Implement lcd_blit_yuv() for the 2nd gen Nano, based on the implementation for the iPod Color and 1st gen Nano. mpegplayer now works.
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@22992 a1c6a512-1295-4272-9138-f99709370657
This commit is contained in:
parent
2cf6f85201
commit
ee21a5322e
1 changed files with 150 additions and 22 deletions
|
@ -155,6 +155,14 @@ void lcd_init_device(void)
|
|||
|
||||
/*** Update functions ***/
|
||||
|
||||
static inline void lcd_write_pixel(fb_data pixel)
|
||||
{
|
||||
while (LCD_STATUS & 0x10);
|
||||
LCD_WDATA = (pixel & 0xff00) >> 8;
|
||||
while (LCD_STATUS & 0x10);
|
||||
LCD_WDATA = pixel & 0xff;
|
||||
}
|
||||
|
||||
/* Update the display.
|
||||
This must be called after all other LCD functions that change the display. */
|
||||
void lcd_update(void) ICODE_ATTR;
|
||||
|
@ -162,7 +170,6 @@ void lcd_update(void)
|
|||
{
|
||||
int x,y;
|
||||
fb_data* p = &lcd_framebuffer[0][0];
|
||||
fb_data pixel;
|
||||
|
||||
if (lcd_type==0) {
|
||||
s5l_lcd_write_cmd_data(R_HORIZ_ADDR_START_POS, 0);
|
||||
|
@ -191,12 +198,7 @@ void lcd_update(void)
|
|||
/* Copy display bitmap to hardware */
|
||||
for (y = 0; y < LCD_HEIGHT; y++) {
|
||||
for (x = 0; x < LCD_WIDTH; x++) {
|
||||
pixel = *(p++);
|
||||
|
||||
while (LCD_STATUS & 0x10);
|
||||
LCD_WDATA = (pixel & 0xff00) >> 8;
|
||||
while (LCD_STATUS & 0x10);
|
||||
LCD_WDATA = pixel & 0xff;
|
||||
lcd_write_pixel(*(p++));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -208,7 +210,6 @@ void lcd_update_rect(int x, int y, int width, int height)
|
|||
int xx,yy;
|
||||
int y0, x0, y1, x1;
|
||||
fb_data* p;
|
||||
fb_data pixel;
|
||||
|
||||
x0 = x; /* start horiz */
|
||||
y0 = y; /* start vert */
|
||||
|
@ -244,28 +245,155 @@ void lcd_update_rect(int x, int y, int width, int height)
|
|||
yy = height;
|
||||
for (yy = y0; yy <= y1; yy++) {
|
||||
for (xx = x0; xx <= x1; xx++) {
|
||||
pixel = *(p++);
|
||||
|
||||
while (LCD_STATUS & 0x10);
|
||||
LCD_WDATA = (pixel & 0xff00) >> 8;
|
||||
while (LCD_STATUS & 0x10);
|
||||
LCD_WDATA = pixel & 0xff;
|
||||
lcd_write_pixel(*(p++));
|
||||
}
|
||||
p += LCD_WIDTH - width;
|
||||
}
|
||||
}
|
||||
|
||||
/*** update functions ***/
|
||||
|
||||
#define CSUB_X 2
|
||||
#define CSUB_Y 2
|
||||
|
||||
/* YUV- > RGB565 conversion
|
||||
* |R| |1.000000 -0.000001 1.402000| |Y'|
|
||||
* |G| = |1.000000 -0.334136 -0.714136| |Pb|
|
||||
* |B| |1.000000 1.772000 0.000000| |Pr|
|
||||
* Scaled, normalized, rounded and tweaked to yield RGB 565:
|
||||
* |R| |74 0 101| |Y' - 16| >> 9
|
||||
* |G| = |74 -24 -51| |Cb - 128| >> 8
|
||||
* |B| |74 128 0| |Cr - 128| >> 9
|
||||
*/
|
||||
|
||||
#define RGBYFAC 74 /* 1.0 */
|
||||
#define RVFAC 101 /* 1.402 */
|
||||
#define GVFAC (-51) /* -0.714136 */
|
||||
#define GUFAC (-24) /* -0.334136 */
|
||||
#define BUFAC 128 /* 1.772 */
|
||||
|
||||
/* ROUNDOFFS contain constant for correct round-offs as well as
|
||||
constant parts of the conversion matrix (e.g. (Y'-16)*RGBYFAC
|
||||
-> constant part = -16*RGBYFAC). Through extraction of these
|
||||
constant parts we save at leat 4 substractions in the conversion
|
||||
loop */
|
||||
#define ROUNDOFFSR (256 - 16*RGBYFAC - 128*RVFAC)
|
||||
#define ROUNDOFFSG (128 - 16*RGBYFAC - 128*GVFAC - 128*GUFAC)
|
||||
#define ROUNDOFFSB (256 - 16*RGBYFAC - 128*BUFAC)
|
||||
|
||||
#define MAX_5BIT 0x1f
|
||||
#define MAX_6BIT 0x3f
|
||||
|
||||
/* Performance function to blit a YUV bitmap directly to the LCD */
|
||||
void lcd_blit_yuv(unsigned char * const src[3],
|
||||
int src_x, int src_y, int stride,
|
||||
int x, int y, int width, int height)
|
||||
{
|
||||
(void)src;
|
||||
(void)src_x;
|
||||
(void)src_y;
|
||||
(void)stride;
|
||||
(void)x;
|
||||
(void)y;
|
||||
(void)width;
|
||||
(void)height;
|
||||
int h;
|
||||
int y0, x0, y1, x1;
|
||||
|
||||
width = (width + 1) & ~1;
|
||||
|
||||
x0 = x; /* start horiz */
|
||||
y0 = y; /* start vert */
|
||||
x1 = (x + width) - 1; /* max horiz */
|
||||
y1 = (y + height) - 1; /* max vert */
|
||||
|
||||
if (lcd_type==0) {
|
||||
s5l_lcd_write_cmd_data(R_HORIZ_ADDR_START_POS, x0);
|
||||
s5l_lcd_write_cmd_data(R_HORIZ_ADDR_END_POS, x1);
|
||||
s5l_lcd_write_cmd_data(R_VERT_ADDR_START_POS, y0);
|
||||
s5l_lcd_write_cmd_data(R_VERT_ADDR_END_POS, y1);
|
||||
|
||||
s5l_lcd_write_cmd_data(R_HORIZ_GRAM_ADDR_SET, (x1 << 8) | x0);
|
||||
s5l_lcd_write_cmd_data(R_VERT_GRAM_ADDR_SET, (y1 << 8) | y0);
|
||||
|
||||
s5l_lcd_write_cmd(0);
|
||||
s5l_lcd_write_cmd(R_WRITE_DATA_TO_GRAM);
|
||||
} else {
|
||||
s5l_lcd_write_cmd(R_COLUMN_ADDR_SET);
|
||||
s5l_lcd_write_data(x0); /* Start column */
|
||||
s5l_lcd_write_data(x1); /* End column */
|
||||
|
||||
s5l_lcd_write_cmd(R_ROW_ADDR_SET);
|
||||
s5l_lcd_write_data(y0); /* Start row */
|
||||
s5l_lcd_write_data(y1); /* End row */
|
||||
|
||||
s5l_lcd_write_cmd(R_MEMORY_WRITE);
|
||||
}
|
||||
|
||||
const int stride_div_csub_x = stride/CSUB_X;
|
||||
|
||||
h = height;
|
||||
while (h > 0) {
|
||||
/* upsampling, YUV->RGB conversion and reduction to RGB565 in one go */
|
||||
const unsigned char *ysrc = src[0] + stride * src_y + src_x;
|
||||
|
||||
const int uvoffset = stride_div_csub_x * (src_y/CSUB_Y) +
|
||||
(src_x/CSUB_X);
|
||||
|
||||
const unsigned char *usrc = src[1] + uvoffset;
|
||||
const unsigned char *vsrc = src[2] + uvoffset;
|
||||
const unsigned char *row_end = ysrc + width;
|
||||
|
||||
int yp, up, vp;
|
||||
int red1, green1, blue1;
|
||||
int red2, green2, blue2;
|
||||
|
||||
int rc, gc, bc;
|
||||
|
||||
do
|
||||
{
|
||||
up = *usrc++;
|
||||
vp = *vsrc++;
|
||||
rc = RVFAC * vp + ROUNDOFFSR;
|
||||
gc = GVFAC * vp + GUFAC * up + ROUNDOFFSG;
|
||||
bc = BUFAC * up + ROUNDOFFSB;
|
||||
|
||||
/* Pixel 1 -> RGB565 */
|
||||
yp = *ysrc++ * RGBYFAC;
|
||||
red1 = (yp + rc) >> 9;
|
||||
green1 = (yp + gc) >> 8;
|
||||
blue1 = (yp + bc) >> 9;
|
||||
|
||||
/* Pixel 2 -> RGB565 */
|
||||
yp = *ysrc++ * RGBYFAC;
|
||||
red2 = (yp + rc) >> 9;
|
||||
green2 = (yp + gc) >> 8;
|
||||
blue2 = (yp + bc) >> 9;
|
||||
|
||||
/* Since out of bounds errors are relatively rare, we check two
|
||||
pixels at once to see if any components are out of bounds, and
|
||||
then fix whichever is broken. This works due to high values and
|
||||
negative values both being !=0 when bitmasking them.
|
||||
We first check for red and blue components (5bit range). */
|
||||
if ((red1 | blue1 | red2 | blue2) & ~MAX_5BIT)
|
||||
{
|
||||
if (red1 & ~MAX_5BIT)
|
||||
red1 = (red1 >> 31) ? 0 : MAX_5BIT;
|
||||
if (blue1 & ~MAX_5BIT)
|
||||
blue1 = (blue1 >> 31) ? 0 : MAX_5BIT;
|
||||
if (red2 & ~MAX_5BIT)
|
||||
red2 = (red2 >> 31) ? 0 : MAX_5BIT;
|
||||
if (blue2 & ~MAX_5BIT)
|
||||
blue2 = (blue2 >> 31) ? 0 : MAX_5BIT;
|
||||
}
|
||||
/* We second check for green component (6bit range) */
|
||||
if ((green1 | green2) & ~MAX_6BIT)
|
||||
{
|
||||
if (green1 & ~MAX_6BIT)
|
||||
green1 = (green1 >> 31) ? 0 : MAX_6BIT;
|
||||
if (green2 & ~MAX_6BIT)
|
||||
green2 = (green2 >> 31) ? 0 : MAX_6BIT;
|
||||
}
|
||||
|
||||
/* output 2 pixels */
|
||||
lcd_write_pixel((red1 << 11) | (green1 << 5) | blue1);
|
||||
lcd_write_pixel((red2 << 11) | (green2 << 5) | blue2);
|
||||
}
|
||||
while (ysrc < row_end);
|
||||
|
||||
src_y++;
|
||||
h--;
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue