rockbox/firmware/target/arm/tcc780x/ata-nand-tcc780x.c
Bertrik Sikken 9cd291989b Disabled unused ata_led function.
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@17342 a1c6a512-1295-4272-9138-f99709370657
2008-05-03 23:37:48 +00:00

890 lines
22 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2008 Rob Purchase
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "ata.h"
#include "ata-target.h"
#include "system.h"
#include <string.h>
#include "led.h"
#include "panic.h"
/* The NAND driver is currently work-in-progress and as such contains
some dead code and debug stuff, such as the next few lines. */
#if defined(BOOTLOADER)
#include "../../../../bootloader/common.h" /* for printf */
extern int line;
#endif
/* for compatibility */
int ata_spinup_time = 0;
long last_disk_activity = -1;
/** static, private data **/
static bool initialized = false;
static struct mutex ata_mtx SHAREDBSS_ATTR;
#define SECTOR_SIZE 512
/* TCC780x NAND Flash Controller */
#define NFC_CMD (*(volatile unsigned long *)0xF0053000)
#define NFC_SADDR (*(volatile unsigned long *)0xF005300C)
#define NFC_SDATA (*(volatile unsigned long *)0xF0053040)
#define NFC_WDATA (*(volatile unsigned long *)0xF0053010)
#define NFC_CTRL (*(volatile unsigned long *)0xF0053050)
#define NFC_IREQ (*(volatile unsigned long *)0xF0053060)
#define NFC_RST (*(volatile unsigned long *)0xF0053064)
/* NFC_CTRL flags */
#define NFC_16BIT (1<<26)
#define NFC_CS0 (1<<23)
#define NFC_CS1 (1<<22)
#define NFC_READY (1<<20)
#define ECC_CTRL (*(volatile unsigned long *)0xF005B000)
#define ECC_BASE (*(volatile unsigned long *)0xF005B004)
#define ECC_CLR (*(volatile unsigned long *)0xF005B00C)
#define ECC_MLC0W (*(volatile unsigned long *)0xF005B030)
#define ECC_MLC1W (*(volatile unsigned long *)0xF005B034)
#define ECC_MLC2W (*(volatile unsigned long *)0xF005B038)
#define ECC_ERR (*(volatile unsigned long *)0xF005B070)
#define ECC_ERRADDR (*(volatile unsigned long *)0xF005B050)
#define ECC_ERRDATA (*(volatile unsigned long *)0xF005B060)
/* ECC_CTRL flags */
#define ECC_M4EN (1<<6)
#define ECC_ENC (1<<27)
#define ECC_READY (1<<26)
/* Chip characteristics, initialised by nand_get_chip_info() */
static int page_size = 0;
static int spare_size = 0;
static int pages_per_block = 0;
static int blocks_per_bank = 0;
static int pages_per_bank = 0;
static int row_cycles = 0;
static int col_cycles = 0;
static int total_banks = 0;
static int sectors_per_page = 0;
static int bytes_per_segment = 0;
static int sectors_per_segment = 0;
static int segments_per_bank = 0;
/* Maximum values for static buffers */
#define MAX_PAGE_SIZE 4096
#define MAX_SPARE_SIZE 128
#define MAX_BLOCKS_PER_BANK 8192
#define MAX_PAGES_PER_BLOCK 128
/* In theory we can support 4 banks, but only 2 have been seen on 2/4/8Gb D2s. */
#ifdef COWON_D2
#define MAX_BANKS 2
#else
#define MAX_BANKS 4
#endif
#define MAX_SEGMENTS (MAX_BLOCKS_PER_BANK * MAX_BANKS / 4)
/* Logical/Physical translation table */
struct lpt_entry
{
short chip;
short phys_segment;
//short segment_flag;
};
static struct lpt_entry lpt_lookup[MAX_SEGMENTS];
/* Write Caches */
#define MAX_WRITE_CACHES 8
struct write_cache
{
short chip;
short phys_segment;
short log_segment;
short page_map[MAX_PAGES_PER_BLOCK * 4];
};
static struct write_cache write_caches[MAX_WRITE_CACHES];
static int write_caches_in_use = 0;
/* Read buffer */
unsigned int page_buf[(MAX_PAGE_SIZE + MAX_SPARE_SIZE) / 4];
/* Conversion functions */
static inline int phys_segment_to_page_addr(int phys_segment, int page_in_seg)
{
int page_addr = phys_segment * pages_per_block * 2;
if (page_in_seg & 1)
{
/* Data is located in block+1 */
page_addr += pages_per_block;
}
if (page_in_seg & 2)
{
/* Data is located in second plane */
page_addr += (blocks_per_bank/2) * pages_per_block;
}
page_addr += page_in_seg/4;
return page_addr;
}
/* NAND physical access functions */
static void nand_chip_select(int chip)
{
if (chip == -1)
{
/* Disable both chip selects */
GPIOB_CLEAR = (1<<21);
NFC_CTRL |= NFC_CS0 | NFC_CS1;
}
else
{
/* NFC chip select */
if (chip & 1)
{
NFC_CTRL &= ~NFC_CS0;
NFC_CTRL |= NFC_CS1;
}
else
{
NFC_CTRL |= NFC_CS0;
NFC_CTRL &= ~NFC_CS1;
}
/* Secondary chip select */
if (chip & 2)
{
GPIOB_SET = (1<<21);
}
else
{
GPIOB_CLEAR = (1<<21);
}
}
}
static void nand_read_id(int chip, unsigned char* id_buf)
{
int i;
/* Enable NFC bus clock */
BCLKCTR |= DEV_NAND;
/* Reset NAND controller */
NFC_RST = 0;
/* Set slow cycle timings since the chip is as yet unidentified */
NFC_CTRL = (NFC_CTRL &~0xFFF) | 0x353;
nand_chip_select(chip);
/* Set write protect */
GPIOB_CLEAR = (1<<19);
/* Reset command */
NFC_CMD = 0xFF;
/* Set 8-bit data width */
NFC_CTRL &= ~NFC_16BIT;
/* Read ID command, single address cycle */
NFC_CMD = 0x90;
NFC_SADDR = 0x00;
/* Read the 5 chip ID bytes */
for (i = 0; i < 5; i++)
{
id_buf[i] = NFC_SDATA & 0xFF;
}
nand_chip_select(-1);
/* Disable NFC bus clock */
BCLKCTR &= ~DEV_NAND;
}
static void nand_read_uid(int chip, unsigned int* uid_buf)
{
int i;
/* Enable NFC bus clock */
BCLKCTR |= DEV_NAND;
/* Set cycle timing (stp = 1, pw = 3, hold = 1) */
NFC_CTRL = (NFC_CTRL &~0xFFF) | 0x131;
nand_chip_select(chip);
/* Set write protect */
GPIOB_CLEAR = 1<<19;
/* Set 8-bit data width */
NFC_CTRL &= ~NFC_16BIT;
/* Undocumented (SAMSUNG specific?) commands set the chip into a
special mode allowing a normally-hidden UID block to be read. */
NFC_CMD = 0x30;
NFC_CMD = 0x65;
/* Read command */
NFC_CMD = 0x00;
/* Write row/column address */
for (i = 0; i < col_cycles; i++) NFC_SADDR = 0;
for (i = 0; i < row_cycles; i++) NFC_SADDR = 0;
/* End of read */
NFC_CMD = 0x30;
/* Wait until complete */
while (!(NFC_CTRL & NFC_READY)) {};
/* Copy data to buffer (data repeats after 8 words) */
for (i = 0; i < 8; i++)
{
uid_buf[i] = NFC_WDATA;
}
/* Reset the chip back to normal mode */
NFC_CMD = 0xFF;
nand_chip_select(-1);
/* Disable NFC bus clock */
BCLKCTR &= ~DEV_NAND;
}
static void nand_read_raw(int chip, int row, int column, int size, void* buf)
{
int i;
/* Enable NFC bus clock */
BCLKCTR |= DEV_NAND;
/* Set cycle timing (stp = 1, pw = 3, hold = 1) */
NFC_CTRL = (NFC_CTRL &~0xFFF) | 0x131;
nand_chip_select(chip);
/* Set write protect */
GPIOB_CLEAR = (1<<19);
/* Set 8-bit data width */
NFC_CTRL &= ~NFC_16BIT;
/* Read command */
NFC_CMD = 0x00;
/* Write column address */
for (i = 0; i < col_cycles; i++)
{
NFC_SADDR = column & 0xFF;
column = column >> 8;
}
/* Write row address */
for (i = 0; i < row_cycles; i++)
{
NFC_SADDR = row & 0xFF;
row = row >> 8;
}
/* End of read command */
NFC_CMD = 0x30;
/* Wait until complete */
while (!(NFC_CTRL & NFC_READY)) {};
/* Read data into page buffer */
if (((unsigned int)buf & 3) || (size & 3))
{
/* Use byte copy since either the buffer or size are not word-aligned */
/* TODO: Byte copy only where necessary (use words for mid-section) */
for (i = 0; i < size; i++)
{
((unsigned char*)buf)[i] = NFC_SDATA;
}
}
else
{
/* Use 4-byte copy as buffer and size are both word-aligned */
for (i = 0; i < (size/4); i++)
{
((unsigned int*)buf)[i] = NFC_WDATA;
}
}
nand_chip_select(-1);
/* Disable NFC bus clock */
BCLKCTR &= ~DEV_NAND;
}
static void nand_get_chip_info(void)
{
bool found = false;
unsigned char manuf_id;
unsigned char id_buf[8];
/* Read chip id from bank 0 */
nand_read_id(0, id_buf);
manuf_id = id_buf[0];
switch (manuf_id)
{
case 0xEC: /* SAMSUNG */
switch(id_buf[1]) /* Chip Id */
{
case 0xD5: /* K9LAG08UOM */
page_size = 2048;
spare_size = 64;
pages_per_block = 128;
blocks_per_bank = 8192;
col_cycles = 2;
row_cycles = 3;
found = true;
break;
case 0xD7: /* K9LBG08UOM */
page_size = 4096;
spare_size = 128;
pages_per_block = 128;
blocks_per_bank = 8192;
col_cycles = 2;
row_cycles = 3;
found = true;
break;
}
break;
}
if (!found)
{
panicf("Unknown NAND: 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x",
id_buf[0],id_buf[1],id_buf[2],id_buf[3],id_buf[4]);
}
pages_per_bank = blocks_per_bank * pages_per_block;
segments_per_bank = blocks_per_bank / 4;
bytes_per_segment = page_size * pages_per_block * 4;
sectors_per_page = page_size / SECTOR_SIZE;
sectors_per_segment = bytes_per_segment / SECTOR_SIZE;
/* Establish how many banks are present */
nand_read_id(1, id_buf);
if (id_buf[0] == manuf_id)
{
/* Bank 1 is populated, now check if banks 2/3 are valid */
nand_read_id(2, id_buf);
if (id_buf[0] == manuf_id)
{
/* Bank 2 returned matching id - check if 2/3 are shadowing 0/1 */
unsigned int uid_buf0[8];
unsigned int uid_buf2[8];
nand_read_uid(0, uid_buf0);
nand_read_uid(2, uid_buf2);
if (memcmp(uid_buf0, uid_buf2, 32) == 0)
{
/* UIDs match, assume banks 2/3 are shadowing 0/1 */
total_banks = 2;
}
else
{
/* UIDs differ, assume banks 2/3 are valid */
total_banks = 4;
}
}
else
{
/* Bank 2 returned differing id - assume 2/3 are junk */
total_banks = 2;
}
}
else
{
/* Bank 1 returned differing id - assume it is junk */
total_banks = 1;
}
/*
Sanity checks:
1. "BMP" tag at block 0, page 0, offset <page_size> [always present]
2. Byte at <page_size>+4 contains number of banks [or 0xff if 1 bank]
If this is confirmed for all D2s we can simplify the above code and
also remove the icky nand_read_uid() function.
*/
nand_read_raw(0, /* bank */
0, /* page */
page_size, /* offset */
8, id_buf);
if (strncmp(id_buf, "BMP", 3)) panicf("BMP tag not present");
if (total_banks > 1)
{
if (id_buf[4] != total_banks) panicf("BMPM total_banks mismatch");
}
}
static bool nand_read_sector_of_phys_page(int chip, int page,
int sector, void* buf)
{
nand_read_raw(chip, page,
sector * (SECTOR_SIZE+16),
SECTOR_SIZE, buf);
/* TODO: Read the 16 spare bytes, perform ECC correction */
return true;
}
static bool nand_read_sector_of_phys_segment(int chip, int phys_segment,
int page_in_seg, int sector,
void* buf)
{
int page_addr = phys_segment_to_page_addr(phys_segment,
page_in_seg);
return nand_read_sector_of_phys_page(chip, page_addr, sector, buf);
}
static bool nand_read_sector_of_logical_segment(int log_segment, int sector,
void* buf)
{
int page_in_segment = sector / sectors_per_page;
int sector_in_page = sector % sectors_per_page;
int chip = lpt_lookup[log_segment].chip;
int phys_segment = lpt_lookup[log_segment].phys_segment;
/* Check if any of the write caches refer to this segment/page.
If present we need to read the cached page instead. */
int cache_num = 0;
bool found = false;
while (!found && cache_num < write_caches_in_use)
{
if (write_caches[cache_num].log_segment == log_segment
&& write_caches[cache_num].page_map[page_in_segment] != -1)
{
found = true;
chip = write_caches[cache_num].chip;
phys_segment = write_caches[cache_num].phys_segment;
page_in_segment = write_caches[cache_num].page_map[page_in_segment];
}
else
{
cache_num++;
}
}
return nand_read_sector_of_phys_segment(chip, phys_segment,
page_in_segment,
sector_in_page, buf);
}
#if 0 // LPT table is work-in-progress
static void read_lpt_block(int chip, int phys_segment)
{
int page = 1; /* table starts at page 1 of segment */
bool cont = true;
struct lpt_entry* lpt_ptr = NULL;
while (cont && page < pages_per_block)
{
int i = 0;
nand_read_sector_of_phys_segment(chip, phys_segment,
page, 0, /* only sector 0 is used */
page_buf);
/* Find out which chunk of the LPT table this section contains.
Do this by reading the logical segment number of entry 0 */
if (lpt_ptr == NULL)
{
int first_chip = page_buf[0] / segments_per_bank;
int first_phys_segment = page_buf[0] % segments_per_bank;
unsigned char spare_buf[16];
nand_read_raw(first_chip,
phys_segment_to_page_addr(first_phys_segment, 0),
SECTOR_SIZE, /* offset */
16, spare_buf);
int first_log_segment = (spare_buf[6] << 8) | spare_buf[7];
lpt_ptr = &lpt_lookup[first_log_segment];
#if defined(BOOTLOADER) && 1
printf("lpt @ %lx:%lx (ls:%lx)",
first_chip, first_phys_segment, first_log_segment);
#endif
}
while (cont && (i < SECTOR_SIZE/4))
{
if (page_buf[i] != 0xFFFFFFFF)
{
lpt_ptr->chip = page_buf[i] / segments_per_bank;
lpt_ptr->phys_segment = page_buf[i] % segments_per_bank;
lpt_ptr++;
i++;
}
else cont = false;
}
page++;
}
}
#endif
static void read_write_cache_segment(int chip, int phys_segment)
{
int page;
unsigned char spare_buf[16];
if (write_caches_in_use == MAX_WRITE_CACHES)
panicf("Max NAND write caches reached");
write_caches[write_caches_in_use].chip = chip;
write_caches[write_caches_in_use].phys_segment = phys_segment;
/* Loop over each page in the phys segment (from page 1 onwards).
Read spare for 1st sector, store location of page in array. */
for (page = 1; page < pages_per_block * 4; page++)
{
unsigned short cached_page;
unsigned short log_segment;
nand_read_raw(chip, phys_segment_to_page_addr(phys_segment, page),
SECTOR_SIZE, /* offset to first sector's spare */
16, spare_buf);
cached_page = (spare_buf[3] << 8) | spare_buf[2]; /* why does endian */
log_segment = (spare_buf[6] << 8) | spare_buf[7]; /* -ness differ? */
if (cached_page != 0xFFFF)
{
write_caches[write_caches_in_use].log_segment = log_segment;
write_caches[write_caches_in_use].page_map[cached_page] = page;
}
}
write_caches_in_use++;
}
/* TEMP testing functions */
#ifdef BOOTLOADER
#if 0
static void display_page(int chip, int page)
{
int i;
nand_read_raw(chip, page, 0, page_size+spare_size, page_buf);
for (i = 0; i < (page_size+spare_size)/4; i += 132)
{
int j,interesting = 0;
line = 1;
printf("c:%d p:%lx s:%d", chip, page, i/128);
for (j=i; j<(i+131); j++)
{
if (page_buf[j] != 0xffffffff) interesting = 1;
}
if (interesting)
{
for (j=i; j<(i+131); j+=8)
{
printf("%lx %lx %lx %lx %lx %lx %lx %lx",
page_buf[j],page_buf[j+1],page_buf[j+2],page_buf[j+3],
page_buf[j+4],page_buf[j+5],page_buf[j+6],page_buf[j+7]);
}
while (!button_read_device()) {};
while (button_read_device()) {};
reset_screen();
}
}
}
#endif
static void nand_test(void)
{
int segment = 0;
printf("%d banks", total_banks);
printf("* %d pages", pages_per_bank);
printf("* %d bytes per page", page_size);
while (lpt_lookup[segment].chip != -1
&& segment < segments_per_bank * total_banks)
{
segment++;
}
printf("%d sequential segments found (%dMb)",
segment, (unsigned)(segment*bytes_per_segment)>>20);
}
#endif
/* API Functions */
#if 0 /* currently unused */
static void ata_led(bool onoff)
{
led(onoff);
}
#endif
int ata_read_sectors(IF_MV2(int drive,) unsigned long start, int incount,
void* inbuf)
{
#ifdef HAVE_MULTIVOLUME
(void)drive; /* unused for now */
#endif
mutex_lock(&ata_mtx);
while (incount > 0)
{
int done = 0;
int segment = start / sectors_per_segment;
int secmod = start % sectors_per_segment;
while (incount > 0 && secmod < sectors_per_segment)
{
if (!nand_read_sector_of_logical_segment(segment, secmod, inbuf))
{
mutex_unlock(&ata_mtx);
return -1;
}
inbuf += SECTOR_SIZE;
incount--;
secmod++;
done++;
}
if (done < 0)
{
mutex_unlock(&ata_mtx);
return -1;
}
start += done;
}
mutex_unlock(&ata_mtx);
return 0;
}
int ata_write_sectors(IF_MV2(int drive,) unsigned long start, int count,
const void* outbuf)
{
#ifdef HAVE_MULTIVOLUME
(void)drive; /* unused for now */
#endif
/* TODO: Learn more about TNFTL and implement this one day... */
(void)start;
(void)count;
(void)outbuf;
return -1;
}
void ata_spindown(int seconds)
{
/* null */
(void)seconds;
}
bool ata_disk_is_active(void)
{
/* null */
return 0;
}
void ata_sleep(void)
{
/* null */
}
void ata_spin(void)
{
/* null */
}
/* Hardware reset protocol as specified in chapter 9.1, ATA spec draft v5 */
int ata_hard_reset(void)
{
/* null */
return 0;
}
int ata_soft_reset(void)
{
/* null */
return 0;
}
void ata_enable(bool on)
{
/* null - flash controller is enabled/disabled as needed. */
(void)on;
}
int ata_init(void)
{
int i, bank, phys_segment;
unsigned char spare_buf[16];
if (initialized) return 0;
/* Get chip characteristics and number of banks */
nand_get_chip_info();
for (i = 0; i < MAX_SEGMENTS; i++)
{
lpt_lookup[i].chip = -1;
lpt_lookup[i].phys_segment = -1;
//lpt_lookup[i].segment_flag = -1;
}
write_caches_in_use = 0;
for (i = 0; i < MAX_WRITE_CACHES; i++)
{
int page;
write_caches[i].log_segment = -1;
write_caches[i].chip = -1;
write_caches[i].phys_segment = -1;
for (page = 0; page < MAX_PAGES_PER_BLOCK * 4; page++)
{
write_caches[i].page_map[page] = -1;
}
}
/* Scan banks to build up block translation table */
for (bank = 0; bank < total_banks; bank++)
{
for (phys_segment = 0; phys_segment < segments_per_bank; phys_segment++)
{
/* Read spare bytes from first sector of each segment */
nand_read_raw(bank, phys_segment_to_page_addr(phys_segment, 0),
SECTOR_SIZE, /* offset */
16, spare_buf);
switch (spare_buf[4]) /* block type */
{
case 0x12:
{
/* Log->Phys Translation table (for Main data area) */
//read_lpt_block(bank, phys_segment);
break;
}
case 0x13:
case 0x17:
{
/* Main data area segment */
int segment = (spare_buf[6] << 8) | spare_buf[7];
if (segment < MAX_SEGMENTS)
{
/* Store in LPT if not present or 0x17 overrides 0x13 */
//if (lpt_lookup[segment].segment_flag == -1 ||
// lpt_lookup[segment].segment_flag == 0x13)
{
lpt_lookup[segment].chip = bank;
lpt_lookup[segment].phys_segment = phys_segment;
//lpt_lookup[segment].segment_flag = spare_buf[4];
}
}
break;
}
case 0x15:
{
/* Recently-written page data (for Main data area) */
read_write_cache_segment(bank, phys_segment);
break;
}
}
}
}
initialized = true;
#ifdef BOOTLOADER
/* TEMP - print out some diagnostics */
nand_test();
#endif
return 0;
}
/* TEMP: This will return junk, it's here for compilation only */
unsigned short* ata_get_identify(void)
{
return (unsigned short*)0x21000000; /* Unused DRAM */
}