rockbox/firmware/target/arm/as3525/sd-as3525.c
William Wilgus 8794b95a72 Fix As3525 SD unused parameter warning
Change-Id: I0a4bbcf94e9cadf43a822c1cb2f2dad3bd4f7588
2019-12-30 23:41:46 -06:00

1006 lines
30 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2006 Daniel Ankers
* Copyright © 2008-2009 Rafaël Carré
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
/* Driver for the ARM PL180 SD/MMC controller inside AS3525 SoC */
#include "config.h" /* for HAVE_MULTIDRIVE & AMS_OF_SIZE */
#include "fs_defines.h"
#include "led.h"
#include "sdmmc.h"
#include "system.h"
#include "cpu.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "gcc_extensions.h"
#include "as3525.h"
#include "pl180.h" /* SD controller */
#include "pl081.h" /* DMA controller */
#include "dma-target.h" /* DMA request lines */
#include "clock-target.h"
#include "panic.h"
#include "storage.h"
#ifdef HAVE_BUTTON_LIGHT
#include "backlight-target.h"
#endif
/*#define LOGF_ENABLE*/
#include "logf.h"
//#define VERIFY_WRITE 1
/* command flags */
#define MCI_NO_RESP (0<<0)
#define MCI_RESP (1<<0)
#define MCI_LONG_RESP (1<<1)
#define MCI_ACMD (1<<2)
#define MCI_NOCRC (1<<3)
/* ARM PL180 registers */
#define MCI_POWER(i) (*(volatile unsigned char *) (pl180_base[i]+0x00))
#define MCI_CLOCK(i) (*(volatile unsigned long *) (pl180_base[i]+0x04))
#define MCI_ARGUMENT(i) (*(volatile unsigned long *) (pl180_base[i]+0x08))
#define MCI_COMMAND(i) (*(volatile unsigned long *) (pl180_base[i]+0x0C))
#define MCI_RESPCMD(i) (*(volatile unsigned long *) (pl180_base[i]+0x10))
#define MCI_RESP0(i) (*(volatile unsigned long *) (pl180_base[i]+0x14))
#define MCI_RESP1(i) (*(volatile unsigned long *) (pl180_base[i]+0x18))
#define MCI_RESP2(i) (*(volatile unsigned long *) (pl180_base[i]+0x1C))
#define MCI_RESP3(i) (*(volatile unsigned long *) (pl180_base[i]+0x20))
#define MCI_DATA_TIMER(i) (*(volatile unsigned long *) (pl180_base[i]+0x24))
#define MCI_DATA_LENGTH(i) (*(volatile unsigned short*) (pl180_base[i]+0x28))
#define MCI_DATA_CTRL(i) (*(volatile unsigned char *) (pl180_base[i]+0x2C))
#define MCI_DATA_CNT(i) (*(volatile unsigned short*) (pl180_base[i]+0x30))
#define MCI_STATUS(i) (*(volatile unsigned long *) (pl180_base[i]+0x34))
#define MCI_CLEAR(i) (*(volatile unsigned long *) (pl180_base[i]+0x38))
#define MCI_MASK0(i) (*(volatile unsigned long *) (pl180_base[i]+0x3C))
#define MCI_MASK1(i) (*(volatile unsigned long *) (pl180_base[i]+0x40))
#define MCI_SELECT(i) (*(volatile unsigned long *) (pl180_base[i]+0x44))
#define MCI_FIFO_CNT(i) (*(volatile unsigned long *) (pl180_base[i]+0x48))
#define MCI_DATA_ERROR \
( MCI_DATA_CRC_FAIL \
| MCI_DATA_TIMEOUT \
| MCI_TX_UNDERRUN \
| MCI_RX_OVERRUN \
| MCI_START_BIT_ERR)
#define MCI_RESPONSE_ERROR \
( MCI_CMD_TIMEOUT \
| MCI_CMD_CRC_FAIL)
#define MCI_FIFO(i) ((unsigned long *) (pl180_base[i]+0x80))
#define IDE_INTERFACE_CLK (1<<6) /* non AHB interface */
/* volumes */
#define INTERNAL_AS3525 0 /* embedded SD card */
#define SD_SLOT_AS3525 1 /* SD slot if present */
static const int pl180_base[NUM_DRIVES] = {
NAND_FLASH_BASE
#ifdef HAVE_MULTIDRIVE
, SD_MCI_BASE
#endif
};
static int sd_wait_for_tran_state(const int drive);
static int sd_select_bank(signed char bank);
static int sd_init_card(const int drive);
static void init_pl180_controller(const int drive);
#define BLOCKS_PER_BANK 0x7a7800u
static tCardInfo card_info[NUM_DRIVES];
/* maximum timeouts recommended in the SD Specification v2.00 */
/* MCI_DATA_TIMER register data timeout in card bus clock periods */
#define SD_MAX_READ_TIMEOUT ((AS3525_PCLK_FREQ) / 1000 * 100) /* 100 ms */
#define SD_MAX_WRITE_TIMEOUT ((AS3525_PCLK_FREQ) / 1000 * 250) /* 250 ms */
#ifdef CONFIG_STORAGE_MULTI
static int sd_first_drive = 0;
#else
#define sd_first_drive 0
#endif
/* for compatibility */
static long last_disk_activity = -1;
#define MIN_YIELD_PERIOD 5 /* ticks */
static long next_yield = 0;
static struct mutex sd_mtx;
#if defined(HAVE_MULTIDRIVE)
static bool hs_card = false;
#define EXT_SD_BITS (1<<2)
#endif
static struct semaphore transfer_completion_signal;
static volatile unsigned int transfer_error[NUM_DRIVES];
#define PL180_MAX_TRANSFER_ERRORS 10
#define UNALIGNED_NUM_SECTORS 10
static unsigned char aligned_buffer[UNALIGNED_NUM_SECTORS* SD_BLOCK_SIZE] __attribute__((aligned(32))); /* align on cache line size */
static unsigned char *uncached_buffer = AS3525_UNCACHED_ADDR(&aligned_buffer[0]);
static inline void mci_delay(void) { udelay(1000) ; }
static inline bool card_detect_target(void)
{
#if defined(HAVE_MULTIDRIVE)
return !(GPIOA_PIN(2));
#else
return false;
#endif
}
#if defined(HAVE_MULTIDRIVE) || defined(HAVE_HOTSWAP)
static void enable_controller_mci(bool on)
{
#if defined(HAVE_BUTTON_LIGHT) && defined(HAVE_MULTIDRIVE)
extern int buttonlight_is_on;
#endif
#if defined(HAVE_HOTSWAP) && defined (HAVE_ADJUSTABLE_CPU_VOLTAGE)
static bool cpu_boosted = false;
#endif
static bool sd_enabled = true; /* force action on first call in sd_init() */
if (sd_enabled == on)
return; /* nothing to do */
sd_enabled = on;
if(on)
{
#if defined(HAVE_BUTTON_LIGHT) && defined(HAVE_MULTIDRIVE)
/* buttonlight AMSes need a bit of special handling for the buttonlight
* here due to the dual mapping of GPIOD and XPD */
bitmod32(&CCU_IO, 1<<2, 3<<2); /* XPD is SD-MCI interface (b3:2 = 01) */
if (buttonlight_is_on)
GPIOD_DIR &= ~(1<<7);
else
buttonlight_hw_off();
#endif
#if defined(HAVE_HOTSWAP) && defined (HAVE_ADJUSTABLE_CPU_VOLTAGE)
if(card_detect_target()) /* If SD card present Boost cpu for voltage */
{
cpu_boosted = true;
cpu_boost(true);
}
#endif /* defined(HAVE_HOTSWAP) && defined (HAVE_ADJUSTABLE_CPU_VOLTAGE) */
}
else
{
#if defined(HAVE_HOTSWAP) && defined (HAVE_ADJUSTABLE_CPU_VOLTAGE)
if(cpu_boosted)
{
cpu_boost(false);
cpu_boosted = false;
}
#endif /* defined(HAVE_HOTSWAP) && defined (HAVE_ADJUSTABLE_CPU_VOLTAGE) */
#if defined(HAVE_BUTTON_LIGHT) && defined(HAVE_MULTIDRIVE)
bitmod32(&CCU_IO, 0<<2, 3<<2); /* XPD is general purpose IO (b3:2 = 00) */
if (buttonlight_is_on)
buttonlight_hw_on();
#endif
}
}
#endif /* defined(HAVE_MULTIDRIVE) || defined(HAVE_HOTSWAP) */
/* AMS v1 have two different drive interfaces MCI_SD(XPD) and GGU_IDE */
static void enable_controller(bool on, const int drive)
{
if (drive == INTERNAL_AS3525)
{
#ifndef BOOTLOADER
if (on)
{
bitset32(&CGU_PERI, CGU_NAF_CLOCK_ENABLE);
CGU_IDE |= IDE_INTERFACE_CLK; /* interface enable */
}
else
{
CGU_IDE &= ~(IDE_INTERFACE_CLK); /* interface disable */
bitclr32(&CGU_PERI, CGU_NAF_CLOCK_ENABLE);
}
#else
(void) on;
#endif /* ndef BOOTLOADER */
}
#if defined(HAVE_MULTIDRIVE) || defined(HAVE_HOTSWAP)
else
enable_controller_mci(on);
#endif
}
#ifdef HAVE_HOTSWAP
static int sd1_oneshot_callback(struct timeout *tmo)
{
/* This is called only if the state was stable for 300ms - check state
* and post appropriate event. */
queue_broadcast(card_detect_target() ? SYS_HOTSWAP_INSERTED :
SYS_HOTSWAP_EXTRACTED,
sd_first_drive + SD_SLOT_AS3525);
return 0;
(void)tmo;
}
void sd_gpioa_isr(void)
{
static struct timeout sd1_oneshot;
if (GPIOA_MIS & EXT_SD_BITS)
{
timeout_register(&sd1_oneshot, sd1_oneshot_callback, (3*HZ/10), 0);
GPIOA_IC = EXT_SD_BITS; /* acknowledge interrupt */
}
}
#endif /* HAVE_HOTSWAP */
void INT_NAND(void)
{
const int status = MCI_STATUS(INTERNAL_AS3525);
transfer_error[INTERNAL_AS3525] = status & MCI_DATA_ERROR;
semaphore_release(&transfer_completion_signal);
MCI_CLEAR(INTERNAL_AS3525) = status;
}
#ifdef HAVE_MULTIDRIVE
void INT_MCI0(void)
{
const int status = MCI_STATUS(SD_SLOT_AS3525);
transfer_error[SD_SLOT_AS3525] = status & MCI_DATA_ERROR;
semaphore_release(&transfer_completion_signal);
MCI_CLEAR(SD_SLOT_AS3525) = status;
}
#endif
static bool send_cmd(const int drive, const int cmd, const int arg,
const int flags, long *response)
{
int status;
unsigned cmd_retries = 6;
while(cmd_retries--)
{
if ((flags & MCI_ACMD) && /* send SD_APP_CMD before each try */
!send_cmd(drive, SD_APP_CMD, card_info[drive].rca, MCI_RESP, response))
return false;
/* Clear old status flags */
MCI_CLEAR(drive) = 0x7ff;
/* Load command argument or clear if none */
MCI_ARGUMENT(drive) = arg;
/* Construct MCI_COMMAND & enable CPSM */
MCI_COMMAND(drive) =
/*b0:5*/ cmd
/* b6 */| ((flags & (MCI_RESP|MCI_LONG_RESP)) ? MCI_COMMAND_RESPONSE : 0)
/* b7 */| ((flags & MCI_LONG_RESP) ? MCI_COMMAND_LONG_RESPONSE : 0)
/* b8 | MCI_COMMAND_INTERRUPT */
/* b9 | MCI_COMMAND_PENDING */ /*Only used with stream data transfer*/
/* b10*/| MCI_COMMAND_ENABLE; /* Enables CPSM */
/* Wait while cmd completes then disable CPSM */
while(MCI_STATUS(drive) & MCI_CMD_ACTIVE);
MCI_COMMAND(drive) = 0;
status = MCI_STATUS(drive);
/* Handle command responses */
if(flags & MCI_RESP) /* CMD expects response */
{
response[0] = MCI_RESP0(drive); /* Always prepare short response */
if(status & MCI_RESPONSE_ERROR) {/* timeout or crc failure */
if ((status & MCI_CMD_CRC_FAIL) &&
(flags & MCI_NOCRC))
break;
logf("sd cmd error: drive %d cmd %d arg %08x sd_status %08x resp0 %08lx",
drive, cmd, arg, status, response[0]);
continue;
}
if((flags & MCI_RESP) &&
!(flags & MCI_LONG_RESP) &&
(response[0] & SD_R1_CARD_ERROR)) {
logf("sd card error: drive %d cmd %d arg %08x r1 %08lx",
drive, cmd, arg, response[0]);
}
if(status & MCI_CMD_RESP_END) /* Response passed CRC check */
{
if(flags & MCI_LONG_RESP)
{ /* response[0] has already been read */
response[1] = MCI_RESP1(drive);
response[2] = MCI_RESP2(drive);
response[3] = MCI_RESP3(drive);
}
return true;
}
}
else if(status & MCI_CMD_SENT) /* CMD sent, no response required */
return true;
}
return false;
}
/* MCI_CLOCK = MCLK / 2x(ClkDiv[bits 7:0]+1) */
#define MCI_FULLSPEED (MCI_CLOCK_ENABLE | MCI_CLOCK_BYPASS) /* MCLK */
#define MCI_HALFSPEED (MCI_CLOCK_ENABLE) /* MCLK/2 */
#define MCI_QUARTERSPEED (MCI_CLOCK_ENABLE | 1) /* MCLK/4 */
#define MCI_IDENTSPEED (MCI_CLOCK_ENABLE | AS3525_SD_IDENT_DIV) /* IDENT */
static int sd_init_card(const int drive)
{
unsigned long response;
long init_timeout;
bool sd_v2 = false;
card_info[drive].rca = 0;
/* MCLCK on and set to 400kHz ident frequency */
MCI_CLOCK(drive) = MCI_IDENTSPEED;
/* 100 - 400kHz clock required for Identification Mode */
/* Start of Card Identification Mode ************************************/
/* CMD0 Go Idle -- all card functions switch back to default */
if(!send_cmd(drive, SD_GO_IDLE_STATE, 0, MCI_NO_RESP, NULL))
return -1;
mci_delay();
/* CMD8 Check for v2 sd card. Must be sent before using ACMD41
Non v2 cards will not respond to this command*/
if(send_cmd(drive, SD_SEND_IF_COND, 0x1AA, MCI_RESP, &response))
if((response & 0xFFF) == 0x1AA)
sd_v2 = true;
/* timeout for initialization is 1sec, from SD Specification 2.00 */
init_timeout = current_tick + HZ;
do {
/* this timeout is the only valid error for this loop*/
if(TIME_AFTER(current_tick, init_timeout))
return -2;
/* ACMD41 For v2 cards set HCS bit[30] & send host voltage range to all */
send_cmd(drive, SD_APP_OP_COND, (0x00FF8000 | (sd_v2 ? 1<<30 : 0)),
MCI_ACMD|MCI_NOCRC|MCI_RESP, &card_info[drive].ocr);
} while(!(card_info[drive].ocr & (1<<31)));
/* CMD2 send CID */
if(!send_cmd(drive, SD_ALL_SEND_CID, 0, MCI_RESP|MCI_LONG_RESP,
card_info[drive].cid))
return -3;
/* CMD3 send RCA */
if(!send_cmd(drive, SD_SEND_RELATIVE_ADDR, 0, MCI_RESP,
&card_info[drive].rca))
return -4;
/* End of Card Identification Mode ************************************/
#ifdef HAVE_MULTIDRIVE /* The internal SDs are v1 */
/* Try to switch V2 cards to HS timings, non HS seem to ignore this */
if(sd_v2)
{
/* CMD7 w/rca: Select card to put it in TRAN state */
if(!send_cmd(drive, SD_SELECT_CARD, card_info[drive].rca, MCI_RESP, &response))
return -5;
if(sd_wait_for_tran_state(drive))
return -6;
/* CMD6 0xf indicates no influence, [3:0],0x1 - HS Access*/
if(!send_cmd(drive, SD_SWITCH_FUNC, 0x80fffff1, MCI_NO_RESP, NULL))
return -7;
sleep(HZ/10);/* need to wait at least 8 clock periods */
/* go back to STBY state so we can read csd */
/* CMD7 w/rca=0: Deselect card to put it in STBY state */
if(!send_cmd(drive, SD_DESELECT_CARD, 0, MCI_NO_RESP, NULL))
return -8;
mci_delay();
}
#endif /* HAVE_MULTIDRIVE */
/* CMD9 send CSD */
if(!send_cmd(drive, SD_SEND_CSD, card_info[drive].rca,
MCI_RESP|MCI_LONG_RESP, card_info[drive].csd))
return -9;
sd_parse_csd(&card_info[drive]);
#if defined(HAVE_MULTIDRIVE)
hs_card = (card_info[drive].speed == 50000000);
#endif
/* Boost MCICLK to operating speed */
if(drive == INTERNAL_AS3525)
MCI_CLOCK(drive) = MCI_HALFSPEED; /* MCICLK = IDE_CLK/2 = 25 MHz */
#if defined(HAVE_MULTIDRIVE)
else
/* MCICLK = PCLK/2 = 31MHz(HS) or PCLK/4 = 15.5 Mhz (STD)*/
MCI_CLOCK(drive) = (hs_card ? MCI_HALFSPEED : MCI_QUARTERSPEED) |
MCI_CLOCK_POWERSAVE; /* SD supports powersave */
#endif
/* CMD7 w/rca: Select card to put it in TRAN state */
if(!send_cmd(drive, SD_SELECT_CARD, card_info[drive].rca, MCI_RESP, &response))
return -10;
#if 0 /* FIXME : it seems that reading fails on some models */
/* Switch to to 4 bit widebus mode */
if(sd_wait_for_tran_state(drive) < 0)
return -11;
/* ACMD42 */
if(!send_cmd(drive, SD_SET_CLR_CARD_DETECT, 0, MCI_ACMD|MCI_RESP, &response))
return -15;
/* ACMD6 */
if(!send_cmd(drive, SD_SET_BUS_WIDTH, 2, MCI_ACMD|MCI_RESP, &response))
return -13;
/* Now that card is widebus make controller aware */
MCI_CLOCK(drive) |= MCI_CLOCK_WIDEBUS;
#endif
/*
* enable bank switching
* without issuing this command, we only have access to 1/4 of the blocks
* of the first bank (0x1E9E00 blocks, which is the size reported in the
* CSD register)
*/
if(drive == INTERNAL_AS3525)
{
const int ret = sd_select_bank(-1);
if(ret < 0)
return ret -16;
/* CMD7 w/rca = 0: Unselect card to put it in STBY state */
if(!send_cmd(drive, SD_SELECT_CARD, 0, MCI_NO_RESP, NULL))
return -17;
mci_delay();
/* CMD9 send CSD again, so we got the correct number of blocks */
if(!send_cmd(drive, SD_SEND_CSD, card_info[drive].rca,
MCI_RESP|MCI_LONG_RESP, card_info[drive].csd))
return -18;
sd_parse_csd(&card_info[drive]);
/* The OF is stored in the first blocks */
card_info[INTERNAL_AS3525].numblocks -= AMS_OF_SIZE;
/* CMD7 w/rca: Select card to put it in TRAN state */
if(!send_cmd(drive, SD_SELECT_CARD, card_info[drive].rca, MCI_RESP, &response))
return -19;
}
card_info[drive].initialized = 1;
return 0;
}
static void init_pl180_controller(const int drive)
{
MCI_COMMAND(drive) = MCI_DATA_CTRL(drive) = 0;
MCI_CLEAR(drive) = 0x7ff;
MCI_MASK0(drive) = MCI_DATA_ERROR | MCI_DATA_END;
MCI_MASK1(drive) = 0;
#ifdef HAVE_MULTIDRIVE
VIC_INT_ENABLE =
(drive == INTERNAL_AS3525) ? INTERRUPT_NAND : INTERRUPT_MCI0;
/* clear previous irq */
GPIOA_IC = EXT_SD_BITS;
/* enable edge detecting */
GPIOA_IS &= ~EXT_SD_BITS;
/* detect both raising and falling edges */
GPIOA_IBE |= EXT_SD_BITS;
/* enable the card detect interrupt */
GPIOA_IE |= EXT_SD_BITS;
#else
VIC_INT_ENABLE = INTERRUPT_NAND;
#endif
MCI_POWER(drive) = MCI_POWER_UP | (MCI_VDD_3_0); /* OF Setting */
mci_delay();
MCI_POWER(drive) |= MCI_POWER_ON;
mci_delay();
MCI_SELECT(drive) = 0;
/* Pl180 clocks get turned on at start of card init */
}
int sd_init(void)
{
int ret;
CGU_IDE = IDE_INTERFACE_CLK /* enable interface */
| (AS3525_IDE_DIV << 2)
| AS3525_CLK_PLLA; /* clock source = PLLA */
bitset32(&CGU_PERI, CGU_NAF_CLOCK_ENABLE);
#ifdef HAVE_MULTIDRIVE
bitset32(&CGU_PERI, CGU_MCI_CLOCK_ENABLE);
bitmod32(&CCU_IO, 1<<2, 3<<2); /* bits 3:2 = 01, xpd is SD interface */
#endif
semaphore_init(&transfer_completion_signal, 1, 0);
init_pl180_controller(INTERNAL_AS3525);
ret = sd_init_card(INTERNAL_AS3525);
if(ret < 0)
return ret;
#ifdef HAVE_MULTIDRIVE
init_pl180_controller(SD_SLOT_AS3525);
#endif
/* init mutex */
mutex_init(&sd_mtx);
for (int i = 0; i < NUM_DRIVES ; i++)
enable_controller(false, i);
return 0;
}
#ifdef HAVE_HOTSWAP
bool sd_removable(IF_MD_NONVOID(int drive))
{
return (drive == SD_SLOT_AS3525);
}
bool sd_present(IF_MD_NONVOID(int drive))
{
return (drive == INTERNAL_AS3525) ? true : card_detect_target();
}
#endif /* HAVE_HOTSWAP */
static int sd_wait_for_tran_state(const int drive)
{
unsigned long response = 0;
unsigned int timeout = current_tick + 5 * HZ;
while (1)
{
if(!send_cmd(drive, SD_SEND_STATUS, card_info[drive].rca, MCI_RESP,
&response))
return -1;
if (((response >> 9) & 0xf) == SD_TRAN)
return 0;
if(TIME_AFTER(current_tick, timeout))
return -2;
if (TIME_AFTER(current_tick, next_yield))
{
yield();
next_yield = current_tick + MIN_YIELD_PERIOD;
}
}
}
static int sd_select_bank(signed char bank)
{
int ret;
unsigned loops = 0;
memset(uncached_buffer, 0, 512);
if(bank == -1)
{ /* enable bank switching */
uncached_buffer[0] = 16;
uncached_buffer[1] = 1;
uncached_buffer[2] = 10;
}
else
uncached_buffer[0] = bank;
do {
if(loops++ > PL180_MAX_TRANSFER_ERRORS)
panicf("SD bank %d error : 0x%x", bank,
transfer_error[INTERNAL_AS3525]);
ret = sd_wait_for_tran_state(INTERNAL_AS3525);
if (ret < 0)
return ret - 2;
if(!send_cmd(INTERNAL_AS3525, SD_SWITCH_FUNC, 0x80ffffef, MCI_NO_RESP,
NULL))
return -1;
mci_delay();
if(!send_cmd(INTERNAL_AS3525, 35, 0, MCI_NO_RESP, NULL))
return -2;
mci_delay();
dma_retain();
/* we don't use the uncached buffer here, because we need the
* physical memory address for DMA transfers */
dma_enable_channel(1, AS3525_PHYSICAL_ADDR(&aligned_buffer[0]),
MCI_FIFO(INTERNAL_AS3525), DMA_PERI_SD,
DMAC_FLOWCTRL_PERI_MEM_TO_PERI, true, false, 0, DMA_S8, NULL);
MCI_DATA_TIMER(INTERNAL_AS3525) = SD_MAX_WRITE_TIMEOUT;
MCI_DATA_LENGTH(INTERNAL_AS3525) = 512;
MCI_DATA_CTRL(INTERNAL_AS3525) = (1<<0) /* enable */ |
(0<<1) /* transfer direction */ |
(1<<3) /* DMA */ |
(9<<4) /* 2^9 = 512 */ ;
/* Wakeup signal from NAND/MCIO isr on MCI_DATA_ERROR | MCI_DATA_END */
semaphore_wait(&transfer_completion_signal, TIMEOUT_BLOCK);
/* Wait for FIFO to empty, card may still be in PRG state */
while(MCI_STATUS(INTERNAL_AS3525) & MCI_TX_ACTIVE );
dma_release();
} while(transfer_error[INTERNAL_AS3525]);
card_info[INTERNAL_AS3525].current_bank = (bank == -1) ? 0 : bank;
return 0;
}
static int sd_transfer_sectors(IF_MD(int drive,) unsigned long start,
int count, void* buf, const bool write)
{
#ifndef HAVE_MULTIDRIVE
const int drive = 0;
#endif
int ret = 0;
unsigned loops = 0;
unsigned long response;
bool aligned = !((uintptr_t)buf & (CACHEALIGN_SIZE - 1));
enable_controller(true, drive);
led(true);
if (card_info[drive].initialized <= 0)
{
ret = sd_init_card(drive);
if (!(card_info[drive].initialized))
goto sd_transfer_error_nodma;
}
if(count < 0) /* XXX: why is it signed ? */
{
ret = -20;
goto sd_transfer_error_nodma;
}
if((start+count) > card_info[drive].numblocks)
{
ret = -21;
goto sd_transfer_error_nodma;
}
/* skip SanDisk OF */
if (drive == INTERNAL_AS3525)
start += AMS_OF_SIZE;
last_disk_activity = current_tick;
dma_retain();
if(aligned)
{ /* direct transfer, indirect is always uncached */
if(write)
commit_dcache_range(buf, count * SECTOR_SIZE);
else
discard_dcache_range(buf, count * SECTOR_SIZE);
}
const int cmd = write ? SD_WRITE_MULTIPLE_BLOCK : SD_READ_MULTIPLE_BLOCK;
while(count > 0)
{
/* 128 * 512 = 2^16, and doesn't fit in the 16 bits of DATA_LENGTH
* register, so we have to transfer maximum 127 sectors at a time. */
unsigned int transfer = (count >= 128) ? 127 : count; /* sectors */
void *dma_buf;
unsigned long bank_start = start;
/* Only switch banks for internal storage */
if(drive == INTERNAL_AS3525)
{
unsigned int bank = 0;
while(bank_start >= BLOCKS_PER_BANK)
{
bank_start -= BLOCKS_PER_BANK;
bank++;
}
/* Switch bank if needed */
if(card_info[INTERNAL_AS3525].current_bank != bank)
{
ret = sd_select_bank(bank);
if (ret < 0)
{
ret -= 20;
goto sd_transfer_error;
}
}
/* Do not cross a bank boundary in a single transfer loop */
if((transfer + bank_start) > BLOCKS_PER_BANK)
transfer = BLOCKS_PER_BANK - bank_start;
}
/* Set bank_start to the correct unit (blocks or bytes) */
if(!(card_info[drive].ocr & (1<<30))) /* not SDHC */
bank_start *= SD_BLOCK_SIZE;
if(aligned)
{
dma_buf = AS3525_PHYSICAL_ADDR(buf);
}
else
{
dma_buf = AS3525_PHYSICAL_ADDR(&aligned_buffer[0]);
if(transfer > UNALIGNED_NUM_SECTORS)
transfer = UNALIGNED_NUM_SECTORS;
if(write)
memcpy(uncached_buffer, buf, transfer * SD_BLOCK_SIZE);
}
ret = sd_wait_for_tran_state(drive);
if (ret < 0)
{
ret -= 2*20;
goto sd_transfer_error;
}
if(!send_cmd(drive, cmd, bank_start, MCI_RESP, &response))
{
ret -= 3*20;
goto sd_transfer_error;
}
if(write)
{
dma_enable_channel(1, dma_buf, MCI_FIFO(drive),
(drive == INTERNAL_AS3525) ? DMA_PERI_SD : DMA_PERI_SD_SLOT,
DMAC_FLOWCTRL_PERI_MEM_TO_PERI, true, false, 0, DMA_S8, NULL);
/*Small delay for writes prevents data crc failures at lower freqs*/
#ifdef HAVE_MULTIDRIVE
if((drive == SD_SLOT_AS3525) && !hs_card)
udelay(4);
#endif
}
else
dma_enable_channel(1, MCI_FIFO(drive), dma_buf,
(drive == INTERNAL_AS3525) ? DMA_PERI_SD : DMA_PERI_SD_SLOT,
DMAC_FLOWCTRL_PERI_PERI_TO_MEM, false, true, 0, DMA_S8, NULL);
MCI_DATA_TIMER(drive) = write ?
SD_MAX_WRITE_TIMEOUT : SD_MAX_READ_TIMEOUT;
MCI_DATA_LENGTH(drive) = transfer * SD_BLOCK_SIZE;
MCI_DATA_CTRL(drive) = (1<<0) /* enable */ |
(!write<<1) /* transfer direction */ |
(1<<3) /* DMA */ |
(9<<4) /* 2^9 = 512 */ ;
/* Wakeup signal from NAND/MCIO isr on MCI_DATA_ERROR | MCI_DATA_END */
semaphore_wait(&transfer_completion_signal, TIMEOUT_BLOCK);
/* Wait for FIFO to empty, card may still be in PRG state for writes */
while(MCI_STATUS(drive) & MCI_TX_ACTIVE);
/*
* If the write aborted early due to a tx underrun, disable the
* dma channel here, otherwise there are still 4 words in the fifo
* and the retried write will get corrupted.
*/
dma_disable_channel(1);
last_disk_activity = current_tick;
if(!send_cmd(drive, SD_STOP_TRANSMISSION, 0, MCI_RESP, &response))
{
ret = -4*20;
goto sd_transfer_error;
}
if(!transfer_error[drive])
{
if(!write && !aligned)
memcpy(buf, uncached_buffer, transfer * SD_BLOCK_SIZE);
buf += transfer * SD_BLOCK_SIZE;
start += transfer;
count -= transfer;
loops = 0; /* reset errors counter */
}
else if(loops++ > PL180_MAX_TRANSFER_ERRORS)
panicf("SD Xfer %s err:0x%x Disk%d", (write? "write": "read"),
transfer_error[drive], drive);
}
sd_transfer_error:
dma_release();
sd_transfer_error_nodma:
led(false);
enable_controller(false, drive);
if (ret) /* error */
card_info[drive].initialized = 0;
return ret;
}
int sd_read_sectors(IF_MD(int drive,) unsigned long start, int count,
void* buf)
{
int ret;
mutex_lock(&sd_mtx);
ret = sd_transfer_sectors(IF_MD(drive,) start, count, buf, false);
mutex_unlock(&sd_mtx);
return ret;
}
int sd_write_sectors(IF_MD(int drive,) unsigned long start, int count,
const void* buf)
{
#ifdef VERIFY_WRITE
unsigned long saved_start = start;
int saved_count = count;
void *saved_buf = (void*)buf;
#endif
int ret;
mutex_lock(&sd_mtx);
ret = sd_transfer_sectors(IF_MD(drive,) start, count, (void*)buf, true);
#ifdef VERIFY_WRITE
if (ret) {
/* write failed, no point in verifying */
mutex_unlock(&sd_mtx);
return ret;
}
count = saved_count;
buf = saved_buf;
start = saved_start;
while (count) {
int transfer = count;
if(transfer > UNALIGNED_NUM_SECTORS)
transfer = UNALIGNED_NUM_SECTORS;
sd_transfer_sectors(IF_MD(drive,) start, transfer, aligned_buffer, false);
if (memcmp(buf, aligned_buffer, transfer * 512) != 0) {
/* try the write again in the hope to repair the damage */
sd_transfer_sectors(IF_MD(drive,) saved_start, saved_count, saved_buf, true);
panicf("sd: verify failed: sec=%ld n=%d!", start, transfer);
}
buf += transfer * 512;
count -= transfer;
start += transfer;
}
#endif
mutex_unlock(&sd_mtx);
return ret;
}
long sd_last_disk_activity(void)
{
return last_disk_activity;
}
tCardInfo *card_get_info_target(int card_no)
{
return &card_info[card_no];
}
#ifdef CONFIG_STORAGE_MULTI
int sd_num_drives(int first_drive)
{
sd_first_drive = first_drive;
return NUM_DRIVES;
}
#endif /* CONFIG_STORAGE_MULTI */
void ams_sd_get_debug_info(struct ams_sd_debug_info *info)
{
#define MCI_NAND *((volatile unsigned long *)(NAND_FLASH_BASE + 0x04))
#define MCI_SD *((volatile unsigned long *)(SD_MCI_BASE + 0x04))
mutex_lock(&sd_mtx);
for (int i = 0; i < NUM_DRIVES ; i++)
enable_controller(true, i); /* must be on to read regs */
info->mci_nand = MCI_NAND;
#ifdef HAVE_MULTIDRIVE
info->mci_sd = MCI_SD;
#endif
for (int i = 0; i < NUM_DRIVES ; i++)
enable_controller(false, i);
mutex_unlock(&sd_mtx);
}
int sd_event(long id, intptr_t data)
{
int rc = 0;
switch (id)
{
#ifdef HAVE_HOTSWAP
case SYS_HOTSWAP_INSERTED:
case SYS_HOTSWAP_EXTRACTED:
mutex_lock(&sd_mtx); /* lock-out card activity */
/* Force card init for new card, re-init for re-inserted one or
* clear if the last attempt to init failed with an error. */
card_info[data].initialized = 0;
if (id == SYS_HOTSWAP_INSERTED)
{
enable_controller(true, data);
init_pl180_controller(data);
rc = sd_init_card(data);
enable_controller(false, data);
}
mutex_unlock(&sd_mtx);
break;
#endif /* HAVE_HOTSWAP */
case Q_STORAGE_TICK:
/* never let a timer wrap confuse us */
next_yield = current_tick;
default:
rc = storage_event_default_handler(id, data, last_disk_activity,
STORAGE_SD);
break;
}
return rc;
}