rockbox/apps/plugins/puzzles/cube.c
Franklin Wei 6e5f287606 Fixes and re-sync for puzzles
- Updates to latest upstream (7cae89fb4b22c305b3fd98b4e1be065ad527a9f7).
- Also fixes a bug relating to updating parts of the display.
- Adds some docs.

Change-Id: Idfcce66e0cf3c59e467bab42eafc161df2e495bb
2017-01-01 15:00:09 -05:00

1773 lines
50 KiB
C

/*
* cube.c: Cube game.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "rbassert.h"
#include <ctype.h>
#include <math.h>
#include "puzzles.h"
#define MAXVERTICES 20
#define MAXFACES 20
#define MAXORDER 4
struct solid {
int nvertices;
float vertices[MAXVERTICES * 3]; /* 3*npoints coordinates */
int order;
int nfaces;
int faces[MAXFACES * MAXORDER]; /* order*nfaces point indices */
float normals[MAXFACES * 3]; /* 3*npoints vector components */
float shear; /* isometric shear for nice drawing */
float border; /* border required around arena */
};
static const struct solid s_tetrahedron = {
4,
{
0.0F, -0.57735026919F, -0.20412414523F,
-0.5F, 0.28867513459F, -0.20412414523F,
0.0F, -0.0F, 0.6123724357F,
0.5F, 0.28867513459F, -0.20412414523F,
},
3, 4,
{
0,2,1, 3,1,2, 2,0,3, 1,3,0
},
{
-0.816496580928F, -0.471404520791F, 0.333333333334F,
0.0F, 0.942809041583F, 0.333333333333F,
0.816496580928F, -0.471404520791F, 0.333333333334F,
0.0F, 0.0F, -1.0F,
},
0.0F, 0.3F
};
static const struct solid s_cube = {
8,
{
-0.5F,-0.5F,-0.5F, -0.5F,-0.5F,+0.5F,
-0.5F,+0.5F,-0.5F, -0.5F,+0.5F,+0.5F,
+0.5F,-0.5F,-0.5F, +0.5F,-0.5F,+0.5F,
+0.5F,+0.5F,-0.5F, +0.5F,+0.5F,+0.5F,
},
4, 6,
{
0,1,3,2, 1,5,7,3, 5,4,6,7, 4,0,2,6, 0,4,5,1, 3,7,6,2
},
{
-1.0F,0.0F,0.0F, 0.0F,0.0F,+1.0F,
+1.0F,0.0F,0.0F, 0.0F,0.0F,-1.0F,
0.0F,-1.0F,0.0F, 0.0F,+1.0F,0.0F
},
0.3F, 0.5F
};
static const struct solid s_octahedron = {
6,
{
-0.5F, -0.28867513459472505F, 0.4082482904638664F,
0.5F, 0.28867513459472505F, -0.4082482904638664F,
-0.5F, 0.28867513459472505F, -0.4082482904638664F,
0.5F, -0.28867513459472505F, 0.4082482904638664F,
0.0F, -0.57735026918945009F, -0.4082482904638664F,
0.0F, 0.57735026918945009F, 0.4082482904638664F,
},
3, 8,
{
4,0,2, 0,5,2, 0,4,3, 5,0,3, 1,4,2, 5,1,2, 4,1,3, 1,5,3
},
{
-0.816496580928F, -0.471404520791F, -0.333333333334F,
-0.816496580928F, 0.471404520791F, 0.333333333334F,
0.0F, -0.942809041583F, 0.333333333333F,
0.0F, 0.0F, 1.0F,
0.0F, 0.0F, -1.0F,
0.0F, 0.942809041583F, -0.333333333333F,
0.816496580928F, -0.471404520791F, -0.333333333334F,
0.816496580928F, 0.471404520791F, 0.333333333334F,
},
0.0F, 0.5F
};
static const struct solid s_icosahedron = {
12,
{
0.0F, 0.57735026919F, 0.75576131408F,
0.0F, -0.93417235896F, 0.17841104489F,
0.0F, 0.93417235896F, -0.17841104489F,
0.0F, -0.57735026919F, -0.75576131408F,
-0.5F, -0.28867513459F, 0.75576131408F,
-0.5F, 0.28867513459F, -0.75576131408F,
0.5F, -0.28867513459F, 0.75576131408F,
0.5F, 0.28867513459F, -0.75576131408F,
-0.80901699437F, 0.46708617948F, 0.17841104489F,
0.80901699437F, 0.46708617948F, 0.17841104489F,
-0.80901699437F, -0.46708617948F, -0.17841104489F,
0.80901699437F, -0.46708617948F, -0.17841104489F,
},
3, 20,
{
8,0,2, 0,9,2, 1,10,3, 11,1,3, 0,4,6,
4,1,6, 5,2,7, 3,5,7, 4,8,10, 8,5,10,
9,6,11, 7,9,11, 0,8,4, 9,0,6, 10,1,4,
1,11,6, 8,2,5, 2,9,7, 3,10,5, 11,3,7,
},
{
-0.356822089773F, 0.87267799625F, 0.333333333333F,
0.356822089773F, 0.87267799625F, 0.333333333333F,
-0.356822089773F, -0.87267799625F, -0.333333333333F,
0.356822089773F, -0.87267799625F, -0.333333333333F,
-0.0F, 0.0F, 1.0F,
0.0F, -0.666666666667F, 0.745355992501F,
0.0F, 0.666666666667F, -0.745355992501F,
0.0F, 0.0F, -1.0F,
-0.934172358963F, -0.12732200375F, 0.333333333333F,
-0.934172358963F, 0.12732200375F, -0.333333333333F,
0.934172358963F, -0.12732200375F, 0.333333333333F,
0.934172358963F, 0.12732200375F, -0.333333333333F,
-0.57735026919F, 0.333333333334F, 0.745355992501F,
0.57735026919F, 0.333333333334F, 0.745355992501F,
-0.57735026919F, -0.745355992501F, 0.333333333334F,
0.57735026919F, -0.745355992501F, 0.333333333334F,
-0.57735026919F, 0.745355992501F, -0.333333333334F,
0.57735026919F, 0.745355992501F, -0.333333333334F,
-0.57735026919F, -0.333333333334F, -0.745355992501F,
0.57735026919F, -0.333333333334F, -0.745355992501F,
},
0.0F, 0.8F
};
enum {
TETRAHEDRON, CUBE, OCTAHEDRON, ICOSAHEDRON
};
static const struct solid *solids[] = {
&s_tetrahedron, &s_cube, &s_octahedron, &s_icosahedron
};
enum {
COL_BACKGROUND,
COL_BORDER,
COL_BLUE,
NCOLOURS
};
enum { LEFT, RIGHT, UP, DOWN, UP_LEFT, UP_RIGHT, DOWN_LEFT, DOWN_RIGHT };
#define PREFERRED_GRID_SCALE 48
#define GRID_SCALE (ds->gridscale)
#define ROLLTIME 0.13F
#define SQ(x) ( (x) * (x) )
#define MATMUL(ra,m,a) do { \
float rx, ry, rz, xx = (a)[0], yy = (a)[1], zz = (a)[2], *mat = (m); \
rx = mat[0] * xx + mat[3] * yy + mat[6] * zz; \
ry = mat[1] * xx + mat[4] * yy + mat[7] * zz; \
rz = mat[2] * xx + mat[5] * yy + mat[8] * zz; \
(ra)[0] = rx; (ra)[1] = ry; (ra)[2] = rz; \
} while (0)
#define APPROXEQ(x,y) ( SQ(x-y) < 0.1 )
struct grid_square {
float x, y;
int npoints;
float points[8]; /* maximum */
int directions[8]; /* bit masks showing point pairs */
int flip;
int tetra_class;
};
struct game_params {
int solid;
/*
* Grid dimensions. For a square grid these are width and
* height respectively; otherwise the grid is a hexagon, with
* the top side and the two lower diagonals having length d1
* and the remaining three sides having length d2 (so that
* d1==d2 gives a regular hexagon, and d2==0 gives a triangle).
*/
int d1, d2;
};
typedef struct game_grid game_grid;
struct game_grid {
int refcount;
struct grid_square *squares;
int nsquares;
};
#define SET_SQUARE(state, i, val) \
((state)->bluemask[(i)/32] &= ~(1 << ((i)%32)), \
(state)->bluemask[(i)/32] |= ((!!val) << ((i)%32)))
#define GET_SQUARE(state, i) \
(((state)->bluemask[(i)/32] >> ((i)%32)) & 1)
struct game_state {
struct game_params params;
const struct solid *solid;
int *facecolours;
game_grid *grid;
unsigned long *bluemask;
int current; /* index of current grid square */
int sgkey[2]; /* key-point indices into grid sq */
int dgkey[2]; /* key-point indices into grid sq */
int spkey[2]; /* key-point indices into polyhedron */
int dpkey[2]; /* key-point indices into polyhedron */
int previous;
float angle;
int completed;
int movecount;
};
static game_params *default_params(void)
{
game_params *ret = snew(game_params);
ret->solid = CUBE;
ret->d1 = 4;
ret->d2 = 4;
return ret;
}
static int game_fetch_preset(int i, char **name, game_params **params)
{
game_params *ret = snew(game_params);
char *str;
switch (i) {
case 0:
str = "Cube";
ret->solid = CUBE;
ret->d1 = 4;
ret->d2 = 4;
break;
case 1:
str = "Tetrahedron";
ret->solid = TETRAHEDRON;
ret->d1 = 1;
ret->d2 = 2;
break;
case 2:
str = "Octahedron";
ret->solid = OCTAHEDRON;
ret->d1 = 2;
ret->d2 = 2;
break;
case 3:
str = "Icosahedron";
ret->solid = ICOSAHEDRON;
ret->d1 = 3;
ret->d2 = 3;
break;
default:
sfree(ret);
return FALSE;
}
*name = dupstr(str);
*params = ret;
return TRUE;
}
static void free_params(game_params *params)
{
sfree(params);
}
static game_params *dup_params(const game_params *params)
{
game_params *ret = snew(game_params);
*ret = *params; /* structure copy */
return ret;
}
static void decode_params(game_params *ret, char const *string)
{
switch (*string) {
case 't': ret->solid = TETRAHEDRON; string++; break;
case 'c': ret->solid = CUBE; string++; break;
case 'o': ret->solid = OCTAHEDRON; string++; break;
case 'i': ret->solid = ICOSAHEDRON; string++; break;
default: break;
}
ret->d1 = ret->d2 = atoi(string);
while (*string && isdigit((unsigned char)*string)) string++;
if (*string == 'x') {
string++;
ret->d2 = atoi(string);
}
}
static char *encode_params(const game_params *params, int full)
{
char data[256];
assert(params->solid >= 0 && params->solid < 4);
sprintf(data, "%c%dx%d", "tcoi"[params->solid], params->d1, params->d2);
return dupstr(data);
}
typedef void (*egc_callback)(void *, struct grid_square *);
static void enum_grid_squares(const game_params *params, egc_callback callback,
void *ctx)
{
const struct solid *solid = solids[params->solid];
if (solid->order == 4) {
int x, y;
for (y = 0; y < params->d2; y++)
for (x = 0; x < params->d1; x++) {
struct grid_square sq;
sq.x = (float)x;
sq.y = (float)y;
sq.points[0] = x - 0.5F;
sq.points[1] = y - 0.5F;
sq.points[2] = x - 0.5F;
sq.points[3] = y + 0.5F;
sq.points[4] = x + 0.5F;
sq.points[5] = y + 0.5F;
sq.points[6] = x + 0.5F;
sq.points[7] = y - 0.5F;
sq.npoints = 4;
sq.directions[LEFT] = 0x03; /* 0,1 */
sq.directions[RIGHT] = 0x0C; /* 2,3 */
sq.directions[UP] = 0x09; /* 0,3 */
sq.directions[DOWN] = 0x06; /* 1,2 */
sq.directions[UP_LEFT] = 0; /* no diagonals in a square */
sq.directions[UP_RIGHT] = 0; /* no diagonals in a square */
sq.directions[DOWN_LEFT] = 0; /* no diagonals in a square */
sq.directions[DOWN_RIGHT] = 0; /* no diagonals in a square */
sq.flip = FALSE;
/*
* This is supremely irrelevant, but just to avoid
* having any uninitialised structure members...
*/
sq.tetra_class = 0;
callback(ctx, &sq);
}
} else {
int row, rowlen, other, i, firstix = -1;
float theight = (float)(sqrt(3) / 2.0);
for (row = 0; row < params->d1 + params->d2; row++) {
if (row < params->d2) {
other = +1;
rowlen = row + params->d1;
} else {
other = -1;
rowlen = 2*params->d2 + params->d1 - row;
}
/*
* There are `rowlen' down-pointing triangles.
*/
for (i = 0; i < rowlen; i++) {
struct grid_square sq;
int ix;
float x, y;
ix = (2 * i - (rowlen-1));
x = ix * 0.5F;
y = theight * row;
sq.x = x;
sq.y = y + theight / 3;
sq.points[0] = x - 0.5F;
sq.points[1] = y;
sq.points[2] = x;
sq.points[3] = y + theight;
sq.points[4] = x + 0.5F;
sq.points[5] = y;
sq.npoints = 3;
sq.directions[LEFT] = 0x03; /* 0,1 */
sq.directions[RIGHT] = 0x06; /* 1,2 */
sq.directions[UP] = 0x05; /* 0,2 */
sq.directions[DOWN] = 0; /* invalid move */
/*
* Down-pointing triangle: both the up diagonals go
* up, and the down ones go left and right.
*/
sq.directions[UP_LEFT] = sq.directions[UP_RIGHT] =
sq.directions[UP];
sq.directions[DOWN_LEFT] = sq.directions[LEFT];
sq.directions[DOWN_RIGHT] = sq.directions[RIGHT];
sq.flip = TRUE;
if (firstix < 0)
firstix = ix & 3;
ix -= firstix;
sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3);
callback(ctx, &sq);
}
/*
* There are `rowlen+other' up-pointing triangles.
*/
for (i = 0; i < rowlen+other; i++) {
struct grid_square sq;
int ix;
float x, y;
ix = (2 * i - (rowlen+other-1));
x = ix * 0.5F;
y = theight * row;
sq.x = x;
sq.y = y + 2*theight / 3;
sq.points[0] = x + 0.5F;
sq.points[1] = y + theight;
sq.points[2] = x;
sq.points[3] = y;
sq.points[4] = x - 0.5F;
sq.points[5] = y + theight;
sq.npoints = 3;
sq.directions[LEFT] = 0x06; /* 1,2 */
sq.directions[RIGHT] = 0x03; /* 0,1 */
sq.directions[DOWN] = 0x05; /* 0,2 */
sq.directions[UP] = 0; /* invalid move */
/*
* Up-pointing triangle: both the down diagonals go
* down, and the up ones go left and right.
*/
sq.directions[DOWN_LEFT] = sq.directions[DOWN_RIGHT] =
sq.directions[DOWN];
sq.directions[UP_LEFT] = sq.directions[LEFT];
sq.directions[UP_RIGHT] = sq.directions[RIGHT];
sq.flip = FALSE;
if (firstix < 0)
firstix = (ix - 1) & 3;
ix -= firstix;
sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3);
callback(ctx, &sq);
}
}
}
}
static int grid_area(int d1, int d2, int order)
{
/*
* An NxM grid of squares has NM squares in it.
*
* A grid of triangles with dimensions A and B has a total of
* A^2 + B^2 + 4AB triangles in it. (You can divide it up into
* a side-A triangle containing A^2 subtriangles, a side-B
* triangle containing B^2, and two congruent parallelograms,
* each with side lengths A and B, each therefore containing AB
* two-triangle rhombuses.)
*/
if (order == 4)
return d1 * d2;
else
return d1*d1 + d2*d2 + 4*d1*d2;
}
static config_item *game_configure(const game_params *params)
{
config_item *ret = snewn(4, config_item);
char buf[80];
ret[0].name = "Type of solid";
ret[0].type = C_CHOICES;
ret[0].sval = ":Tetrahedron:Cube:Octahedron:Icosahedron";
ret[0].ival = params->solid;
ret[1].name = "Width / top";
ret[1].type = C_STRING;
sprintf(buf, "%d", params->d1);
ret[1].sval = dupstr(buf);
ret[1].ival = 0;
ret[2].name = "Height / bottom";
ret[2].type = C_STRING;
sprintf(buf, "%d", params->d2);
ret[2].sval = dupstr(buf);
ret[2].ival = 0;
ret[3].name = NULL;
ret[3].type = C_END;
ret[3].sval = NULL;
ret[3].ival = 0;
return ret;
}
static game_params *custom_params(const config_item *cfg)
{
game_params *ret = snew(game_params);
ret->solid = cfg[0].ival;
ret->d1 = atoi(cfg[1].sval);
ret->d2 = atoi(cfg[2].sval);
return ret;
}
static void count_grid_square_callback(void *ctx, struct grid_square *sq)
{
int *classes = (int *)ctx;
int thisclass;
if (classes[4] == 4)
thisclass = sq->tetra_class;
else if (classes[4] == 2)
thisclass = sq->flip;
else
thisclass = 0;
classes[thisclass]++;
}
static char *validate_params(const game_params *params, int full)
{
int classes[5];
int i;
if (params->solid < 0 || params->solid >= lenof(solids))
return "Unrecognised solid type";
if (solids[params->solid]->order == 4) {
if (params->d1 <= 0 || params->d2 <= 0)
return "Both grid dimensions must be greater than zero";
} else {
if (params->d1 <= 0 && params->d2 <= 0)
return "At least one grid dimension must be greater than zero";
}
for (i = 0; i < 4; i++)
classes[i] = 0;
if (params->solid == TETRAHEDRON)
classes[4] = 4;
else if (params->solid == OCTAHEDRON)
classes[4] = 2;
else
classes[4] = 1;
enum_grid_squares(params, count_grid_square_callback, classes);
for (i = 0; i < classes[4]; i++)
if (classes[i] < solids[params->solid]->nfaces / classes[4])
return "Not enough grid space to place all blue faces";
if (grid_area(params->d1, params->d2, solids[params->solid]->order) <
solids[params->solid]->nfaces + 1)
return "Not enough space to place the solid on an empty square";
return NULL;
}
struct grid_data {
int *gridptrs[4];
int nsquares[4];
int nclasses;
int squareindex;
};
static void classify_grid_square_callback(void *ctx, struct grid_square *sq)
{
struct grid_data *data = (struct grid_data *)ctx;
int thisclass;
if (data->nclasses == 4)
thisclass = sq->tetra_class;
else if (data->nclasses == 2)
thisclass = sq->flip;
else
thisclass = 0;
data->gridptrs[thisclass][data->nsquares[thisclass]++] =
data->squareindex++;
}
static char *new_game_desc(const game_params *params, random_state *rs,
char **aux, int interactive)
{
struct grid_data data;
int i, j, k, m, area, facesperclass;
int *flags;
char *desc, *p;
/*
* Enumerate the grid squares, dividing them into equivalence
* classes as appropriate. (For the tetrahedron, there is one
* equivalence class for each face; for the octahedron there
* are two classes; for the other two solids there's only one.)
*/
area = grid_area(params->d1, params->d2, solids[params->solid]->order);
if (params->solid == TETRAHEDRON)
data.nclasses = 4;
else if (params->solid == OCTAHEDRON)
data.nclasses = 2;
else
data.nclasses = 1;
data.gridptrs[0] = snewn(data.nclasses * area, int);
for (i = 0; i < data.nclasses; i++) {
data.gridptrs[i] = data.gridptrs[0] + i * area;
data.nsquares[i] = 0;
}
data.squareindex = 0;
enum_grid_squares(params, classify_grid_square_callback, &data);
facesperclass = solids[params->solid]->nfaces / data.nclasses;
for (i = 0; i < data.nclasses; i++)
assert(data.nsquares[i] >= facesperclass);
assert(data.squareindex == area);
/*
* So now we know how many faces to allocate in each class. Get
* on with it.
*/
flags = snewn(area, int);
for (i = 0; i < area; i++)
flags[i] = FALSE;
for (i = 0; i < data.nclasses; i++) {
for (j = 0; j < facesperclass; j++) {
int n = random_upto(rs, data.nsquares[i]);
assert(!flags[data.gridptrs[i][n]]);
flags[data.gridptrs[i][n]] = TRUE;
/*
* Move everything else up the array. I ought to use a
* better data structure for this, but for such small
* numbers it hardly seems worth the effort.
*/
while (n < data.nsquares[i]-1) {
data.gridptrs[i][n] = data.gridptrs[i][n+1];
n++;
}
data.nsquares[i]--;
}
}
/*
* Now we know precisely which squares are blue. Encode this
* information in hex. While we're looping over this, collect
* the non-blue squares into a list in the now-unused gridptrs
* array.
*/
desc = snewn(area / 4 + 40, char);
p = desc;
j = 0;
k = 8;
m = 0;
for (i = 0; i < area; i++) {
if (flags[i]) {
j |= k;
} else {
data.gridptrs[0][m++] = i;
}
k >>= 1;
if (!k) {
*p++ = "0123456789ABCDEF"[j];
k = 8;
j = 0;
}
}
if (k != 8)
*p++ = "0123456789ABCDEF"[j];
/*
* Choose a non-blue square for the polyhedron.
*/
sprintf(p, ",%d", data.gridptrs[0][random_upto(rs, m)]);
sfree(data.gridptrs[0]);
sfree(flags);
return desc;
}
static void add_grid_square_callback(void *ctx, struct grid_square *sq)
{
game_grid *grid = (game_grid *)ctx;
grid->squares[grid->nsquares++] = *sq; /* structure copy */
}
static int lowest_face(const struct solid *solid)
{
int i, j, best;
float zmin;
best = 0;
zmin = 0.0;
for (i = 0; i < solid->nfaces; i++) {
float z = 0;
for (j = 0; j < solid->order; j++) {
int f = solid->faces[i*solid->order + j];
z += solid->vertices[f*3+2];
}
if (i == 0 || zmin > z) {
zmin = z;
best = i;
}
}
return best;
}
static int align_poly(const struct solid *solid, struct grid_square *sq,
int *pkey)
{
float zmin;
int i, j;
int flip = (sq->flip ? -1 : +1);
/*
* First, find the lowest z-coordinate present in the solid.
*/
zmin = 0.0;
for (i = 0; i < solid->nvertices; i++)
if (zmin > solid->vertices[i*3+2])
zmin = solid->vertices[i*3+2];
/*
* Now go round the grid square. For each point in the grid
* square, we're looking for a point of the polyhedron with the
* same x- and y-coordinates (relative to the square's centre),
* and z-coordinate equal to zmin (near enough).
*/
for (j = 0; j < sq->npoints; j++) {
int matches, index;
matches = 0;
index = -1;
for (i = 0; i < solid->nvertices; i++) {
float dist = 0;
dist += SQ(solid->vertices[i*3+0] * flip - sq->points[j*2+0] + sq->x);
dist += SQ(solid->vertices[i*3+1] * flip - sq->points[j*2+1] + sq->y);
dist += SQ(solid->vertices[i*3+2] - zmin);
if (dist < 0.1) {
matches++;
index = i;
}
}
if (matches != 1 || index < 0)
return FALSE;
pkey[j] = index;
}
return TRUE;
}
static void flip_poly(struct solid *solid, int flip)
{
int i;
if (flip) {
for (i = 0; i < solid->nvertices; i++) {
solid->vertices[i*3+0] *= -1;
solid->vertices[i*3+1] *= -1;
}
for (i = 0; i < solid->nfaces; i++) {
solid->normals[i*3+0] *= -1;
solid->normals[i*3+1] *= -1;
}
}
}
static struct solid *transform_poly(const struct solid *solid, int flip,
int key0, int key1, float angle)
{
struct solid *ret = snew(struct solid);
float vx, vy, ax, ay;
float vmatrix[9], amatrix[9], vmatrix2[9];
int i;
*ret = *solid; /* structure copy */
flip_poly(ret, flip);
/*
* Now rotate the polyhedron through the given angle. We must
* rotate about the Z-axis to bring the two vertices key0 and
* key1 into horizontal alignment, then rotate about the
* X-axis, then rotate back again.
*/
vx = ret->vertices[key1*3+0] - ret->vertices[key0*3+0];
vy = ret->vertices[key1*3+1] - ret->vertices[key0*3+1];
assert(APPROXEQ(vx*vx + vy*vy, 1.0));
vmatrix[0] = vx; vmatrix[3] = vy; vmatrix[6] = 0;
vmatrix[1] = -vy; vmatrix[4] = vx; vmatrix[7] = 0;
vmatrix[2] = 0; vmatrix[5] = 0; vmatrix[8] = 1;
ax = (float)cos(angle);
ay = (float)sin(angle);
amatrix[0] = 1; amatrix[3] = 0; amatrix[6] = 0;
amatrix[1] = 0; amatrix[4] = ax; amatrix[7] = ay;
amatrix[2] = 0; amatrix[5] = -ay; amatrix[8] = ax;
memcpy(vmatrix2, vmatrix, sizeof(vmatrix));
vmatrix2[1] = vy;
vmatrix2[3] = -vy;
for (i = 0; i < ret->nvertices; i++) {
MATMUL(ret->vertices + 3*i, vmatrix, ret->vertices + 3*i);
MATMUL(ret->vertices + 3*i, amatrix, ret->vertices + 3*i);
MATMUL(ret->vertices + 3*i, vmatrix2, ret->vertices + 3*i);
}
for (i = 0; i < ret->nfaces; i++) {
MATMUL(ret->normals + 3*i, vmatrix, ret->normals + 3*i);
MATMUL(ret->normals + 3*i, amatrix, ret->normals + 3*i);
MATMUL(ret->normals + 3*i, vmatrix2, ret->normals + 3*i);
}
return ret;
}
static char *validate_desc(const game_params *params, const char *desc)
{
int area = grid_area(params->d1, params->d2, solids[params->solid]->order);
int i, j;
i = (area + 3) / 4;
for (j = 0; j < i; j++) {
int c = desc[j];
if (c >= '0' && c <= '9') continue;
if (c >= 'A' && c <= 'F') continue;
if (c >= 'a' && c <= 'f') continue;
return "Not enough hex digits at start of string";
/* NB if desc[j]=='\0' that will also be caught here, so we're safe */
}
if (desc[i] != ',')
return "Expected ',' after hex digits";
i++;
do {
if (desc[i] < '0' || desc[i] > '9')
return "Expected decimal integer after ','";
i++;
} while (desc[i]);
return NULL;
}
static game_state *new_game(midend *me, const game_params *params,
const char *desc)
{
game_grid *grid = snew(game_grid);
game_state *state = snew(game_state);
int area;
state->params = *params; /* structure copy */
state->solid = solids[params->solid];
area = grid_area(params->d1, params->d2, state->solid->order);
grid->squares = snewn(area, struct grid_square);
grid->nsquares = 0;
enum_grid_squares(params, add_grid_square_callback, grid);
assert(grid->nsquares == area);
state->grid = grid;
grid->refcount = 1;
state->facecolours = snewn(state->solid->nfaces, int);
memset(state->facecolours, 0, state->solid->nfaces * sizeof(int));
state->bluemask = snewn((state->grid->nsquares + 31) / 32, unsigned long);
memset(state->bluemask, 0, (state->grid->nsquares + 31) / 32 *
sizeof(unsigned long));
/*
* Set up the blue squares and polyhedron position according to
* the game description.
*/
{
const char *p = desc;
int i, j, v;
j = 8;
v = 0;
for (i = 0; i < state->grid->nsquares; i++) {
if (j == 8) {
v = *p++;
if (v >= '0' && v <= '9')
v -= '0';
else if (v >= 'A' && v <= 'F')
v -= 'A' - 10;
else if (v >= 'a' && v <= 'f')
v -= 'a' - 10;
else
break;
}
if (v & j)
SET_SQUARE(state, i, TRUE);
j >>= 1;
if (j == 0)
j = 8;
}
if (*p == ',')
p++;
state->current = atoi(p);
if (state->current < 0 || state->current >= state->grid->nsquares)
state->current = 0; /* got to do _something_ */
}
/*
* Align the polyhedron with its grid square and determine
* initial key points.
*/
{
int pkey[4];
int ret;
ret = align_poly(state->solid, &state->grid->squares[state->current], pkey);
assert(ret);
state->dpkey[0] = state->spkey[0] = pkey[0];
state->dpkey[1] = state->spkey[0] = pkey[1];
state->dgkey[0] = state->sgkey[0] = 0;
state->dgkey[1] = state->sgkey[0] = 1;
}
state->previous = state->current;
state->angle = 0.0;
state->completed = 0;
state->movecount = 0;
return state;
}
static game_state *dup_game(const game_state *state)
{
game_state *ret = snew(game_state);
ret->params = state->params; /* structure copy */
ret->solid = state->solid;
ret->facecolours = snewn(ret->solid->nfaces, int);
memcpy(ret->facecolours, state->facecolours,
ret->solid->nfaces * sizeof(int));
ret->current = state->current;
ret->grid = state->grid;
ret->grid->refcount++;
ret->bluemask = snewn((ret->grid->nsquares + 31) / 32, unsigned long);
memcpy(ret->bluemask, state->bluemask, (ret->grid->nsquares + 31) / 32 *
sizeof(unsigned long));
ret->dpkey[0] = state->dpkey[0];
ret->dpkey[1] = state->dpkey[1];
ret->dgkey[0] = state->dgkey[0];
ret->dgkey[1] = state->dgkey[1];
ret->spkey[0] = state->spkey[0];
ret->spkey[1] = state->spkey[1];
ret->sgkey[0] = state->sgkey[0];
ret->sgkey[1] = state->sgkey[1];
ret->previous = state->previous;
ret->angle = state->angle;
ret->completed = state->completed;
ret->movecount = state->movecount;
return ret;
}
static void free_game(game_state *state)
{
if (--state->grid->refcount <= 0) {
sfree(state->grid->squares);
sfree(state->grid);
}
sfree(state->bluemask);
sfree(state->facecolours);
sfree(state);
}
static char *solve_game(const game_state *state, const game_state *currstate,
const char *aux, char **error)
{
return NULL;
}
static int game_can_format_as_text_now(const game_params *params)
{
return TRUE;
}
static char *game_text_format(const game_state *state)
{
return NULL;
}
static game_ui *new_ui(const game_state *state)
{
return NULL;
}
static void free_ui(game_ui *ui)
{
}
static char *encode_ui(const game_ui *ui)
{
return NULL;
}
static void decode_ui(game_ui *ui, const char *encoding)
{
}
static void game_changed_state(game_ui *ui, const game_state *oldstate,
const game_state *newstate)
{
}
struct game_drawstate {
float gridscale;
int ox, oy; /* pixel position of float origin */
};
/*
* Code shared between interpret_move() and execute_move().
*/
static int find_move_dest(const game_state *from, int direction,
int *skey, int *dkey)
{
int mask, dest, i, j;
float points[4];
/*
* Find the two points in the current grid square which
* correspond to this move.
*/
mask = from->grid->squares[from->current].directions[direction];
if (mask == 0)
return -1;
for (i = j = 0; i < from->grid->squares[from->current].npoints; i++)
if (mask & (1 << i)) {
points[j*2] = from->grid->squares[from->current].points[i*2];
points[j*2+1] = from->grid->squares[from->current].points[i*2+1];
skey[j] = i;
j++;
}
assert(j == 2);
/*
* Now find the other grid square which shares those points.
* This is our move destination.
*/
dest = -1;
for (i = 0; i < from->grid->nsquares; i++)
if (i != from->current) {
int match = 0;
float dist;
for (j = 0; j < from->grid->squares[i].npoints; j++) {
dist = (SQ(from->grid->squares[i].points[j*2] - points[0]) +
SQ(from->grid->squares[i].points[j*2+1] - points[1]));
if (dist < 0.1)
dkey[match++] = j;
dist = (SQ(from->grid->squares[i].points[j*2] - points[2]) +
SQ(from->grid->squares[i].points[j*2+1] - points[3]));
if (dist < 0.1)
dkey[match++] = j;
}
if (match == 2) {
dest = i;
break;
}
}
return dest;
}
static char *interpret_move(const game_state *state, game_ui *ui,
const game_drawstate *ds,
int x, int y, int button)
{
int direction, mask, i;
int skey[2], dkey[2];
button = button & (~MOD_MASK | MOD_NUM_KEYPAD);
/*
* Moves can be made with the cursor keys or numeric keypad, or
* alternatively you can left-click and the polyhedron will
* move in the general direction of the mouse pointer.
*/
if (button == CURSOR_UP || button == (MOD_NUM_KEYPAD | '8'))
direction = UP;
else if (button == CURSOR_DOWN || button == (MOD_NUM_KEYPAD | '2'))
direction = DOWN;
else if (button == CURSOR_LEFT || button == (MOD_NUM_KEYPAD | '4'))
direction = LEFT;
else if (button == CURSOR_RIGHT || button == (MOD_NUM_KEYPAD | '6'))
direction = RIGHT;
else if (button == (MOD_NUM_KEYPAD | '7'))
direction = UP_LEFT;
else if (button == (MOD_NUM_KEYPAD | '1'))
direction = DOWN_LEFT;
else if (button == (MOD_NUM_KEYPAD | '9'))
direction = UP_RIGHT;
else if (button == (MOD_NUM_KEYPAD | '3'))
direction = DOWN_RIGHT;
else if (button == LEFT_BUTTON) {
/*
* Find the bearing of the click point from the current
* square's centre.
*/
int cx, cy;
double angle;
cx = (int)(state->grid->squares[state->current].x * GRID_SCALE) + ds->ox;
cy = (int)(state->grid->squares[state->current].y * GRID_SCALE) + ds->oy;
if (x == cx && y == cy)
return NULL; /* clicked in exact centre! */
angle = atan2(y - cy, x - cx);
/*
* There are three possibilities.
*
* - This square is a square, so we choose between UP,
* DOWN, LEFT and RIGHT by dividing the available angle
* at the 45-degree points.
*
* - This square is an up-pointing triangle, so we choose
* between DOWN, LEFT and RIGHT by dividing into
* 120-degree arcs.
*
* - This square is a down-pointing triangle, so we choose
* between UP, LEFT and RIGHT in the inverse manner.
*
* Don't forget that since our y-coordinates increase
* downwards, `angle' is measured _clockwise_ from the
* x-axis, not anticlockwise as most mathematicians would
* instinctively assume.
*/
if (state->grid->squares[state->current].npoints == 4) {
/* Square. */
if (fabs(angle) > 3*PI/4)
direction = LEFT;
else if (fabs(angle) < PI/4)
direction = RIGHT;
else if (angle > 0)
direction = DOWN;
else
direction = UP;
} else if (state->grid->squares[state->current].directions[UP] == 0) {
/* Up-pointing triangle. */
if (angle < -PI/2 || angle > 5*PI/6)
direction = LEFT;
else if (angle > PI/6)
direction = DOWN;
else
direction = RIGHT;
} else {
/* Down-pointing triangle. */
assert(state->grid->squares[state->current].directions[DOWN] == 0);
if (angle > PI/2 || angle < -5*PI/6)
direction = LEFT;
else if (angle < -PI/6)
direction = UP;
else
direction = RIGHT;
}
} else
return NULL;
mask = state->grid->squares[state->current].directions[direction];
if (mask == 0)
return NULL;
/*
* Translate diagonal directions into orthogonal ones.
*/
if (direction > DOWN) {
for (i = LEFT; i <= DOWN; i++)
if (state->grid->squares[state->current].directions[i] == mask) {
direction = i;
break;
}
assert(direction <= DOWN);
}
if (find_move_dest(state, direction, skey, dkey) < 0)
return NULL;
if (direction == LEFT) return dupstr("L");
if (direction == RIGHT) return dupstr("R");
if (direction == UP) return dupstr("U");
if (direction == DOWN) return dupstr("D");
return NULL; /* should never happen */
}
static game_state *execute_move(const game_state *from, const char *move)
{
game_state *ret;
float angle;
struct solid *poly;
int pkey[2];
int skey[2], dkey[2];
int i, j, dest;
int direction;
switch (*move) {
case 'L': direction = LEFT; break;
case 'R': direction = RIGHT; break;
case 'U': direction = UP; break;
case 'D': direction = DOWN; break;
default: return NULL;
}
dest = find_move_dest(from, direction, skey, dkey);
if (dest < 0)
return NULL;
ret = dup_game(from);
ret->current = dest;
/*
* So we know what grid square we're aiming for, and we also
* know the two key points (as indices in both the source and
* destination grid squares) which are invariant between source
* and destination.
*
* Next we must roll the polyhedron on to that square. So we
* find the indices of the key points within the polyhedron's
* vertex array, then use those in a call to transform_poly,
* and align the result on the new grid square.
*/
{
int all_pkey[4];
align_poly(from->solid, &from->grid->squares[from->current], all_pkey);
pkey[0] = all_pkey[skey[0]];
pkey[1] = all_pkey[skey[1]];
/*
* Now pkey[0] corresponds to skey[0] and dkey[0], and
* likewise [1].
*/
}
/*
* Now find the angle through which to rotate the polyhedron.
* Do this by finding the two faces that share the two vertices
* we've found, and taking the dot product of their normals.
*/
{
int f[2], nf = 0;
float dp;
for (i = 0; i < from->solid->nfaces; i++) {
int match = 0;
for (j = 0; j < from->solid->order; j++)
if (from->solid->faces[i*from->solid->order + j] == pkey[0] ||
from->solid->faces[i*from->solid->order + j] == pkey[1])
match++;
if (match == 2) {
assert(nf < 2);
f[nf++] = i;
}
}
assert(nf == 2);
dp = 0;
for (i = 0; i < 3; i++)
dp += (from->solid->normals[f[0]*3+i] *
from->solid->normals[f[1]*3+i]);
angle = (float)acos(dp);
}
/*
* Now transform the polyhedron. We aren't entirely sure
* whether we need to rotate through angle or -angle, and the
* simplest way round this is to try both and see which one
* aligns successfully!
*
* Unfortunately, _both_ will align successfully if this is a
* cube, which won't tell us anything much. So for that
* particular case, I resort to gross hackery: I simply negate
* the angle before trying the alignment, depending on the
* direction. Which directions work which way is determined by
* pure trial and error. I said it was gross :-/
*/
{
int all_pkey[4];
int success;
if (from->solid->order == 4 && direction == UP)
angle = -angle; /* HACK */
poly = transform_poly(from->solid,
from->grid->squares[from->current].flip,
pkey[0], pkey[1], angle);
flip_poly(poly, from->grid->squares[ret->current].flip);
success = align_poly(poly, &from->grid->squares[ret->current], all_pkey);
if (!success) {
sfree(poly);
angle = -angle;
poly = transform_poly(from->solid,
from->grid->squares[from->current].flip,
pkey[0], pkey[1], angle);
flip_poly(poly, from->grid->squares[ret->current].flip);
success = align_poly(poly, &from->grid->squares[ret->current], all_pkey);
}
assert(success);
}
/*
* Now we have our rotated polyhedron, which we expect to be
* exactly congruent to the one we started with - but with the
* faces permuted. So we map that congruence and thereby figure
* out how to permute the faces as a result of the polyhedron
* having rolled.
*/
{
int *newcolours = snewn(from->solid->nfaces, int);
for (i = 0; i < from->solid->nfaces; i++)
newcolours[i] = -1;
for (i = 0; i < from->solid->nfaces; i++) {
int nmatch = 0;
/*
* Now go through the transformed polyhedron's faces
* and figure out which one's normal is approximately
* equal to this one.
*/
for (j = 0; j < poly->nfaces; j++) {
float dist;
int k;
dist = 0;
for (k = 0; k < 3; k++)
dist += SQ(poly->normals[j*3+k] -
from->solid->normals[i*3+k]);
if (APPROXEQ(dist, 0)) {
nmatch++;
newcolours[i] = ret->facecolours[j];
}
}
assert(nmatch == 1);
}
for (i = 0; i < from->solid->nfaces; i++)
assert(newcolours[i] != -1);
sfree(ret->facecolours);
ret->facecolours = newcolours;
}
ret->movecount++;
/*
* And finally, swap the colour between the bottom face of the
* polyhedron and the face we've just landed on.
*
* We don't do this if the game is already complete, since we
* allow the user to roll the fully blue polyhedron around the
* grid as a feeble reward.
*/
if (!ret->completed) {
i = lowest_face(from->solid);
j = ret->facecolours[i];
ret->facecolours[i] = GET_SQUARE(ret, ret->current);
SET_SQUARE(ret, ret->current, j);
/*
* Detect game completion.
*/
j = 0;
for (i = 0; i < ret->solid->nfaces; i++)
if (ret->facecolours[i])
j++;
if (j == ret->solid->nfaces)
ret->completed = ret->movecount;
}
sfree(poly);
/*
* Align the normal polyhedron with its grid square, to get key
* points for non-animated display.
*/
{
int pkey[4];
int success;
success = align_poly(ret->solid, &ret->grid->squares[ret->current], pkey);
assert(success);
ret->dpkey[0] = pkey[0];
ret->dpkey[1] = pkey[1];
ret->dgkey[0] = 0;
ret->dgkey[1] = 1;
}
ret->spkey[0] = pkey[0];
ret->spkey[1] = pkey[1];
ret->sgkey[0] = skey[0];
ret->sgkey[1] = skey[1];
ret->previous = from->current;
ret->angle = angle;
return ret;
}
/* ----------------------------------------------------------------------
* Drawing routines.
*/
struct bbox {
float l, r, u, d;
};
static void find_bbox_callback(void *ctx, struct grid_square *sq)
{
struct bbox *bb = (struct bbox *)ctx;
int i;
for (i = 0; i < sq->npoints; i++) {
if (bb->l > sq->points[i*2]) bb->l = sq->points[i*2];
if (bb->r < sq->points[i*2]) bb->r = sq->points[i*2];
if (bb->u > sq->points[i*2+1]) bb->u = sq->points[i*2+1];
if (bb->d < sq->points[i*2+1]) bb->d = sq->points[i*2+1];
}
}
static struct bbox find_bbox(const game_params *params)
{
struct bbox bb;
/*
* These should be hugely more than the real bounding box will
* be.
*/
bb.l = 2.0F * (params->d1 + params->d2);
bb.r = -2.0F * (params->d1 + params->d2);
bb.u = 2.0F * (params->d1 + params->d2);
bb.d = -2.0F * (params->d1 + params->d2);
enum_grid_squares(params, find_bbox_callback, &bb);
return bb;
}
#define XSIZE(gs, bb, solid) \
((int)(((bb).r - (bb).l + 2*(solid)->border) * gs))
#define YSIZE(gs, bb, solid) \
((int)(((bb).d - (bb).u + 2*(solid)->border) * gs))
static void game_compute_size(const game_params *params, int tilesize,
int *x, int *y)
{
struct bbox bb = find_bbox(params);
*x = XSIZE(tilesize, bb, solids[params->solid]);
*y = YSIZE(tilesize, bb, solids[params->solid]);
}
static void game_set_size(drawing *dr, game_drawstate *ds,
const game_params *params, int tilesize)
{
struct bbox bb = find_bbox(params);
ds->gridscale = (float)tilesize;
ds->ox = (int)(-(bb.l - solids[params->solid]->border) * ds->gridscale);
ds->oy = (int)(-(bb.u - solids[params->solid]->border) * ds->gridscale);
}
static float *game_colours(frontend *fe, int *ncolours)
{
float *ret = snewn(3 * NCOLOURS, float);
frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
ret[COL_BORDER * 3 + 0] = 0.0;
ret[COL_BORDER * 3 + 1] = 0.0;
ret[COL_BORDER * 3 + 2] = 0.0;
ret[COL_BLUE * 3 + 0] = 0.0;
ret[COL_BLUE * 3 + 1] = 0.0;
ret[COL_BLUE * 3 + 2] = 1.0;
*ncolours = NCOLOURS;
return ret;
}
static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
{
struct game_drawstate *ds = snew(struct game_drawstate);
ds->ox = ds->oy = 0;
ds->gridscale = 0.0F; /* not decided yet */
return ds;
}
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
{
sfree(ds);
}
static void game_redraw(drawing *dr, game_drawstate *ds,
const game_state *oldstate, const game_state *state,
int dir, const game_ui *ui,
float animtime, float flashtime)
{
int i, j;
struct bbox bb = find_bbox(&state->params);
struct solid *poly;
const int *pkey, *gkey;
float t[3];
float angle;
int square;
draw_rect(dr, 0, 0, XSIZE(GRID_SCALE, bb, state->solid),
YSIZE(GRID_SCALE, bb, state->solid), COL_BACKGROUND);
if (dir < 0) {
const game_state *t;
/*
* This is an Undo. So reverse the order of the states, and
* run the roll timer backwards.
*/
assert(oldstate);
t = oldstate;
oldstate = state;
state = t;
animtime = ROLLTIME - animtime;
}
if (!oldstate) {
oldstate = state;
angle = 0.0;
square = state->current;
pkey = state->dpkey;
gkey = state->dgkey;
} else {
angle = state->angle * animtime / ROLLTIME;
square = state->previous;
pkey = state->spkey;
gkey = state->sgkey;
}
state = oldstate;
for (i = 0; i < state->grid->nsquares; i++) {
int coords[8];
for (j = 0; j < state->grid->squares[i].npoints; j++) {
coords[2*j] = ((int)(state->grid->squares[i].points[2*j] * GRID_SCALE)
+ ds->ox);
coords[2*j+1] = ((int)(state->grid->squares[i].points[2*j+1]*GRID_SCALE)
+ ds->oy);
}
draw_polygon(dr, coords, state->grid->squares[i].npoints,
GET_SQUARE(state, i) ? COL_BLUE : COL_BACKGROUND,
COL_BORDER);
}
/*
* Now compute and draw the polyhedron.
*/
poly = transform_poly(state->solid, state->grid->squares[square].flip,
pkey[0], pkey[1], angle);
/*
* Compute the translation required to align the two key points
* on the polyhedron with the same key points on the current
* face.
*/
for (i = 0; i < 3; i++) {
float tc = 0.0;
for (j = 0; j < 2; j++) {
float grid_coord;
if (i < 2) {
grid_coord =
state->grid->squares[square].points[gkey[j]*2+i];
} else {
grid_coord = 0.0;
}
tc += (grid_coord - poly->vertices[pkey[j]*3+i]);
}
t[i] = tc / 2;
}
for (i = 0; i < poly->nvertices; i++)
for (j = 0; j < 3; j++)
poly->vertices[i*3+j] += t[j];
/*
* Now actually draw each face.
*/
for (i = 0; i < poly->nfaces; i++) {
float points[8];
int coords[8];
for (j = 0; j < poly->order; j++) {
int f = poly->faces[i*poly->order + j];
points[j*2] = (poly->vertices[f*3+0] -
poly->vertices[f*3+2] * poly->shear);
points[j*2+1] = (poly->vertices[f*3+1] -
poly->vertices[f*3+2] * poly->shear);
}
for (j = 0; j < poly->order; j++) {
coords[j*2] = (int)floor(points[j*2] * GRID_SCALE) + ds->ox;
coords[j*2+1] = (int)floor(points[j*2+1] * GRID_SCALE) + ds->oy;
}
/*
* Find out whether these points are in a clockwise or
* anticlockwise arrangement. If the latter, discard the
* face because it's facing away from the viewer.
*
* This would involve fiddly winding-number stuff for a
* general polygon, but for the simple parallelograms we'll
* be seeing here, all we have to do is check whether the
* corners turn right or left. So we'll take the vector
* from point 0 to point 1, turn it right 90 degrees,
* and check the sign of the dot product with that and the
* next vector (point 1 to point 2).
*/
{
float v1x = points[2]-points[0];
float v1y = points[3]-points[1];
float v2x = points[4]-points[2];
float v2y = points[5]-points[3];
float dp = v1x * v2y - v1y * v2x;
if (dp <= 0)
continue;
}
draw_polygon(dr, coords, poly->order,
state->facecolours[i] ? COL_BLUE : COL_BACKGROUND,
COL_BORDER);
}
sfree(poly);
draw_update(dr, 0, 0, XSIZE(GRID_SCALE, bb, state->solid),
YSIZE(GRID_SCALE, bb, state->solid));
/*
* Update the status bar.
*/
{
char statusbuf[256];
sprintf(statusbuf, "%sMoves: %d",
(state->completed ? "COMPLETED! " : ""),
(state->completed ? state->completed : state->movecount));
status_bar(dr, statusbuf);
}
}
static float game_anim_length(const game_state *oldstate,
const game_state *newstate, int dir, game_ui *ui)
{
return ROLLTIME;
}
static float game_flash_length(const game_state *oldstate,
const game_state *newstate, int dir, game_ui *ui)
{
return 0.0F;
}
static int game_status(const game_state *state)
{
return state->completed ? +1 : 0;
}
static int game_timing_state(const game_state *state, game_ui *ui)
{
return TRUE;
}
static void game_print_size(const game_params *params, float *x, float *y)
{
}
static void game_print(drawing *dr, const game_state *state, int tilesize)
{
}
#ifdef COMBINED
#define thegame cube
#endif
const struct game thegame = {
"Cube", "games.cube", "cube",
default_params,
game_fetch_preset,
decode_params,
encode_params,
free_params,
dup_params,
TRUE, game_configure, custom_params,
validate_params,
new_game_desc,
validate_desc,
new_game,
dup_game,
free_game,
FALSE, solve_game,
FALSE, game_can_format_as_text_now, game_text_format,
new_ui,
free_ui,
encode_ui,
decode_ui,
game_changed_state,
interpret_move,
execute_move,
PREFERRED_GRID_SCALE, game_compute_size, game_set_size,
game_colours,
game_new_drawstate,
game_free_drawstate,
game_redraw,
game_anim_length,
game_flash_length,
game_status,
FALSE, FALSE, game_print_size, game_print,
TRUE, /* wants_statusbar */
FALSE, game_timing_state,
0, /* flags */
};