
char *moves, *ret, *p;
int i, len, nmoves;
char buf[256];
struct solver_scratch *scratch;
if (currstate->complete) {
*error = "Puzzle is already solved";
return NULL;
}
/*
* Find the best solution our solver can give.
*/
moves = snewn(wh, char); /* sure to be enough */
nmoves = 0;
scratch = new_scratch(w, h);
memcpy(scratch->grid2, currstate->grid, wh * sizeof(*scratch->grid2));
check_recursion_depth();
while (!completed(w, h, scratch->grid2)) {
char move = choosemove(w, h, scratch->grid2, FILLX, FILLY,
currstate->colours, scratch);
fill(w, h, scratch->grid2, FILLX, FILLY, move, scratch->queue[0]);
assert(nmoves < wh);
moves[nmoves++] = move;
}
free_scratch(scratch);
/*
* Encode it as a move string.
*/
len = 1; /* trailing NUL */
for (i = 0; i < nmoves; i++)
len += sprintf(buf, ",%d", moves[i]);
ret = snewn(len, char);
p = ret;
for (i = 0; i < nmoves; i++)
p += sprintf(p, "%c%d", (i==0 ? 'S' : ','), moves[i]);
assert(p - ret == len - 1);
sfree(moves);
return ret;
}
static int game_can_format_as_text_now(const game_params *params)
{
return TRUE;
}
static char *game_text_format(const game_state *state)
{
int w = state->w, h = state->h;
char *ret, *p;
int x, y, len;
len = h * (w+1); /* +1 for newline after each row */
ret = snewn(len+1, char); /* and +1 for terminating \0 */
p = ret;
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
char colour = state->grid[y*w+x];
char textcolour = (colour > 9 ? 'A' : '0') + colour;
*p++ = textcolour;
}
*p++ = '\n';
}
assert(p - ret == len);
*p = '\0';
return ret;
}
struct game_ui {
int cursor_visible;
int cx, cy;
enum { VICTORY, DEFEAT } flash_type;
};
static game_ui *new_ui(const game_state *state)
{
struct game_ui *ui = snew(struct game_ui);
ui->cursor_visible = FALSE;
ui->cx = FILLX;
ui->cy = FILLY;
return ui;
}
static void free_ui(game_ui *ui)
{
sfree(ui);
}
static char *encode_ui(const game_ui *ui)
{
return NULL;
}
static void decode_ui(game_ui *ui, const char *encoding)
{
}
static void game_changed_state(game_ui *ui, const game_state *oldstate,
const game_state *newstate)
{
}
struct game_drawstate {
int started;
int tilesize;
int *grid;
};
#define TILESIZE (ds->tilesize)
#define PREFERRED_TILESIZE 32
#define BORDER (TILESIZE / 2)
#define SEP_WIDTH (TILESIZE / 32)
#define CURSOR_INSET (TILESIZE / 8)
#define HIGHLIGHT_WIDTH (TILESIZE / 10)
#define COORD(x) ( (x) * TILESIZE + BORDER )
#define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
#define VICTORY_FLASH_FRAME 0.03F
#define DEFEAT_FLASH_FRAME 0.10F
static char *interpret_move(const game_state *state, game_ui *ui,
const game_drawstate *ds,
int x, int y, int button)
{
int w = state->w, h = state->h;
int tx = -1, ty = -1, move = -1;
if (button == LEFT_BUTTON) {
tx = FROMCOORD(x);
ty = FROMCOORD(y);
ui->cursor_visible = FALSE;
} else if (button == CURSOR_LEFT && ui->cx > 0) {
ui->cx--;
ui->cursor_visible = TRUE;
return "";
} else if (button == CURSOR_RIGHT && ui->cx+1 < w) {
ui->cx++;
ui->cursor_visible = TRUE;
return "";
} else if (button == CURSOR_UP && ui->cy > 0) {
ui->cy--;
ui->cursor_visible = TRUE;
return "";
} else if (button == CURSOR_DOWN && ui->cy+1 < h) {
ui->cy++;
ui->cursor_visible = TRUE;
return "";
} else if (button == CURSOR_SELECT) {
tx = ui->cx;
ty = ui->cy;
} else if (button == CURSOR_SELECT2 &&
state->soln && state->solnpos < state->soln->nmoves) {
move = state->soln->moves[state->solnpos];
} else {
return NULL;
}
if (tx >= 0 && tx < w && ty >= 0 && ty < h &&
state->grid[0] != state->grid[ty*w+tx])
move = state->grid[ty*w+tx];
if (move >= 0 && !state->complete) {
char buf[256];
sprintf(buf, "M%d", move);
return dupstr(buf);
}
return NULL;
}
static game_state *execute_move(const game_state *state, const char *move)
{
game_state *ret;
int c;
if (move[0] == 'M' &&
sscanf(move+1, "%d", &c) == 1 &&
c >= 0 &&
!state->complete) {
int *queue = snewn(state->w * state->h, int);
ret = dup_game(state);
fill(ret->w, ret->h, ret->grid, FILLX, FILLY, c, queue);
ret->moves++;
ret->complete = completed(ret->w, ret->h, ret->grid);
if (ret->soln) {
/*
* If this move is the correct next one in the stored
* solution path, advance solnpos.
*/
if (c == ret->soln->moves[ret->solnpos] &&
ret->solnpos+1 < ret->soln->nmoves) {
ret->solnpos++;
} else {
/*
* Otherwise, the user has strayed from the path or
* else the path has come to an end; either way, the
* path is no longer valid.
*/
ret->soln->refcount--;
assert(ret->soln->refcount > 0);/* `state' at least still exists */
ret->soln = NULL;
ret->solnpos = 0;
}
}
sfree(queue);
return ret;
} else if (*move == 'S') {
soln *sol;
const char *p;
int i;
/*
* This is a solve move, so we don't actually _change_ the
* grid but merely set up a stored solution path.
*/
move++;
sol = snew(soln);
sol->nmoves = 1;
for (p = move; *p; p++) {
if (*p == ',')
sol->nmoves++;
}
sol->moves = snewn(sol->nmoves, char);
for (i = 0, p = move; i < sol->nmoves; i++) {
assert(*p);
sol->moves[i] = atoi(p);
p += strspn(p, "0123456789");
if (*p) {
assert(*p == ',');
p++;
}
}
ret = dup_game(state);
ret->cheated = TRUE;
if (ret->soln && --ret->soln->refcount == 0) {
sfree(ret->soln->moves);
sfree(ret->soln);
}
ret->soln = sol;
ret->solnpos = 0;
sol->refcount = 1;
return ret;
}
return NULL;
}
/* ----------------------------------------------------------------------
* Drawing routines.
*/
static void game_compute_size(const game_params *params, int tilesize,
int *x, int *y)
{
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
struct { int tilesize; } ads, *ds = &ads;
ads.tilesize = tilesize;
*x = BORDER * 2 + TILESIZE * params->w;
*y = BORDER * 2 + TILESIZE * params->h;
}
static void game_set_size(drawing *dr, game_drawstate *ds,
const game_params *params, int tilesize)
{
ds->tilesize = tilesize;
}
static float *game_colours(frontend *fe, int *ncolours)
{
float *ret = snewn(3 * NCOLOURS, float);
game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
ret[COL_SEPARATOR * 3 + 0] = 0.0F;
ret[COL_SEPARATOR * 3 + 1] = 0.0F;
ret[COL_SEPARATOR * 3 + 2] = 0.0F;
/* red */
ret[COL_1 * 3 + 0] = 1.0F;
ret[COL_1 * 3 + 1] = 0.0F;
ret[COL_1 * 3 + 2] = 0.0F;
/* yellow */
ret[COL_2 * 3 + 0] = 1.0F;
ret[COL_2 * 3 + 1] = 1.0F;
ret[COL_2 * 3 + 2] = 0.0F;
/* green */
ret[COL_3 * 3 + 0] = 0.0F;
ret[COL_3 * 3 + 1] = 1.0F;
ret[COL_3 * 3 + 2] = 0.0F;
/* blue */
ret[COL_4 * 3 + 0] = 0.2F;
ret[COL_4 * 3 + 1] = 0.3F;
ret[COL_4 * 3 + 2] = 1.0F;
/* orange */
ret[COL_5 * 3 + 0] = 1.0F;
ret[COL_5 * 3 + 1] = 0.5F;
ret[COL_5 * 3 + 2] = 0.0F;
/* purple */
ret[COL_6 * 3 + 0] = 0.5F;
ret[COL_6 * 3 + 1] = 0.0F;
ret[COL_6 * 3 + 2] = 0.7F;
/* brown */
ret[COL_7 * 3 + 0] = 0.5F;
ret[COL_7 * 3 + 1] = 0.3F;
ret[COL_7 * 3 + 2] = 0.3F;
/* light blue */
ret[COL_8 * 3 + 0] = 0.4F;
ret[COL_8 * 3 + 1] = 0.8F;
ret[COL_8 * 3 + 2] = 1.0F;
/* light green */
ret[COL_9 * 3 + 0] = 0.7F;
ret[COL_9 * 3 + 1] = 1.0F;
ret[COL_9 * 3 + 2] = 0.7F;
/* pink */
ret[COL_10 * 3 + 0] = 1.0F;
ret[COL_10 * 3 + 1] = 0.6F;
ret[COL_10 * 3 + 2] = 1.0F;
*ncolours = NCOLOURS;
return ret;
}
static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
{
struct game_drawstate *ds = snew(struct game_drawstate);
int w = state->w, h = state->h, wh = w*h;
int i;
ds->started = FALSE;
ds->tilesize = 0;
ds->grid = snewn(wh, int);
for (i = 0; i < wh; i++)
ds->grid[i] = -1;
return ds;
}
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
{
sfree(ds->grid);
sfree(ds);
}
#define BORDER_L 0x001
#define BORDER_R 0x002
#define BORDER_U 0x004
#define BORDER_D 0x008
#define CORNER_UL 0x010
#define CORNER_UR 0x020
#define CORNER_DL 0x040
#define CORNER_DR 0x080
#define CURSOR 0x100
#define BADFLASH 0x200
#define SOLNNEXT 0x400
#define COLOUR_SHIFT 11
static void draw_tile(drawing *dr, game_drawstate *ds,
int x, int y, int tile)
{
int colour;
int tx = COORD(x), ty = COORD(y);
colour = tile >> COLOUR_SHIFT;
if (tile & BADFLASH)
colour = COL_SEPARATOR;
else
colour += COL_1;
draw_rect(dr, tx, ty, TILESIZE, TILESIZE, colour);
if (tile & BORDER_L)
draw_rect(dr, tx, ty,
SEP_WIDTH, TILESIZE, COL_SEPARATOR);
if (tile & BORDER_R)
draw_rect(dr, tx + TILESIZE - SEP_WIDTH, ty,
SEP_WIDTH, TILESIZE, COL_SEPARATOR);
if (tile & BORDER_U)
draw_rect(dr, tx, ty,
TILESIZE, SEP_WIDTH, COL_SEPARATOR);
if (tile & BORDER_D)
draw_rect(dr, tx, ty + TILESIZE - SEP_WIDTH,
TILESIZE, SEP_WIDTH, COL_SEPARATOR);
if (tile & CORNER_UL)
draw_rect(dr, tx, ty,
SEP_WIDTH, SEP_WIDTH, COL_SEPARATOR);
if (tile & CORNER_UR)
draw_rect(dr, tx + TILESIZE - SEP_WIDTH, ty,
SEP_WIDTH, SEP_WIDTH, COL_SEPARATOR);
if (tile & CORNER_DL)
draw_rect(dr, tx, ty + TILESIZE - SEP_WIDTH,
SEP_WIDTH, SEP_WIDTH, COL_SEPARATOR);
if (tile & CORNER_DR)
draw_rect(dr, tx + TILESIZE - SEP_WIDTH, ty + TILESIZE - SEP_WIDTH,
SEP_WIDTH, SEP_WIDTH, COL_SEPARATOR);
if (tile & CURSOR)
draw_rect_outline(dr, tx + CURSOR_INSET, ty + CURSOR_INSET,
TILESIZE - 1 - CURSOR_INSET * 2,
TILESIZE - 1 - CURSOR_INSET * 2,
COL_SEPARATOR);
if (tile & SOLNNEXT) {
draw_circle(dr, tx + TILESIZE/2, ty + TILESIZE/2, TILESIZE/6,
COL_SEPARATOR, COL_SEPARATOR);
}
draw_update(dr, tx, ty, TILESIZE, TILESIZE);
}
static void game_redraw(drawing *dr, game_drawstate *ds,
const game_state *oldstate, const game_state *state,
int dir, const game_ui *ui,
float animtime, float flashtime)
{
int w = state->w, h = state->h, wh = w*h;
int x, y, flashframe, solnmove;
char *grid;
/* This was entirely cloned from fifteen.c; it should probably be
* moved into some generic 'draw-recessed-rectangle' utility fn. */
if (!ds->started) {
int coords[10];
draw_rect(dr, 0, 0,
TILESIZE * w + 2 * BORDER,
TILESIZE * h + 2 * BORDER, COL_BACKGROUND);
draw_update(dr, 0, 0,
TILESIZE * w + 2 * BORDER,
TILESIZE * h + 2 * BORDER);
/*
* Recessed area containing the whole puzzle.
*/
coords[0] = COORD(w) + HIGHLIGHT_WIDTH - 1;
coords[1] = COORD(h) + HIGHLIGHT_WIDTH - 1;
coords[2] = COORD(w) + HIGHLIGHT_WIDTH - 1;
coords[3] = COORD(0) - HIGHLIGHT_WIDTH;
coords[4] = coords[2] - TILESIZE;
coords[5] = coords[3] + TILESIZE;
coords[8] = COORD(0) - HIGHLIGHT_WIDTH;
coords[9] = COORD(h) + HIGHLIGHT_WIDTH - 1;
coords[6] = coords[8] + TILESIZE;
coords[7] = coords[9] - TILESIZE;
draw_polygon(dr, coords, 5, COL_HIGHLIGHT, COL_HIGHLIGHT);
coords[1] = COORD(0) - HIGHLIGHT_WIDTH;
coords[0] = COORD(0) - HIGHLIGHT_WIDTH;
draw_polygon(dr, coords, 5, COL_LOWLIGHT, COL_LOWLIGHT);
draw_rect(dr, COORD(0) - SEP_WIDTH, COORD(0) - SEP_WIDTH,
TILESIZE * w + 2 * SEP_WIDTH, TILESIZE * h + 2 * SEP_WIDTH,
COL_SEPARATOR);
ds->started = 1;
}
if (flashtime > 0) {
float frame = (ui->flash_type == VICTORY ?
VICTORY_FLASH_FRAME : DEFEAT_FLASH_FRAME);
flashframe = (int)(flashtime / frame);
} else {
flashframe = -1;
}
grid = snewn(wh, char);
memcpy(grid, state->grid, wh * sizeof(*grid));
if (state->soln && state->solnpos < state->soln->nmoves) {
int i, *queue;
/*
* Highlight as 'next auto-solver move' every square of the
* target colour which is adjacent to the currently controlled
* region. We do this by first enacting the actual move, then
* flood-filling again in a nonexistent colour, and finally
* reverting to the original grid anything in the new colour
* that was part of the original controlled region. Then
* regions coloured in the dummy colour should be displayed as
* soln_move with the SOLNNEXT flag.
*/
solnmove = state->soln->moves[state->solnpos];
queue = snewn(wh, int);
fill(w, h, grid, FILLX, FILLY, solnmove, queue);
fill(w, h, grid, FILLX, FILLY, state->colours, queue);
sfree(queue);
for (i = 0; i < wh; i++)
if (grid[i] == state->colours && state->grid[i] != solnmove)
grid[i] = state->grid[i];
} else {
solnmove = 0; /* placate optimiser */
}
if (flashframe >= 0 && ui->flash_type == VICTORY) {
/*
* Modify the display grid by superimposing our rainbow flash
* on it.
*/
for (x = 0; x < w; x++) {
for (y = 0; y < h; y++) {
int flashpos = flashframe - (abs(x - FILLX) + abs(y - FILLY));
if (flashpos >= 0 && flashpos < state->colours)
grid[y*w+x] = flashpos;
}
}
}
for (x = 0; x < w; x++) {
for (y = 0; y < h; y++) {
int pos = y*w+x;
int tile;
if (grid[pos] == state->colours) {
tile = (solnmove << COLOUR_SHIFT) | SOLNNEXT;
} else {
tile = (int)grid[pos] << COLOUR_SHIFT;
}
if (x == 0 || grid[pos-1] != grid[pos])
tile |= BORDER_L;
if (x==w-1 || grid[pos+1] != grid[pos])
tile |= BORDER_R;
if (y == 0 || grid[pos-w] != grid[pos])
tile |= BORDER_U;
if (y==h-1 || grid[pos+w] != grid[pos])
tile |= BORDER_D;
if (x == 0 || y == 0 || grid[pos-w-1] != grid[pos])
tile |= CORNER_UL;
if (x==w-1 || y == 0 || grid[pos-w+1] != grid[pos])
tile |= CORNER_UR;
if (x == 0 || y==h-1 || grid[pos+w-1] != grid[pos])
tile |= CORNER_DL;
if (x==w-1 || y==h-1 || grid[pos+w+1] != grid[pos])
tile |= CORNER_DR;
if (ui->cursor_visible && ui->cx == x && ui->cy == y)
tile |= CURSOR;
if (flashframe >= 0 && ui->flash_type == DEFEAT && flashframe != 1)
tile |= BADFLASH;
if (ds->grid[pos] != tile) {
draw_tile(dr, ds, x, y, tile);
ds->grid[pos] = tile;
}
}
}
sfree(grid);
{
char status[255];
sprintf(status, "%s%d / %d moves",
(state->complete && state->moves <= state->movelimit ?
(state->cheated ? "Auto-solved. " : "COMPLETED! ") :
state->moves >= state->movelimit ? "FAILED! " :
state->cheated ? "Auto-solver used. " :
""),
state->moves,
state->movelimit);
status_bar(dr, status);
}
}
static float game_anim_length(const game_state *oldstate,
const game_state *newstate, int dir, game_ui *ui)
{
return 0.0F;
}
static int game_status(const game_state *state)
{
if (state->complete && state->moves <= state->movelimit) {
return +1; /* victory! */
} else if (state->moves >= state->movelimit) {
return -1; /* defeat */
} else {
return 0; /* still playing */
}
}
static float game_flash_length(const game_state *oldstate,
const game_state *newstate, int dir, game_ui *ui)
{
if (dir == +1) {
int old_status = game_status(oldstate);
int new_status = game_status(newstate);
if (old_status != new_status) {
assert(old_status == 0);
if (new_status == +1) {
int frames = newstate->w + newstate->h + newstate->colours - 2;
ui->flash_type = VICTORY;
return VICTORY_FLASH_FRAME * frames;
} else {
ui->flash_type = DEFEAT;
return DEFEAT_FLASH_FRAME * 3;
}
}
}
return 0.0F;
}
static int game_timing_state(const game_state *state, game_ui *ui)
{
return TRUE;
}
static void game_print_size(const game_params *params, float *x, float *y)
{
}
static void game_print(drawing *dr, const game_state *state, int tilesize)
{
}
#ifdef COMBINED
#define thegame flood
#endif
const struct game thegame = {
"Flood", "games.flood", "flood",
default_params,
game_fetch_preset,
decode_params,
encode_params,
free_params,
dup_params,
TRUE, game_configure, custom_params,
validate_params,
new_game_desc,
validate_desc,
new_game,
dup_game,
free_game,
TRUE, solve_game,
TRUE, game_can_format_as_text_now, game_text_format,
new_ui,
free_ui,
encode_ui,
decode_ui,
game_changed_state,
interpret_move,
execute_move,
PREFERRED_TILESIZE, game_compute_size, game_set_size,
game_colours,
game_new_drawstate,
game_free_drawstate,
game_redraw,
game_anim_length,
game_flash_length,
game_status,
FALSE, FALSE, game_print_size, game_print,
TRUE, /* wants_statusbar */
FALSE, game_timing_state,
0, /* flags */
};