rockbox/firmware/target/arm/s5l8702/nor-s5l8702.c
Cástor Muñoz 7083110f81 iPod Classic: NOR support for bootloader
- NOR driver (based on emCORE)
- read/write IM3 images
- read 'flsh' files

Change-Id: Ie0654e0d298affc0f47ed64b823767118bd1aa3f
2016-08-19 00:15:59 +02:00

369 lines
10 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id:
*
* Copyright © 2009 Michael Sparmann
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include "config.h"
#include "system.h"
#include "s5l8702.h"
#include "spi-s5l8702.h"
#include "crypto-s5l8702.h"
#include "nor-target.h"
static void bootflash_ce(int port, bool state)
{
spi_ce(port, state);
}
void bootflash_init(int port)
{
spi_init(port, true);
bootflash_ce(port, false);
}
void bootflash_close(int port)
{
spi_init(port, false);
}
static void bootflash_wait_ready(int port)
{
while (true)
{
bootflash_ce(port, true);
spi_write(port, 5);
if (!(spi_write(port, 0xff) & 1)) break;
bootflash_ce(port, false);
}
bootflash_ce(port, false);
}
static void bootflash_enable_writing(int port, bool state)
{
if (!state)
{
bootflash_ce(port, true);
spi_write(port, 4);
bootflash_ce(port, false);
}
bootflash_ce(port, true);
spi_write(port, 0x50);
bootflash_ce(port, false);
bootflash_ce(port, true);
spi_write(port, 1);
spi_write(port, state ? 0 : 0x1c);
bootflash_ce(port, false);
if (state)
{
bootflash_ce(port, true);
spi_write(port, 6);
bootflash_ce(port, false);
}
}
void bootflash_read(int port, uint32_t addr, uint32_t size, void* buf)
{
spi_prepare(port);
bootflash_wait_ready(port);
bootflash_ce(port, true);
spi_write(port, 3);
spi_write(port, (addr >> 16) & 0xff);
spi_write(port, (addr >> 8) & 0xff);
spi_write(port, addr & 0xff);
spi_read(port, size, buf);
bootflash_ce(port, false);
spi_release(port);
}
static void bootflash_write_internal(int port, uint32_t addr, uint32_t size, void* buf)
{
uint8_t* buffer = (uint8_t*)buf;
bool first = true;
spi_prepare(port);
bootflash_wait_ready(port);
bootflash_enable_writing(port, true);
while (size)
{
bootflash_ce(port, true);
spi_write(port, 0xad);
if (first)
{
spi_write(port, (addr >> 16) & 0xff);
spi_write(port, (addr >> 8) & 0xff);
spi_write(port, addr & 0xff);
first = false;
}
spi_write(port, *buffer++);
spi_write(port, *buffer++);
bootflash_ce(port, false);
bootflash_wait_ready(port);
size -= 2;
}
bootflash_enable_writing(port, false);
spi_release(port);
}
static void bootflash_erase_internal(int port, uint32_t addr)
{
spi_prepare(port);
bootflash_wait_ready(port);
bootflash_enable_writing(port, true);
bootflash_ce(port, true);
spi_write(port, 0x20);
spi_write(port, (addr >> 16) & 0xff);
spi_write(port, (addr >> 8) & 0xff);
spi_write(port, addr & 0xff);
bootflash_ce(port, false);
bootflash_enable_writing(port, false);
spi_release(port);
}
void bootflash_erase_blocks(int port, int first, int n)
{
uint32_t offset = first << 12;
while (n--)
{
bootflash_erase_internal(port, offset);
offset += 0x1000;
}
}
int bootflash_compare(int port, int offset, void* addr, int size)
{
int i;
int result = 0;
uint8_t buf[32];
spi_prepare(port);
bootflash_wait_ready(port);
bootflash_ce(port, true);
spi_write(port, 3);
spi_write(port, (offset >> 16) & 0xff);
spi_write(port, (offset >> 8) & 0xff);
spi_write(port, offset & 0xff);
while (size > 0)
{
spi_read(port, MIN((int)sizeof(buf), size), buf);
if (memcmp((uint8_t*)addr, buf, MIN((int)sizeof(buf), size)))
result |= 1;
for (i = 0; i < MIN((int)sizeof(buf), size); i += 2)
if (buf[i] != 0xff) result |= 2;
addr = (void*)(((uint32_t)addr) + sizeof(buf));
size -= sizeof(buf);
}
bootflash_ce(port, false);
spi_release(port);
return result;
}
void bootflash_write(int port, int offset, void* addr, int size)
{
int i;
bool needswrite;
while (size > 0)
{
int remainder = MIN(0x1000 - (offset & 0xfff), size);
int contentinfo = bootflash_compare(port, offset, addr, remainder);
if (contentinfo & 1)
{
if (contentinfo & 2)
bootflash_erase_internal(port, offset & ~0xfff);
needswrite = false;
for (i = 0; i < remainder; i += 1)
if (((uint8_t*)addr)[i] != 0xff)
{
needswrite = true;
break;
}
if (needswrite)
bootflash_write_internal(port, offset, remainder, addr);
}
addr = (void*)(((uint32_t)addr) + remainder);
offset += remainder;
size -= remainder;
}
}
/*
* IM3
*/
static uint32_t get_uint32le(unsigned char *p)
{
return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
}
/* return full IM3 size aligned to NOR sector size */
unsigned im3_nor_sz(struct Im3Info* hinfo)
{
return ALIGN_UP(IM3HDR_SZ + get_uint32le(hinfo->data_sz), 0x1000);
}
/* calculates SHA1, truncate the result to 128 bits, and encrypt it */
void im3_sign(uint32_t keyidx, void* data, uint32_t size, void* sign)
{
unsigned char hash[SHA1_SZ];
sha1(data, size, hash);
memcpy(sign, hash, SIGN_SZ);
hwkeyaes(HWKEYAES_ENCRYPT, keyidx, sign, SIGN_SZ);
}
/* only supports enc_type 1 and 2 (UKEY) */
void im3_crypt(enum hwkeyaes_direction direction,
struct Im3Info *hinfo, void *fw_addr)
{
uint32_t fw_size = get_uint32le(hinfo->data_sz);
hinfo->enc_type = (direction == HWKEYAES_ENCRYPT) ? 1 : 2;
im3_sign(HWKEYAES_UKEY, hinfo, IM3INFOSIGN_SZ, hinfo->info_sign);
hwkeyaes(direction, HWKEYAES_UKEY, fw_addr, fw_size);
}
int im3_read(uint32_t offset, struct Im3Info *hinfo, void *fw_addr)
{
unsigned char hash[SIGN_SZ];
uint32_t fw_size;
/* header */
bootflash_init(SPI_PORT);
bootflash_read(SPI_PORT, offset, IM3HDR_SZ, hinfo);
bootflash_close(SPI_PORT);
if (memcmp(hinfo, IM3_IDENT, 4) != 0)
return -1; /* OF not found */
im3_sign(HWKEYAES_UKEY, hinfo, IM3INFOSIGN_SZ, hash);
if (memcmp(hash, hinfo->info_sign, SIGN_SZ) != 0)
return -2; /* corrupt header */
fw_size = get_uint32le(hinfo->data_sz);
if ((fw_size > NORBOOT_MAXSZ - IM3HDR_SZ) ||
(get_uint32le(hinfo->entry) > fw_size))
return -3; /* wrong info */
if (hinfo->enc_type != 1 && hinfo->enc_type != 2)
return -4; /* encrypt type not supported */
if (fw_addr)
{
/* body */
bootflash_init(SPI_PORT);
bootflash_read(SPI_PORT, offset + IM3HDR_SZ, fw_size, fw_addr);
bootflash_close(SPI_PORT);
if (hinfo->enc_type == 1)
im3_crypt(HWKEYAES_DECRYPT, hinfo, fw_addr);
im3_sign(HWKEYAES_UKEY, fw_addr, fw_size, hash);
if (memcmp(hash, hinfo->u.enc12.data_sign, SIGN_SZ) != 0)
return -5; /* corrupt data */
}
return 0;
}
bool im3_write(int offset, void *im3_addr)
{
bool res;
struct Im3Info *hinfo = (struct Im3Info *)im3_addr;
uint32_t im3_size = get_uint32le(hinfo->data_sz) + IM3HDR_SZ;
bootflash_init(SPI_PORT);
bootflash_write(SPI_PORT, offset, im3_addr, im3_size);
/* check if the IM3 image was written correctly */
res = !(bootflash_compare(SPI_PORT, offset, im3_addr, im3_size) & 1);
bootflash_close(SPI_PORT);
return res;
}
/*
* flsh FS
*/
unsigned flsh_get_unused(void)
{
unsigned tail = DIR_OFF;
bootflash_init(SPI_PORT);
for (int i = 0; i < MAX_ENTRY; i++)
{
image_t entry;
bootflash_read(SPI_PORT, DIR_OFF + ENTRY_SZ*i, ENTRY_SZ, &entry);
if (memcmp(entry.type, "hslf", 4))
break; /* no more entries */
if (entry.devOffset < tail)
tail = entry.devOffset;
}
bootflash_close(SPI_PORT);
return tail - (NORBOOT_OFF + NORBOOT_MAXSZ);
}
int flsh_find_file(char *name, image_t *entry)
{
int found = 0;
bootflash_init(SPI_PORT);
for (int off = 0; off < ENTRY_SZ*MAX_ENTRY; off += ENTRY_SZ)
{
bootflash_read(SPI_PORT, DIR_OFF+off, ENTRY_SZ, entry);
if (memcmp(&(entry->type), "hslf", 4))
break; /* no more entries */
if (!memcmp(&(entry->id), name, 4)) {
found = 1;
break;
}
}
bootflash_close(SPI_PORT);
return found;
}
#define KEYIDX_OFF 0x8 /* TBC */
#define DATALEN_OFF 0x14
#define DATASHA_OFF 0x1c
#define HEADSHA_OFF 0x1d4
int flsh_load_file(image_t *entry, void *hdr, void *data)
{
uint8_t orig_hash[SHA1_SZ];
uint8_t calc_hash[SHA1_SZ];
uint32_t data_len;
/* header */
bootflash_init(SPI_PORT);
bootflash_read(SPI_PORT, entry->devOffset, FILEHDR_SZ, hdr);
bootflash_close(SPI_PORT);
memcpy(orig_hash, hdr + HEADSHA_OFF, SHA1_SZ);
memset(hdr+HEADSHA_OFF, 0, SHA1_SZ);
sha1(hdr, FILEHDR_SZ, calc_hash);
if (memcmp(calc_hash, orig_hash, SHA1_SZ))
return -1; /* corrupt header */
memcpy(hdr+HEADSHA_OFF, orig_hash, SHA1_SZ);
data_len = ALIGN_UP(*(uint32_t*)(hdr+DATALEN_OFF), 0x10);
if (data_len > ALIGN_UP(entry->len, 0x10))
return -2; /* bad size */
if (data)
{
bootflash_init(SPI_PORT);
bootflash_read(SPI_PORT, entry->devOffset+FILEHDR_SZ, data_len, data);
bootflash_close(SPI_PORT);
hwkeyaes(HWKEYAES_DECRYPT, *(uint8_t*)(hdr+KEYIDX_OFF), data, data_len);
sha1(data, data_len, calc_hash);
if (memcmp(calc_hash, hdr+DATASHA_OFF, SHA1_SZ))
return -3; /* corrupt data */
}
return 0;
}