rockbox/firmware/target/arm/rk27xx/nand-rk27xx.c
Andrew Ryabinin f84602aa68 Fix identations.
Change-Id: I98acabd5c8ab024d553726cfabe5654242a18b3b
2013-04-04 15:47:24 +04:00

493 lines
12 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2010 by Bertrik Sikken
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "nand-target.h"
#if 0
/* This is for documentation purpose as FTL has not been reverse engineered yet
* Raw nand handling functions based on OF disassembly and partially inspired
* by Rockchip patent
*/
#define MAX_FLASH_NUM 4
#define CMD_READ_STATUS 0x70
#define CMD_RESET 0xFF
#define CMD_READ_ID 0x90
#define READ_PAGE_CMD 0x30
/* this is the struct OF uses */
struct flashspec_t
{
uint8_t cache_prog;
uint8_t mul_plane;
uint8_t interleave;
uint8_t large;
uint8_t five;
uint8_t mlc;
uint8_t vendor;
uint8_t access_time;
uint8_t sec_per_page;
uint8_t sec_per_page_raw;
uint16_t sec_per_block;
uint16_t sec_per_block_raw;
uint16_t page_per_block;
uint16_t page_per_block_raw;
uint32_t tot_logic_sec;
uint32_t total_phy_sec;
uint32_t total_bloks;
uint32_t cmd;
uint32_t addr;
uint32_t data;
};
/* holds nand chips characteristics */
struct flashspec_t flash_spec[MAX_FLASH_NUM];
/* sum of all phy sectors in all chips */
uint32_t total_phy_sec;
enum vendor_t {
SAMSUNG,
TOSHIBA,
HYNIX,
INFINEON,
MICRON,
RENESAS,
ST
};
/* taken from OF */
const uint8_t device_code[] = {
0x76,
0x79,
0xf1,
0xda,
0xdc,
0xd3,
0xd7
};
const uint8_t manufacture_id_tbl[] =
{
0xec, /* SAMSUNG */
0x98, /* TOSHIBA */
0xad, /* HYNIX */
0xc1, /* INFINEON */
0x2c, /* MICRON */
0x07, /* RENESAS */
0x20 /* ST */
};
/* phisical sectors */
const uint32_t device_info[] =
{
0x20000, /* 64M, small page */
0x40000, /* 128M, small page */
0x40000, /* 128M, large page */
0x80000, /* 256M, large page */
0x100000, /* 512M, large page */
0x200000, /* 1G, large page */
0x400000, /* 2G, large page */
0x800000 /* 4G, large page */
};
static int flash_delay(int n)
{
volatile int cnt, i, j;
for (j=0; j<n; j++)
for (i=0; i<10000; i++)
cnt++;
return cnt;
}
static void flash_wait_busy(void)
{
unsigned int i;
for (i=0; i<0x2000; i++)
{
if (FMCTL & FM_RDY)
break;
flash_delay(1);
}
}
void flash_chip_deselect(void)
{
uint32_t tmp;
tmp = FMCTL;
tmp &= 0xf0;
FMCTL = tmp;
}
void flash_chip_select(uint8_t chip)
{
uint32_t tmp;
/* Maybe we should handle IOMUX here as well?
* for chip == 0,1 it is not needed
*/
tmp = FMCTL;
tmp &= 0xf0;
tmp |= 1<<chip;
FMCTL = tmp;
}
void flash_init(void)
{
uint8_t buff[5]; /* buff for CMD_READ_ID response */
uint32_t i,j;
mlc_refresh_row = 0xffffffff;
total_phy_sec = 0;
flash_pend_cmd.valid = 0;
flash_read_status_cmd = CMD_READ_STATUS;
FMWAIT = 0x1081;
FLCTL = FL_RST;
for (i=0; i< MAX_FLASH_NUM; i++)
{
/* Redundat - we will use special macros
* just for reference what OF does
*/
flash_spec[i].cmd = 0x180E8200 + (i<<9);
flash_spec[i].addr = 0x180E204 + (i<<9);
flash_spec[i].data = 0x180E208 + (i<<9);
flash_chip_select(i);
FLASH_CMD(i) = CMD_RESET; /* write cmd to flash chip */
flash_delay(2);
flash_wait_busy();
FLASH_CMD(i) = CMD_READ_ID; /* write cmd to flash chip */
FLASH_ADDR(i) = 0x00;
/* read 5 bytes of CMD_READ_ID response */
for (j=0; j<5; j++)
buff[j] = FLASH_DATA(i);
flash_chip_deselect();
/* Get the vendor of the chip */
for (j=0; j<sizeof(manufacture_id_tbl); j++)
{
/* store Manufacturer index */
if (ManufactureIDTbl[j] == buff[0])
{
flash_spec[i].vendor = j;
}
}
for (j=0; j<sizeof(device_code); j++)
{
/* look for matching device code
* and store total phys sectors
*/
if (DeviceCode[j] == buff[1])
{
flash_spec[i].total_phy_sec = device_info[j];
break;
}
}
/* div zero is fatal for us (not for OF :P) */
if (flash_spec[i].total_phy_sec == 0)
continue;
/* loc_7e8 */
flash_spec[i].mlc = 0;
flash_spec[i].large = 0;
flash_spec[i].five = 1;
flash_spec[i].mul_plane = 1;
flash_spec[i].interleave = 0;
flash_spec[i].cache_prog = buff[2] & 0x80;
/* flash access time (ns) */
switch (buff[3] & 0x88)
{
case 0:
flash_spec[i].access_time = 50;
break;
case 0x80:
flash_spec[i].access_time = 25;
break;
case 0x08:
flash_spec[i].access_time = 20;
break;
default:
flash_spec[i].access_time = 60;
}
/* set_large
* j is index in device_code table
*/
if (j < 2)
{
/* small block */
flash_spec[i].large = 0;
flash_spec[i].sec_per_page_raw = 1;
flash_spec[i].sec_per_block_raw = 32;
}
else
{
flash_spec[i].large = 1;
if (j == 2)
flash_spec[i].five = 0;
/* cell type */
flash_spec[i].mlc = (buff[2] >> 2) & 0x03;
flash_spec[i].sec_per_page_raw = 2; /* 1KB~8KB */
/* set_sec_per_page_raw */
flash_spec[i].sec_per_page_raw <<= (buff[3] & 3);
flash_spec[i].sec_per_block_raw = 128; /* 64KB~512KB */
/* set_sec_per_block_raw */
flash_spec[i].sec_per_block_raw <<= ((buff[3]>>4) & 3);
/* simult_prog */
if (buff[2] & 0x30)
{
/* buff4_mulplane */
flash_spec[i].mul_plane <<= ((buff[4]>>2) & 3);
}
/* set_interleave */
if (flash_spec[i].vendor == TOSHIBA)
{
flash_spec[i].mul_plane = 2;
if (buff[2] & 3)
flash_spec[i].interleave = 1;
}
} /* large block */
if (flash_spec[i].mul_plane > 2)
{
flash_spec[i].mul_plane = 2;
flash_spec[i].interleave = 1;
}
flash_spec[i].page_per_block_raw = flash_spec[i].sec_per_block_raw/flash_spec[i].sec_per_page_raw;
flash_spec[i].page_per_block = flash_spec[i].page_per_block_raw * flash_spec[i].mul_plane;
flash_spec[i].sec_per_block = flash_spec[i].sec_per_block_raw * flash_spec[i].mul_plane;
flash_spec[i].sec_per_page = flash_spec[i].sec_per_page_raw * flash_spec[i].mul_plane;
flash_spec[i].total_bloks = flash_spec[i].total_phy_sec / flash_spec[i].sec_per_block;
total_phy_sec += flash_spec[i].total_phy_sec;
}
/* read ID block and propagate SysDiskCapacity and SysResBlocks */
}
/* read single page in unbuffered mode */
void flash_read_page(int page, unsigned char *pgbuff)
{
unsigned int i;
flash_chip_select(0);
flash_delay(2);
flash_wait_busy();
/* setup transfer */
FLASH_CMD(0) = 0x00;
FLASH_ADDR(0) = 0x00; /* column */
FLASH_ADDR(0) = 0x00; /* column */
FLASH_ADDR(0) = page & 0xff; /* row */
FLASH_ADDR(0) = (page >> 8) & 0xff; /* row */
FLASH_ADDR(0) = (page >> 16) & 0xff; /* row */
FLASH_CMD(0) = READ_PAGE_CMD;
/* wait for operation complete */
flash_wait_busy();
/* copy data from page register
* WARNING flash page size can be different
* for different chips. This value should be set
* based on initialization.
*/
for (i=0; i<(4096+218); i++)
pgbuff[i] = FLASH_DATA(0);
flash_chip_deselect();
}
void flash_read_sector(int page, unsigned char *secbuf, int nsec)
{
int i = 0;
int j = 0;
/* WARNING this code assumes only one nand chip
* it does not handle data split across different nand chips
*/
flash_chip_select(0);
flash_delay(2);
flash_wait_busy();
FLASH_CMD(0) = 0x00;
FLASH_ADDR(0) = 0x00;
FLASH_ADDR(0) = 0x00;
FLASH_ADDR(0) = page & 0xff;
FLASH_ADDR(0) = (page >> 8) & 0xff;
FLASH_ADDR(0) = (page >> 16) & 0xff;
FLASH_CMD(0) = READ_PAGE_CMD;
flash_delay(1);
/* wait for operation to complete */
flash_wait_busy();
/* enables hw checksum control most probably */
BCHCTL = 1;
/* This initializes the transfer from the nand to the buffer
* There are 4 consecutive hw buffers 512 bytes long for data (PAGE_BUF)
* and 4 16 bytes long for metadata (BCH code checksum) (SPARE_BUF)
*/
FLCTL = 0xA24;
/* This scheme utilizes some overlap in data transfers -
* data are copied from buffer to the mem and from nand to the buf
* at the same time.
*/
while (++j < nsec)
{
/* wait for transfer to complete */
while(! (FLCTL & FL_RDY));
/* initialize next transfer to the next buffer */
FLCTL = 0xA24 | (j&3)<<3;
/* copy data chunk */
memcpy(secbuf, (((unsigned char *)&PAGE_BUF)+((i&3)<<9)), 0x200);
secbuf += 0x200;
/* copy metadata chunk (BCH)
* in real application this can be discarded
*/
memcpy(secbuf, (((unsigned char *)&SPARE_BUF)+((i&3)<<4)), 0x10);
secbuf += 0x10;
i++;
}
/* wait for transfer to complete */
while(! (FLCTL & FL_RDY));
/* copy data chunk */
memcpy(secbuf, (((unsigned char *)&PAGE_BUF)+((i&3)<<9)), 0x200);
secbuf += 0x200;
/* copy metadata chunk (BCH)
* in real application this can be discarded
*/
memcpy(secbuf, (((unsigned char *)&SPARE_BUF)+((i&3)<<4)), 0x10);
secbuf += 0x10;
flash_chip_deselect();
}
#endif
const struct nand_device_info_type* nand_get_device_type(uint32_t bank);
uint32_t nand_read_page(uint32_t bank, uint32_t page, void* databuffer,
void* sparebuffer, uint32_t doecc,
uint32_t checkempty)
{
/* TODO implement */
(void)bank;
(void)page;
(void)databuffer;
(void)sparebuffer;
(void)doecc;
(void)checkempty;
return 0;
}
uint32_t nand_write_page(uint32_t bank, uint32_t page, void* databuffer,
void* sparebuffer, uint32_t doecc)
{
/* TODO implement */
(void)bank;
(void)page;
(void)databuffer;
(void)sparebuffer;
(void)doecc;
return 0;
}
uint32_t nand_block_erase(uint32_t bank, uint32_t page)
{
/* TODO implement */
(void)bank;
(void)page;
return 0;
}
uint32_t nand_reset(uint32_t bank)
{
/* TODO implement */
(void)bank;
return 0;
}
uint32_t nand_device_init(void)
{
/* TODO implement */
return 0;
}
void nand_power_up(void)
{
/* TODO implement */
}
void nand_power_down(void)
{
/* TODO implement */
}
void nand_set_active(void)
{
/* TODO implement */
}
long nand_last_activity(void)
{
/* TODO implement */
return 0;
}
int nand_spinup_time(void)
{
return 0;
}