rockbox/firmware/target/arm/imx31/dvfs_dptc-imx31.c
Michael Sevakis 0a7d941fb9 i.MX31: Remove long udelay from DVFS interrupt handler
Split the ISR into two parts and alllow quick return from first half.

Introduces a uevent() API to have a callback happen in a specified
number of microseconds. Right now only one event is supported.

Change-Id: Ib1666165be2f6082e5275d64961f083cab104f9f
2013-05-11 21:09:01 -04:00

839 lines
23 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2010 by Michael Sevakis
*
* i.MX31 DVFS and DPTC drivers
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "system.h"
#include "logf.h"
#include "mc13783.h"
#include "iomuxc-imx31.h"
#include "ccm-imx31.h"
#include "avic-imx31.h"
#include "dvfs_dptc-imx31.h"
#include "dvfs_dptc_tables-target.h"
#include "gcc_extensions.h"
/* Most of the code in here is based upon the Linux BSP provided by Freescale
* Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved. */
/* The current DVFS index level */
static volatile unsigned int dvfs_level = DVFS_LEVEL_DEFAULT;
/* The current DPTC working point */
static volatile unsigned int dptc_wp = DPTC_WP_DEFAULT;
/* Synchronize DPTC comparator value registers to new table row */
static void update_dptc_counts(void)
{
const struct dptc_dcvr_table_entry * const entry =
&dptc_dcvr_table[dvfs_level][dptc_wp];
CCM_DCVR0 = entry->dcvr0;
CCM_DCVR1 = entry->dcvr1;
CCM_DCVR2 = entry->dcvr2;
CCM_DCVR3 = entry->dcvr3;
}
/* Enable DPTC and unmask interrupt. */
static void enable_dptc(void)
{
/* Enable DPTC, assert voltage change request. */
CCM_PMCR0 = (CCM_PMCR0 & ~CCM_PMCR0_PTVAIM) | CCM_PMCR0_DPTEN |
CCM_PMCR0_DPVCR;
udelay(2);
/* Now set that voltage is valid */
CCM_PMCR0 |= CCM_PMCR0_DPVV;
}
static uint32_t check_regulator_setting(uint32_t setting)
{
/* Simply a safety check *in case* table gets scrambled */
if (setting < VOLTAGE_SETTING_MIN)
setting = VOLTAGE_SETTING_MIN;
else if (setting > VOLTAGE_SETTING_MAX)
setting = VOLTAGE_SETTING_MAX;
return setting;
}
/** DVFS **/
#define DVFS_TVWAIT 100 /* Voltage ramp wait time */
static bool dvfs_running = false; /* Has driver enabled DVFS? */
/* Request tracking since boot */
unsigned int dvfs_nr_dn = 0;
unsigned int dvfs_nr_up = 0;
unsigned int dvfs_nr_pnc = 0;
unsigned int dvfs_nr_no = 0;
/* Wait for the UPDTEN flag to be set so that all bits may be written */
static inline void updten_wait(void)
{
while (!(CCM_PMCR0 & CCM_PMCR0_UPDTEN));
}
/* Do the actual frequency and DVFS pin change - always call with IRQ masked */
static void do_dvfs_update(unsigned long pmcr0, unsigned int level)
{
const struct dvfs_clock_table_entry *setting = &dvfs_clock_table[level];
if (pmcr0 & CCM_PMCR0_DPTEN)
{
/* Ignore voltage change request from DPTC. Voltage is *not* valid. */
pmcr0 &= ~CCM_PMCR0_DPVCR;
/* Mask DPTC interrupt for when called in thread context */
pmcr0 |= CCM_PMCR0_PTVAIM;
}
pmcr0 &= ~CCM_PMCR0_VSCNT;
if (level < ((pmcr0 & CCM_PMCR0_DVSUP) >> CCM_PMCR0_DVSUP_POS))
{
pmcr0 |= CCM_PMCR0_UDSC; /* Up scaling, increase */
pmcr0 |= setting->vscnt << CCM_PMCR0_VSCNT_POS;
}
else
{
pmcr0 &= ~CCM_PMCR0_UDSC; /* Down scaling, decrease */
pmcr0 |= 0x1 << CCM_PMCR0_VSCNT_POS;
}
/* DVSUP (new frequency index) setup */
pmcr0 = (pmcr0 & ~CCM_PMCR0_DVSUP) | (level << CCM_PMCR0_DVSUP_POS);
/* Save new level */
dvfs_level = level;
if ((setting->pll_num << CCM_PMCR0_DFSUP_MCUPLL_POS) ^
(pmcr0 & CCM_PMCR0_DFSUP_MCUPLL))
{
/* Update pll and post-dividers. */
pmcr0 ^= CCM_PMCR0_DFSUP_MCUPLL;
pmcr0 &= ~CCM_PMCR0_DFSUP_POST_DIVIDERS;
}
else
{
/* Post-dividers update only */
pmcr0 |= CCM_PMCR0_DFSUP_POST_DIVIDERS;
}
CCM_PMCR0 = pmcr0;
/* dvfs_int_voltage_wait_complete must be call to complete this; how that
is accomplished depends upon whether this was an interrupt with DVFS
enabled or a manual setting of the CPU frequency */
}
/* Perform final DVFS frequency change steps after voltage ramp wait */
static void dvfs_int_voltage_wait_complete(void)
{
const struct dvfs_clock_table_entry *setting =
&dvfs_clock_table[dvfs_level];
unsigned long pmcr0 = CCM_PMCR0;
CCM_PDR0 = setting->pdr_val;
if (!(pmcr0 & CCM_PMCR0_DFSUP_POST_DIVIDERS))
{
/* Update the PLL settings */
if (pmcr0 & CCM_PMCR0_DFSUP_MCUPLL)
CCM_MPCTL = setting->pll_val;
else
CCM_SPCTL = setting->pll_val;
}
cpu_frequency = ccm_get_mcu_clk();
if (dvfs_running)
CCM_PMCR0 &= ~CCM_PMCR0_FSVAIM;
if (pmcr0 & CCM_PMCR0_DPTEN)
{
update_dptc_counts();
enable_dptc();
}
}
/* Start DVFS, change the set point and stop it */
static void set_current_dvfs_level(unsigned int level)
{
/* Have to wait at least 3 div3 clocks before enabling after being
* stopped before calling. */
updten_wait();
int oldlevel = disable_irq_save();
CCM_PMCR0 |= CCM_PMCR0_DVFEN;
do_dvfs_update(CCM_PMCR0, level);
restore_irq(oldlevel);
udelay(DVFS_TVWAIT);
oldlevel = disable_irq_save();
dvfs_int_voltage_wait_complete();
restore_irq(oldlevel);
updten_wait();
bitclr32(&CCM_PMCR0, CCM_PMCR0_DVFEN);
}
/* Interrupt handler for DVFS */
static void dvfs_int(void)
{
unsigned long pmcr0 = CCM_PMCR0;
unsigned long fsvai = pmcr0 & CCM_PMCR0_FSVAI;
unsigned int level = (pmcr0 & CCM_PMCR0_DVSUP) >> CCM_PMCR0_DVSUP_POS;
if (pmcr0 & CCM_PMCR0_FSVAIM)
return; /* Do nothing. DVFS interrupt is masked. */
if (!(pmcr0 & CCM_PMCR0_UPDTEN))
return; /* Do nothing. DVFS didn't finish previous flow update. */
switch (fsvai)
{
case CCM_PMCR0_FSVAI_DECREASE:
if (level >= DVFS_NUM_LEVELS - 1)
return; /* DVFS already at lowest level */
/* Upon the DECREASE event, the frequency will be changed to the next
* higher state index. */
while (((1u << ++level) & DVFS_LEVEL_MASK) == 0);
dvfs_nr_dn++;
break;
/* Single-step frequency increase */
case CCM_PMCR0_FSVAI_INCREASE:
if (level == 0)
return; /* DVFS already at highest level */
/* Upon the INCREASE event, the frequency will be changed to the next
* lower state index. */
while (((1u << --level) & DVFS_LEVEL_MASK) == 0);
dvfs_nr_up++;
break;
/* Right to highest if panic */
case CCM_PMCR0_FSVAI_INCREASE_NOW:
if (level == 0)
return; /* DVFS already at highest level */
/* Upon the INCREASE_NOW event, the frequency will be increased to
* the maximum (index 0). */
level = 0;
dvfs_nr_pnc++;
break;
case CCM_PMCR0_FSVAI_NO_INT:
dvfs_nr_no++;
return; /* Do nothing. Freq change is not required */
} /* end switch */
/* Mask DVFS interrupt until voltage wait is complete */
pmcr0 |= CCM_PMCR0_FSVAIM;
do_dvfs_update(pmcr0, level);
/* Complete this in a few microseconds from now */
uevent(DVFS_TVWAIT, dvfs_int_voltage_wait_complete);
}
/* Interrupt vector for DVFS */
static __attribute__((interrupt("IRQ"))) void CCM_DVFS_HANDLER(void)
{
dvfs_int();
}
/* Initialize the DVFS hardware */
static void INIT_ATTR dvfs_init(void)
{
/* Combine SW1A and SW1B DVS pins for a possible five DVS levels
* per working point. Four, MAXIMUM, are actually used, one for each
* frequency. */
mc13783_set(MC13783_ARBITRATION_SWITCHERS, MC13783_SW1ABDVS);
/* Set DVS speed to 25mV every 4us. */
mc13783_write_masked(MC13783_SWITCHERS4, MC13783_SW1ADVSSPEED_4US,
MC13783_SW1ADVSSPEED);
/* Set DVFS pins to functional outputs. Input mode and pad setting is
* fixed in hardware. */
iomuxc_set_pin_mux(IOMUXC_DVFS0,
IOMUXC_MUX_OUT_FUNCTIONAL | IOMUXC_MUX_IN_NONE);
iomuxc_set_pin_mux(IOMUXC_DVFS1,
IOMUXC_MUX_OUT_FUNCTIONAL | IOMUXC_MUX_IN_NONE);
#ifndef DVFS_NO_PWRRDY
/* Configure PWRRDY signal pin. */
bitclr32(&GPIO1_GDIR, (1 << 5));
iomuxc_set_pin_mux(IOMUXC_GPIO1_5,
IOMUXC_MUX_OUT_FUNCTIONAL | IOMUXC_MUX_IN_FUNCTIONAL);
#endif
/* GP load bits disabled */
bitclr32(&CCM_PMCR1, 0xf);
/* Initialize DVFS signal weights and detection modes. */
int i;
for (i = 0; i < 16; i++)
{
dvfs_set_lt_weight(i, lt_signals[i].weight);
dvfs_set_lt_detect(i, lt_signals[i].detect);
}
/* Set up LTR0. */
bitmod32(&CCM_LTR0,
DVFS_UPTHR << CCM_LTR0_UPTHR_POS |
DVFS_DNTHR << CCM_LTR0_DNTHR_POS |
DVFS_DIV3CK << CCM_LTR0_DIV3CK_POS,
CCM_LTR0_UPTHR | CCM_LTR0_DNTHR | CCM_LTR0_DIV3CK);
/* Set up LTR1. */
bitmod32(&CCM_LTR1,
DVFS_DNCNT << CCM_LTR1_DNCNT_POS |
DVFS_UPCNT << CCM_LTR1_UPCNT_POS |
DVFS_PNCTHR << CCM_LTR1_PNCTHR_POS |
CCM_LTR1_LTBRSR,
CCM_LTR1_DNCNT | CCM_LTR1_UPCNT |
CCM_LTR1_PNCTHR | CCM_LTR1_LTBRSR);
/* Set up LTR2-- EMA configuration. */
bitmod32(&CCM_LTR2, DVFS_EMAC << CCM_LTR2_EMAC_POS, CCM_LTR2_EMAC);
/* DVFS interrupt goes to MCU. Mask load buffer full interrupt. Do not
* always give an event. */
bitmod32(&CCM_PMCR0, CCM_PMCR0_DVFIS | CCM_PMCR0_LBMI,
CCM_PMCR0_DVFIS | CCM_PMCR0_LBMI | CCM_PMCR0_DVFEV);
/* Initialize current core PLL and dividers for default level. Assumes
* clocking scheme has been set up appropriately in other init code. */
ccm_set_mcupll_and_pdr(dvfs_clock_table[DVFS_LEVEL_DEFAULT].pll_val,
dvfs_clock_table[DVFS_LEVEL_DEFAULT].pdr_val);
/* Set initial level and working point. */
udelay(1500);
set_current_dvfs_level(DVFS_LEVEL_DEFAULT);
logf("DVFS: Initialized");
}
/** DPTC **/
/* Request tracking since boot */
static bool dptc_running = false; /* Has driver enabled DPTC? */
unsigned int dptc_nr_dn = 0;
unsigned int dptc_nr_up = 0;
unsigned int dptc_nr_pnc = 0;
unsigned int dptc_nr_no = 0;
struct dptc_async_buf
{
struct spi_transfer_desc xfer; /* transfer descriptor */
unsigned int wp; /* new working point */
uint32_t buf[2]; /* buffer for async write */
};
static struct dptc_async_buf dptc_async_buf; /* ISR async write buffer */
static const unsigned char dptc_pmic_regs[2] = /* Register subaddresses */
{ MC13783_SWITCHERS0, MC13783_SWITCHERS1 };
static uint32_t dptc_reg_shadows[2]; /* shadow regs */
/* Called (in SPI INT context) after asynchronous PMIC write is completed */
static void dptc_transfer_done_callback(struct spi_transfer_desc *xfer)
{
if (xfer->count != 0)
return;
/* Save new working point */
dptc_wp = ((struct dptc_async_buf *)xfer)->wp;
update_dptc_counts();
if (dptc_running)
enable_dptc();
}
/* Handle the DPTC interrupt and sometimes the manual setting - always call
* with IRQ masked. */
static void dptc_int(unsigned long pmcr0, int wp, struct dptc_async_buf *abuf)
{
const union dvfs_dptc_voltage_table_entry *entry;
uint32_t sw1a, sw1advs, sw1bdvs, sw1bstby;
uint32_t switchers0, switchers1;
/* Mask DPTC interrupt and disable DPTC until the change request is
* serviced. */
CCM_PMCR0 = (pmcr0 & ~CCM_PMCR0_DPTEN) | CCM_PMCR0_PTVAIM;
switch (pmcr0 & CCM_PMCR0_PTVAI)
{
case CCM_PMCR0_PTVAI_DECREASE:
/* Decrease voltage request - increment working point */
wp++;
dptc_nr_dn++;
break;
case CCM_PMCR0_PTVAI_INCREASE:
/* Increase voltage request - decrement working point */
wp--;
dptc_nr_up++;
break;
case CCM_PMCR0_PTVAI_INCREASE_NOW:
/* Panic request - move immediately to panic working point if
* decrement results in greater working point than DPTC_WP_PANIC. */
if (--wp > DPTC_WP_PANIC)
wp = DPTC_WP_PANIC;
dptc_nr_pnc++;
break;
case CCM_PMCR0_PTVAI_NO_INT:
/* Just maintain at global level */
if (abuf == &dptc_async_buf)
dptc_nr_no++;
break;
}
/* Keep result in range */
if (wp < 0)
wp = 0;
else if (wp >= DPTC_NUM_WP)
wp = DPTC_NUM_WP - 1;
/* Get new regulator register settings, sanity check them and write them
* in the background. */
entry = &dvfs_dptc_voltage_table[wp];
sw1a = check_regulator_setting(entry->sw1a);
sw1advs = check_regulator_setting(entry->sw1advs);
sw1bdvs = check_regulator_setting(entry->sw1bdvs);
sw1bstby = check_regulator_setting(entry->sw1bstby);
switchers0 = dptc_reg_shadows[0] & ~(MC13783_SW1A | MC13783_SW1ADVS);
abuf->buf[0] = switchers0 |
sw1a << MC13783_SW1A_POS | /* SW1A */
sw1advs << MC13783_SW1ADVS_POS; /* SW1ADVS */
switchers1 = dptc_reg_shadows[1] & ~(MC13783_SW1BDVS | MC13783_SW1BSTBY);
abuf->buf[1] = switchers1 |
sw1bdvs << MC13783_SW1BDVS_POS | /* SW1BDVS */
sw1bstby << MC13783_SW1BSTBY_POS; /* SW1BSTBY */
abuf->wp = wp; /* Save new for xfer completion handler */
mc13783_write_async(&abuf->xfer, dptc_pmic_regs, abuf->buf, 2,
dptc_transfer_done_callback);
}
/* Handle setting the working point explicitly - always call with IRQ
* masked */
static void dptc_new_wp(unsigned int wp)
{
struct dptc_async_buf buf;
/* "NO_INT" so the working point isn't incremented, just set. */
dptc_int(CCM_PMCR0 & ~CCM_PMCR0_PTVAI, wp, &buf);
/* Wait for PMIC write */
while (!spi_transfer_complete(&buf.xfer))
{
enable_irq();
nop; nop; nop; nop; nop;
disable_irq();
}
}
/* Interrupt vector for DPTC */
static __attribute__((interrupt("IRQ"))) void CCM_CLK_HANDLER(void)
{
dptc_int(CCM_PMCR0, dptc_wp, &dptc_async_buf);
}
/* Initialize the DPTC hardware */
static void INIT_ATTR dptc_init(void)
{
int oldlevel;
/* Shadow the regulator registers */
mc13783_read_regs(dptc_pmic_regs, dptc_reg_shadows, 2);
/* Set default, safe working point. */
oldlevel = disable_irq_save();
dptc_new_wp(DPTC_WP_DEFAULT);
restore_irq(oldlevel);
/* Interrupt goes to MCU, specified reference circuits enabled when
* DPTC is active, DPTC counting range = 256 system clocks */
bitmod32(&CCM_PMCR0,
CCM_PMCR0_PTVIS | DPTC_DRCE_MASK,
CCM_PMCR0_PTVIS | CCM_PMCR0_DCR |
CCM_PMCR0_DRCE0 | CCM_PMCR0_DRCE1 |
CCM_PMCR0_DRCE2 | CCM_PMCR0_DRCE3);
logf("DPTC: Initialized");
}
/** Main module interface **/
/** DVFS+DPTC **/
/* Initialize DVFS and DPTC */
void INIT_ATTR dvfs_dptc_init(void)
{
/* DVFS or DPTC on for some reason? Force off. */
bitmod32(&CCM_PMCR0,
CCM_PMCR0_FSVAIM | CCM_PMCR0_LBMI |
CCM_PMCR0_PTVAIM,
CCM_PMCR0_FSVAIM | CCM_PMCR0_LBMI | CCM_PMCR0_DVFEN |
CCM_PMCR0_PTVAIM | CCM_PMCR0_DPTEN);
/* Ensure correct order - after this, the two appear independent */
dptc_init();
dvfs_init();
}
/* Obtain the current core voltage setting, in millivolts 8-) */
unsigned int dvfs_dptc_get_voltage(void)
{
unsigned int v;
int oldlevel = disable_irq_save();
v = dvfs_dptc_voltage_table[dptc_wp].sw[dvfs_level];
restore_irq(oldlevel);
/* 25mV steps from 0.900V to 1.675V */
return v * 25 + 900;
}
/** DVFS **/
/* Start the DVFS hardware */
void dvfs_start(void)
{
if (dvfs_running)
return;
/* Have to wait at least 3 div3 clocks before enabling after being
* stopped. */
udelay(1500);
/* Unmask DVFS interrupt source and enable DVFS. */
bitmod32(&CCM_PMCR0, CCM_PMCR0_DVFEN,
CCM_PMCR0_FSVAIM | CCM_PMCR0_DVFEN);
dvfs_running = true;
avic_enable_int(INT_CCM_DVFS, INT_TYPE_IRQ, INT_PRIO_DVFS,
CCM_DVFS_HANDLER);
logf("DVFS: started");
}
/* Stop the DVFS hardware and return to default frequency */
void dvfs_stop(void)
{
if (!dvfs_running)
return;
uevent_cancel();
/* Mask DVFS interrupts. */
avic_disable_int(INT_CCM_DVFS);
bitset32(&CCM_PMCR0, CCM_PMCR0_FSVAIM | CCM_PMCR0_LBMI);
dvfs_running = false;
/* Set default frequency level */
set_current_dvfs_level(DVFS_LEVEL_DEFAULT);
logf("DVFS: stopped");
}
/* Is DVFS enabled? */
bool dvfs_enabled(void)
{
return dvfs_running;
}
/* If DVFS is disabled, set the level explicitly */
void dvfs_set_level(unsigned int level)
{
if (dvfs_running ||
level >= DVFS_NUM_LEVELS ||
!((1 << level) & DVFS_LEVEL_MASK) ||
level == ((CCM_PMCR0 & CCM_PMCR0_DVSUP) >> CCM_PMCR0_DVSUP_POS))
return;
udelay(1500);
set_current_dvfs_level(level);
}
/* Get the current DVFS level */
unsigned int dvfs_get_level(void)
{
return dvfs_level;
}
/* Get bitmask of levels supported */
unsigned int dvfs_level_mask(void)
{
return DVFS_LEVEL_MASK;
}
/* Mask the DVFS interrupt without affecting running status */
void dvfs_int_mask(bool mask)
{
if (mask)
{
/* Just disable, not running = already disabled */
avic_mask_int(INT_CCM_DVFS);
}
else if (dvfs_running)
{
/* DVFS is running; unmask it */
avic_unmask_int(INT_CCM_DVFS);
}
}
/* Set a signal load tracking weight */
void dvfs_set_lt_weight(enum DVFS_LT_SIGS index, unsigned long value)
{
volatile unsigned long *reg_p = &CCM_LTR2;
unsigned int shift = 3 * index;
if (index < 9)
{
reg_p = &CCM_LTR3;
shift += 5; /* Bits 7:5, 10:8 ... 31:29 */
}
else if (index < 16)
{
shift -= 16; /* Bits 13:11, 16:14 ... 31:29 */
}
bitmod32(reg_p, value << shift, 0x7 << shift);
}
/* Return a signal load tracking weight */
unsigned long dvfs_get_lt_weight(enum DVFS_LT_SIGS index)
{
volatile unsigned long *reg_p = &CCM_LTR2;
unsigned int shift = 3 * index;
if (index < 9)
{
reg_p = &CCM_LTR3;
shift += 5; /* Bits 7:5, 10:8 ... 31:29 */
}
else if (index < 16)
{
shift -= 16; /* Bits 13:11, 16:14 ... 31:29 */
}
return (*reg_p & (0x7 << shift)) >> shift;
}
/* Set a signal load detection mode */
void dvfs_set_lt_detect(enum DVFS_LT_SIGS index, bool edge)
{
unsigned long bit = 0;
if ((unsigned)index < 13)
bit = 1ul << (index + 3);
else if ((unsigned)index < 16)
bit = 1ul << (index + 29);
bitmod32(&CCM_LTR0, edge ? bit : 0, bit);
}
/* Returns a signal load detection mode */
bool dvfs_get_lt_detect(enum DVFS_LT_SIGS index)
{
unsigned int shift = 32;
if ((unsigned)index < 13)
shift = index + 3;
else if ((unsigned)index < 16)
shift = index + 29;
return !!((CCM_LTR0 & (1ul << shift)) >> shift);
}
/* Set/clear the general-purpose load tracking bit */
void dvfs_set_gp_bit(enum DVFS_DVGPS dvgp, bool assert)
{
if ((unsigned)dvgp <= 3)
{
unsigned long bit = 1ul << dvgp;
bitmod32(&CCM_PMCR1, assert ? bit : 0, bit);
}
}
/* Return the general-purpose load tracking bit */
bool dvfs_get_gp_bit(enum DVFS_DVGPS dvgp)
{
if ((unsigned)dvgp <= 3)
return (CCM_PMCR1 & (1ul << dvgp)) != 0;
return false;
}
/* Set GP load tracking by code.
* level_code:
* lt 0 =defaults
* 0 =all off ->
* 28 =highest load
* gte 28=highest load
* detect_mask bits:
* b[3:0]: 1=LTn edge detect, 0=LTn level detect
*/
void dvfs_set_gp_sense(int level_code, unsigned long detect_mask)
{
int i;
for (i = 0; i <= 3; i++)
{
int ltsig_num = DVFS_LT_SIG_DVGP0 + i;
int gpw_num = DVFS_DVGP_0 + i;
unsigned long weight;
bool edge;
bool assert;
if (level_code < 0)
{
/* defaults */
detect_mask = 0;
assert = 0;
weight = lt_signals[ltsig_num].weight;
edge = lt_signals[ltsig_num].detect != 0;
}
else
{
weight = MIN(level_code, 7);
edge = !!(detect_mask & 1);
assert = weight > 0;
detect_mask >>= 1;
level_code -= 7;
if (level_code < 0)
level_code = 0;
}
dvfs_set_lt_weight(ltsig_num, weight); /* set weight */
dvfs_set_lt_detect(ltsig_num, edge); /* set detect mode */
dvfs_set_gp_bit(gpw_num, assert); /* set activity */
}
}
/* Return GP weight settings */
void dvfs_get_gp_sense(int *level_code, unsigned long *detect_mask)
{
int i;
int code = 0;
unsigned long mask = 0;
for (i = DVFS_LT_SIG_DVGP0; i <= DVFS_LT_SIG_DVGP3; i++)
{
code += dvfs_get_lt_weight(i);
mask = (mask << 1) | (dvfs_get_lt_detect(i) ? 1 : 0);
}
if (level_code)
*level_code = code;
if (detect_mask)
*detect_mask = mask;
}
/* Turn the wait-for-interrupt monitoring on or off */
void dvfs_wfi_monitor(bool on)
{
bitmod32(&CCM_PMCR0, on ? 0 : CCM_PMCR0_WFIM, CCM_PMCR0_WFIM);
}
/** DPTC **/
/* Start DPTC module */
void dptc_start(void)
{
int oldlevel;
if (dptc_running)
return;
oldlevel = disable_irq_save();
dptc_running = true;
/* Enable DPTC and unmask interrupt. */
update_dptc_counts();
enable_dptc();
restore_irq(oldlevel);
avic_enable_int(INT_CCM_CLK, INT_TYPE_IRQ, INT_PRIO_DPTC,
CCM_CLK_HANDLER);
logf("DPTC: started");
}
/* Stop the DPTC hardware if running and go back to default working point */
void dptc_stop(void)
{
int oldlevel;
if (!dptc_running)
return;
avic_disable_int(INT_CCM_CLK);
oldlevel = disable_irq_save();
dptc_running = false;
/* Disable DPTC and mask interrupt. */
CCM_PMCR0 = (CCM_PMCR0 & ~CCM_PMCR0_DPTEN) | CCM_PMCR0_PTVAIM;
/* Go back to default working point. */
dptc_new_wp(DPTC_WP_DEFAULT);
restore_irq(oldlevel);
logf("DPTC: stopped");
}
/* Is DPTC enabled? */
bool dptc_enabled(void)
{
return dptc_running;
}
/* If DPTC is not running, set the working point explicitly */
void dptc_set_wp(unsigned int wp)
{
if (!dptc_running && wp < DPTC_NUM_WP)
dptc_new_wp(wp);
}
/* Get the current DPTC working point */
unsigned int dptc_get_wp(void)
{
return dptc_wp;
}