Last commit was just a test to see if it work this one cleans it up
a bit and should be a bit faster
Change-Id: Ifdff5c5b78bcc6889506de607193246beccdde6b
Some devices(1-bit / 2-bit displays) have packed bit formats that
need to be unpacked in order to work on them at a pixel level.
This caused a few issues on 1 & 2-bit devices:
Greatly Oversized data arrays for bitmaps
Improper handling of native image data
Framebuffer data was near unusable without jumping through hoops
Conversion between native addressing and per pixel addressing
incurs extra overhead but it is much faster to do it
on the 'C' side rather than in lua.
Not to mention the advantage of a unified interface for the end programer
-------------------------------------------------------------------
Adds a sane way to access each pixel of image data
Adds:
--------------------------------------------------------------------
img:clear([color],[x1],[y1],[x2],[y2])
(set whole image or a portion to a particular value)
--------------------------------------------------------------------
img:invert([x1],[y1],[x2],[y2])
(inverts whole image or a portion)
--------------------------------------------------------------------
img:marshal([x1],[y1],[x2],[y2],[funct])
(calls funct for each point defined by rect of x1,y1 x2,y2
returns value and allows setting value of each point return
nil to terminate early)
--------------------------------------------------------------------
img:points([x1],[y1],[x2],[y2],[dx],[dy])
(returns iterator function that steps delta-x and delta-y pixels each call
returns value of pixel each call but doesn't allow setting to a new value
compare to lua pairs method)
--------------------------------------------------------------------
img:copy(src,[x1],[y1],[x2],[y2],[w],[h],[clip][operation][clr/funct])
(copies all or part of an image -- straight copy or special ops
optionally calls funct for each point defined by rect of
x1, y1, w, h and x2, y2, w, h for dest and src images
returns value of dst and src and allows setting value of
each point return nil to terminate early)
--------------------------------------------------------------------
img:line(x1, y1, x2, y2, color)
--------------------------------------------------------------------
img:ellipse(x1, y1, x2, y2, color, [fillcolor]
--------------------------------------------------------------------
Fixed handling of 2-bit vertical integrated screens
Added direct element access for saving / restoring native image etc.
Added more data to tostring() handler and a way to access individual items
Added equals method to see if two variables reference the same image address
(doesn't check if two separate images contain the same 'picture')
Optimized get and set routines
Fixed out of bound x coord access shifting to next line
Added lua include files to expose new functionality
Finished image saving routine
Static allocation of set_viewport struct faster + saves ram over dynamic
Cleaned up code
Fixed pixel get/set for 1/2 bit devices
Fixed handling for 24-bit devices (32?)
-------------------------------------------------------------------------
Example lua script to follow on forums
-------------------------------------------------------------------------
Change-Id: I8a9ff0ff72aacf4b1662767ccb2b312fc355239c
Some devices(1-bit / 2-bit displays) have packed bit formats that
need to be unpacked in order to work on them at a pixel level.
This caused a few issues on 1 & 2-bit devices:
Greatly Oversized data arrays for bitmaps
Improper handling of native image data
Framebuffer data was near unusable without jumping through hoops
Conversion between native addressing and per pixel addressing
incurs extra overhead but it is much faster to do it
on the 'C' side rather than in lua.
Not to mention the advantage of a unified interface for the end programer
-------------------------------------------------------------------
Adds a sane way to access each pixel of image data
Adds:
--------------------------------------------------------------------
img:clear([color],[x1],[y1],[x2],[y2])
(set whole image or a portion to a particular value)
--------------------------------------------------------------------
img:invert([x1],[y1],[x2],[y2])
(inverts whole image or a portion)
--------------------------------------------------------------------
img:marshal([x1],[y1],[x2],[y2],[funct])
(calls funct for each point defined by rect of x1,y1 x2,y2
returns value and allows setting value of each point return
nil to terminate early)
--------------------------------------------------------------------
img:points([x1],[y1],[x2],[y2],[dx],[dy])
(returns iterator function that steps delta-x and delta-y pixels each call
returns value of pixel each call but doesn't allow setting to a new value
compare to lua pairs method)
--------------------------------------------------------------------
img:copy(src,[x1],[y1],[x2],[y2],[w],[h],[clip][operation][clr/funct])
(copies all or part of an image -- straight copy or special ops
optionally calls funct for each point defined by rect of
x1, y1, w, h and x2, y2, w, h for dest and src images
returns value of dst and src and allows setting value of
each point return nil to terminate early)
--------------------------------------------------------------------
img:line(x1, y1, x2, y2, color)
--------------------------------------------------------------------
img:ellipse(x1, y1, x2, y2, color, [fillcolor]
--------------------------------------------------------------------
Fixed handling of 2-bit vertical integrated screens
Added direct element access for saving / restoring native image etc.
Added more data to tostring() handler and a way to access individual items
Added equals method to see if two variables reference the same image address
(doesn't check if two separate images contain the same 'picture')
Optimized get and set routines
Fixed out of bound x coord access shifting to next line
Added lua include files to expose new functionality
Finished image saving routine
Static allocation of set_viewport struct faster + saves ram over dynamic
Cleaned up code
Fixed pixel get/set for 1/2 bit devices
-------------------------------------------------------------------------
Example lua script to follow on forums
-------------------------------------------------------------------------
Change-Id: I7b9c1fd699442fb683760f781021091786c18509
Instead of providing yet another memory allocator implementation
use tlsf and simply link tlsf library.
Another small improvement is to *grow* memory pool by grabbing
audiobuffer instead of just switching to use audiobuf exclusively.
Tested with simple lua 'memory eater' script.
This patch extends tlsf lib slightly. You can provide
void *get_new_area(size_t * size) function which will override
weak dummy implementation provided in lib itself. This allows to
automaticaly initialize memory pool as well as grow memory
pool if needed (for example grab audiobuffer when pluginbuffer
is exhaused).
Change-Id: I841af6b6b5bbbf546c14cbf139a7723fbb982f1b
SIMVER was really only used to detect a simulator build. With APP_TYPE you can
now differentiate between simulator, application, checkwps and database builds.
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@27372 a1c6a512-1295-4272-9138-f99709370657