Move target specific parts of the H100 remote LCD driver to target tree.

git-svn-id: svn://svn.rockbox.org/rockbox/trunk@12485 a1c6a512-1295-4272-9138-f99709370657
This commit is contained in:
Jens Arnold 2007-02-25 22:09:14 +00:00
parent e812ec5440
commit d528e54b61
5 changed files with 685 additions and 621 deletions

View file

@ -85,7 +85,7 @@ drivers/lcd-16bit.c
#ifdef HAVE_REMOTE_LCD
#if LCD_REMOTE_DEPTH == 1
drivers/lcd-h100-remote.c
drivers/lcd-remote-1bit-v.c
#elif LCD_REMOTE_DEPTH == 2
drivers/lcd-remote-2bit-vi.c
#endif /* LCD_REMOTE_DEPTH */
@ -378,6 +378,7 @@ target/coldfire/iriver/h300/power-h300.c
target/coldfire/ata-as-coldfire.S
target/coldfire/pcf50606-coldfire.c
target/coldfire/iriver/ata-iriver.c
target/coldfire/iriver/lcd-remote-iriver.c
target/coldfire/iriver/system-iriver.c
target/coldfire/iriver/h300/adc-h300.c
target/coldfire/iriver/h300/backlight-h300.c
@ -397,6 +398,7 @@ target/coldfire/iriver/h100/power-h100.c
#ifndef SIMULATOR
target/coldfire/ata-as-coldfire.S
target/coldfire/iriver/ata-iriver.c
target/coldfire/iriver/lcd-remote-iriver.c
target/coldfire/iriver/system-iriver.c
target/coldfire/iriver/h100/adc-h100.c
target/coldfire/iriver/h100/backlight-h100.c

View file

@ -32,36 +32,7 @@
#include "rbunicode.h"
#include "bidi.h"
/*** definitions ***/
#define LCD_REMOTE_CNTL_ADC_NORMAL 0xa0
#define LCD_REMOTE_CNTL_ADC_REVERSE 0xa1
#define LCD_REMOTE_CNTL_SHL_NORMAL 0xc0
#define LCD_REMOTE_CNTL_SHL_REVERSE 0xc8
#define LCD_REMOTE_CNTL_DISPLAY_ON_OFF 0xae
#define LCD_REMOTE_CNTL_ENTIRE_ON_OFF 0xa4
#define LCD_REMOTE_CNTL_REVERSE_ON_OFF 0xa6
#define LCD_REMOTE_CNTL_NOP 0xe3
#define LCD_REMOTE_CNTL_POWER_CONTROL 0x2b
#define LCD_REMOTE_CNTL_SELECT_REGULATOR 0x20
#define LCD_REMOTE_CNTL_SELECT_BIAS 0xa2
#define LCD_REMOTE_CNTL_SELECT_VOLTAGE 0x81
#define LCD_REMOTE_CNTL_INIT_LINE 0x40
#define LCD_REMOTE_CNTL_SET_PAGE_ADDRESS 0xB0
#define LCD_REMOTE_CNTL_HIGHCOL 0x10 /* Upper column address */
#define LCD_REMOTE_CNTL_LOWCOL 0x00 /* Lower column address */
#define CS_LO and_l(~0x00000004, &GPIO1_OUT)
#define CS_HI or_l(0x00000004, &GPIO1_OUT)
#define CLK_LO and_l(~0x10000000, &GPIO_OUT)
#define CLK_HI or_l(0x10000000, &GPIO_OUT)
#define DATA_LO and_l(~0x00040000, &GPIO1_OUT)
#define DATA_HI or_l(0x00040000, &GPIO1_OUT)
#define RS_LO and_l(~0x00010000, &GPIO_OUT)
#define RS_HI or_l(0x00010000, &GPIO_OUT)
#define SCROLLABLE_LINES 13
#define SCROLLABLE_LINES (((LCD_REMOTE_HEIGHT+4)/5 < 32) ? (LCD_REMOTE_HEIGHT+4)/5 : 32)
/*** globals ***/
@ -73,33 +44,6 @@ static int xmargin = 0;
static int ymargin = 0;
static int curfont = FONT_SYSFIXED;
#ifndef SIMULATOR
static int xoffset; /* needed for flip */
/* timeout counter for deasserting /CS after access, <0 means not counting */
static int cs_countdown IDATA_ATTR = 0;
#define CS_TIMEOUT (HZ/10)
#ifdef HAVE_REMOTE_LCD_TICKING
/* If set to true, will prevent "ticking" to headphones. */
static bool emireduce = false;
static int byte_delay = 0;
#endif
/* remote hotplug */
static struct event_queue remote_scroll_queue;
#define REMOTE_INIT_LCD 1
#define REMOTE_DEINIT_LCD 2
static bool remote_initialized = false;
static int _remote_type = REMOTETYPE_UNPLUGGED;
/* cached settings values */
static bool cached_invert = false;
static bool cached_flip = false;
static int cached_contrast = DEFAULT_REMOTE_CONTRAST_SETTING;
#endif
/* scrolling */
static volatile int scrolling_lines=0; /* Bitpattern of which lines are scrolling */
static void scroll_thread(void);
@ -117,563 +61,11 @@ static const char scroll_tick_table[16] = {
100, 80, 64, 50, 40, 32, 25, 20, 16, 12, 10, 8, 6, 5, 4, 3
};
/*** driver routines ***/
/* remote hotplug */
#ifndef SIMULATOR
#ifdef HAVE_REMOTE_LCD_TICKING
static inline void _byte_delay(int delay)
{
asm (
"move.l %[dly], %%d0 \n"
"ble.s 2f \n"
"1: \n"
"subq.l #1, %%d0 \n"
"bne.s 1b \n"
"2: \n"
: /* outputs */
: /* inputs */
[dly]"d"(delay)
: /* clobbers */
"d0"
);
}
#endif /* HAVE_REMOTE_LCD_TICKING */
/* Standard low-level byte writer. Requires CLK low on entry */
static inline void _write_byte(unsigned data)
{
asm volatile (
"move.l (%[gpo1]), %%d0 \n" /* Get current state of data line */
"and.l %[dbit], %%d0 \n"
"beq.s 1f \n" /* and set it as previous-state bit */
"bset #8, %[data] \n"
"1: \n"
"move.l %[data], %%d0 \n" /* Compute the 'bit derivative', i.e. a value */
"lsr.l #1, %%d0 \n" /* with 1's where the data changes from the */
"eor.l %%d0, %[data] \n" /* previous state, and 0's where it doesn't */
"swap %[data] \n" /* Shift data to upper byte */
"lsl.l #8, %[data] \n"
"lsl.l #1,%[data] \n" /* Shift out MSB */
"bcc.s 1f \n"
"eor.l %[dbit], (%[gpo1]) \n" /* 1: flip DATA */
"1: \n"
"eor.l %[cbit], (%[gpo0]) \n" /* Flip CLK */
"eor.l %[cbit], (%[gpo0]) \n" /* Flip CLK */
"lsl.l #1,%[data] \n" /* ..unrolled.. */
"bcc.s 1f \n"
"eor.l %[dbit], (%[gpo1]) \n"
"1: \n"
"eor.l %[cbit], (%[gpo0]) \n"
"eor.l %[cbit], (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], (%[gpo1]) \n"
"1: \n"
"eor.l %[cbit], (%[gpo0]) \n"
"eor.l %[cbit], (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], (%[gpo1]) \n"
"1: \n"
"eor.l %[cbit], (%[gpo0]) \n"
"eor.l %[cbit], (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], (%[gpo1]) \n"
"1: \n"
"eor.l %[cbit], (%[gpo0]) \n"
"eor.l %[cbit], (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], (%[gpo1]) \n"
"1: \n"
"eor.l %[cbit], (%[gpo0]) \n"
"eor.l %[cbit], (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], (%[gpo1]) \n"
"1: \n"
"eor.l %[cbit], (%[gpo0]) \n"
"eor.l %[cbit], (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], (%[gpo1]) \n"
"1: \n"
"eor.l %[cbit], (%[gpo0]) \n"
"eor.l %[cbit], (%[gpo0]) \n"
: /* outputs */
[data]"+d"(data)
: /* inputs */
[gpo0]"a"(&GPIO_OUT),
[cbit]"d"(0x10000000),
[gpo1]"a"(&GPIO1_OUT),
[dbit]"d"(0x00040000)
: /* clobbers */
"d0"
);
}
/* Fast low-level byte writer. Don't use with high CPU clock.
* Requires CLK low on entry */
static inline void _write_fast(unsigned data)
{
asm volatile (
"move.w %%sr,%%d3 \n" /* Get current interrupt level */
"move.w #0x2700,%%sr \n" /* Disable interrupts */
"move.l (%[gpo1]), %%d0 \n" /* Get current state of data port */
"move.l %%d0, %%d1 \n"
"and.l %[dbit], %%d1 \n" /* Check current state of data line */
"beq.s 1f \n" /* and set it as previous-state bit */
"bset #8, %[data] \n"
"1: \n"
"move.l %[data], %%d1 \n" /* Compute the 'bit derivative', i.e. a value */
"lsr.l #1, %%d1 \n" /* with 1's where the data changes from the */
"eor.l %%d1, %[data] \n" /* previous state, and 0's where it doesn't */
"swap %[data] \n" /* Shift data to upper byte */
"lsl.l #8, %[data] \n"
"move.l (%[gpo0]), %%d1 \n" /* Get current state of clock port */
"move.l %[cbit], %%d2 \n" /* Precalculate opposite state of clock line */
"eor.l %%d1, %%d2 \n"
"lsl.l #1,%[data] \n" /* Shift out MSB */
"bcc.s 1f \n"
"eor.l %[dbit], %%d0 \n" /* 1: flip data bit */
"move.l %%d0, (%[gpo1]) \n" /* and output new DATA state */
"1: \n"
"move.l %%d2, (%[gpo0]) \n" /* Set CLK */
"move.l %%d1, (%[gpo0]) \n" /* Reset CLK */
"lsl.l #1,%[data] \n" /* ..unrolled.. */
"bcc.s 1f \n"
"eor.l %[dbit], %%d0 \n"
"move.l %%d0, (%[gpo1]) \n"
"1: \n"
"move.l %%d2, (%[gpo0]) \n"
"move.l %%d1, (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], %%d0 \n"
"move.l %%d0, (%[gpo1]) \n"
"1: \n"
"move.l %%d2, (%[gpo0]) \n"
"move.l %%d1, (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], %%d0 \n"
"move.l %%d0, (%[gpo1]) \n"
"1: \n"
"move.l %%d2, (%[gpo0]) \n"
"move.l %%d1, (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], %%d0 \n"
"move.l %%d0, (%[gpo1]) \n"
"1: \n"
"move.l %%d2, (%[gpo0]) \n"
"move.l %%d1, (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], %%d0 \n"
"move.l %%d0, (%[gpo1]) \n"
"1: \n"
"move.l %%d2, (%[gpo0]) \n"
"move.l %%d1, (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], %%d0 \n"
"move.l %%d0, (%[gpo1]) \n"
"1: \n"
"move.l %%d2, (%[gpo0]) \n"
"move.l %%d1, (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], %%d0 \n"
"move.l %%d0, (%[gpo1]) \n"
"1: \n"
"move.l %%d2, (%[gpo0]) \n"
"move.l %%d1, (%[gpo0]) \n"
"move.w %%d3, %%sr \n" /* Restore interrupt level */
: /* outputs */
[data]"+d"(data)
: /* inputs */
[gpo0]"a"(&GPIO_OUT),
[cbit]"i"(0x10000000),
[gpo1]"a"(&GPIO1_OUT),
[dbit]"d"(0x00040000)
: /* clobbers */
"d0", "d1", "d2", "d3"
);
}
void lcd_remote_write_command(int cmd)
{
cs_countdown = 0;
RS_LO;
CS_LO;
_write_byte(cmd);
#ifdef HAVE_REMOTE_LCD_TICKING
_byte_delay(byte_delay - 148);
struct event_queue remote_scroll_queue;
#endif
cs_countdown = CS_TIMEOUT;
}
void lcd_remote_write_command_ex(int cmd, int data)
{
cs_countdown = 0;
RS_LO;
CS_LO;
_write_byte(cmd);
#ifdef HAVE_REMOTE_LCD_TICKING
_byte_delay(byte_delay - 148);
#endif
_write_byte(data);
#ifdef HAVE_REMOTE_LCD_TICKING
_byte_delay(byte_delay - 148);
#endif
cs_countdown = CS_TIMEOUT;
}
void lcd_remote_write_data(const unsigned char* p_bytes, int count) ICODE_ATTR;
void lcd_remote_write_data(const unsigned char* p_bytes, int count)
{
const unsigned char *p_end = p_bytes + count;
cs_countdown = 0;
RS_HI;
CS_LO;
/* This is safe as long as lcd_remote_write_data() isn't called from within
* an ISR. */
if (cpu_frequency < 50000000)
{
while (p_bytes < p_end)
{
_write_fast(*p_bytes++);
#ifdef HAVE_REMOTE_LCD_TICKING
_byte_delay(byte_delay - 87);
#endif
}
}
else
{
while (p_bytes < p_end)
{
_write_byte(*p_bytes++);
#ifdef HAVE_REMOTE_LCD_TICKING
_byte_delay(byte_delay - 148);
#endif
}
}
cs_countdown = CS_TIMEOUT;
}
#endif /* !SIMULATOR */
/*** hardware configuration ***/
int lcd_remote_default_contrast(void)
{
return DEFAULT_REMOTE_CONTRAST_SETTING;
}
#ifndef SIMULATOR
#ifdef HAVE_REMOTE_LCD_TICKING
void lcd_remote_emireduce(bool state)
{
emireduce = state;
}
#endif
void lcd_remote_powersave(bool on)
{
if (remote_initialized)
{
lcd_remote_write_command(LCD_REMOTE_CNTL_DISPLAY_ON_OFF | (on ? 0 : 1));
lcd_remote_write_command(LCD_REMOTE_CNTL_ENTIRE_ON_OFF | (on ? 1 : 0));
}
}
void lcd_remote_set_contrast(int val)
{
cached_contrast = val;
if (remote_initialized)
lcd_remote_write_command_ex(LCD_REMOTE_CNTL_SELECT_VOLTAGE, val);
}
void lcd_remote_set_invert_display(bool yesno)
{
cached_invert = yesno;
if (remote_initialized)
lcd_remote_write_command(LCD_REMOTE_CNTL_REVERSE_ON_OFF | (yesno?1:0));
}
/* turn the display upside down (call lcd_remote_update() afterwards) */
void lcd_remote_set_flip(bool yesno)
{
cached_flip = yesno;
if (yesno)
{
xoffset = 0;
if (remote_initialized)
{
lcd_remote_write_command(LCD_REMOTE_CNTL_ADC_NORMAL);
lcd_remote_write_command(LCD_REMOTE_CNTL_SHL_NORMAL);
}
}
else
{
xoffset = 132 - LCD_REMOTE_WIDTH;
if (remote_initialized)
{
lcd_remote_write_command(LCD_REMOTE_CNTL_ADC_REVERSE);
lcd_remote_write_command(LCD_REMOTE_CNTL_SHL_REVERSE);
}
}
}
/* The actual LCD init */
static void remote_lcd_init(void)
{
CS_HI;
CLK_LO;
lcd_remote_write_command(LCD_REMOTE_CNTL_SELECT_BIAS | 0x0);
lcd_remote_write_command(LCD_REMOTE_CNTL_POWER_CONTROL | 0x5);
sleep(1);
lcd_remote_write_command(LCD_REMOTE_CNTL_POWER_CONTROL | 0x6);
sleep(1);
lcd_remote_write_command(LCD_REMOTE_CNTL_POWER_CONTROL | 0x7);
lcd_remote_write_command(LCD_REMOTE_CNTL_SELECT_REGULATOR | 0x4); // 0x4 Select regulator @ 5.0 (default);
sleep(1);
lcd_remote_write_command(LCD_REMOTE_CNTL_INIT_LINE | 0x0); // init line
lcd_remote_write_command(LCD_REMOTE_CNTL_SET_PAGE_ADDRESS | 0x0); // page address
lcd_remote_write_command_ex(0x10, 0x00); // Column MSB + LSB
lcd_remote_write_command(LCD_REMOTE_CNTL_DISPLAY_ON_OFF | 1);
remote_initialized = true;
lcd_remote_set_flip(cached_flip);
lcd_remote_set_contrast(cached_contrast);
lcd_remote_set_invert_display(cached_invert);
}
bool remote_detect(void)
{
return (GPIO_READ & 0x40000000)?false:true;
}
int remote_type(void)
{
return _remote_type;
}
/* Monitor remote hotswap */
static void remote_tick(void)
{
static bool last_status = false;
static int countdown = 0;
static int init_delay = 0;
bool current_status;
int val;
int level;
current_status = remote_detect();
/* Only report when the status has changed */
if (current_status != last_status)
{
last_status = current_status;
countdown = current_status ? 20*HZ : 1;
}
else
{
/* Count down until it gets negative */
if (countdown >= 0)
countdown--;
if (current_status)
{
if (!(countdown % 8))
{
/* Determine which type of remote it is */
level = set_irq_level(HIGHEST_IRQ_LEVEL);
val = adc_scan(ADC_REMOTEDETECT);
set_irq_level(level);
if (val < ADCVAL_H100_LCD_REMOTE_HOLD)
{
if (val < ADCVAL_H100_LCD_REMOTE)
if (val < ADCVAL_H300_LCD_REMOTE)
_remote_type = REMOTETYPE_H300_LCD; /* hold off */
else
_remote_type = REMOTETYPE_H100_LCD; /* hold off */
else
if (val < ADCVAL_H300_LCD_REMOTE_HOLD)
_remote_type = REMOTETYPE_H300_LCD; /* hold on */
else
_remote_type = REMOTETYPE_H100_LCD; /* hold on */
if (--init_delay <= 0)
{
queue_post(&remote_scroll_queue, REMOTE_INIT_LCD, 0);
init_delay = 6;
}
}
else
{
_remote_type = REMOTETYPE_H300_NONLCD; /* hold on or off */
}
}
}
else
{
if (countdown == 0)
{
_remote_type = REMOTETYPE_UNPLUGGED;
queue_post(&remote_scroll_queue, REMOTE_DEINIT_LCD, 0);
}
}
}
/* handle chip select timeout */
if (cs_countdown >= 0)
cs_countdown--;
if (cs_countdown == 0)
CS_HI;
}
#endif /* !SIMULATOR */
/* LCD init */
#ifdef SIMULATOR
void lcd_remote_init(void)
{
create_thread(scroll_thread, scroll_stack,
sizeof(scroll_stack), scroll_name IF_PRIO(, PRIORITY_USER_INTERFACE));
}
#else /* !SIMULATOR */
/* Initialise ports and kick off monitor */
void lcd_remote_init(void)
{
#ifdef IRIVER_H300_SERIES
or_l(0x10010000, &GPIO_FUNCTION); /* GPIO16: RS
GPIO28: CLK */
or_l(0x00040006, &GPIO1_FUNCTION); /* GPO33: Backlight
GPIO34: CS
GPIO50: Data */
or_l(0x10010000, &GPIO_ENABLE);
or_l(0x00040006, &GPIO1_ENABLE);
#else
or_l(0x10010800, &GPIO_FUNCTION); /* GPIO11: Backlight
GPIO16: RS
GPIO28: CLK */
or_l(0x00040004, &GPIO1_FUNCTION); /* GPIO34: CS
GPIO50: Data */
or_l(0x10010800, &GPIO_ENABLE);
or_l(0x00040004, &GPIO1_ENABLE);
#endif
lcd_remote_clear_display();
/* private queue */
queue_init(&remote_scroll_queue, false);
tick_add_task(remote_tick);
create_thread(scroll_thread, scroll_stack,
sizeof(scroll_stack), scroll_name IF_PRIO(, PRIORITY_USER_INTERFACE));
}
/*** update functions ***/
/* Update the display.
This must be called after all other LCD functions that change the display. */
void lcd_remote_update(void) ICODE_ATTR;
void lcd_remote_update(void)
{
int y;
if (!remote_initialized)
return;
#ifdef HAVE_REMOTE_LCD_TICKING
/* Adjust byte delay for emi reduction. */
byte_delay = emireduce ? cpu_frequency / 197600 + 28: 0;
#endif
/* Copy display bitmap to hardware */
for (y = 0; y < LCD_REMOTE_FBHEIGHT; y++)
{
lcd_remote_write_command(LCD_REMOTE_CNTL_SET_PAGE_ADDRESS | y);
lcd_remote_write_command(LCD_REMOTE_CNTL_HIGHCOL | ((xoffset >> 4) & 0xf));
lcd_remote_write_command(LCD_REMOTE_CNTL_LOWCOL | (xoffset & 0xf));
lcd_remote_write_data(lcd_remote_framebuffer[y], LCD_REMOTE_WIDTH);
}
}
/* Update a fraction of the display. */
void lcd_remote_update_rect(int, int, int, int) ICODE_ATTR;
void lcd_remote_update_rect(int x, int y, int width, int height)
{
int ymax;
if (!remote_initialized)
return;
/* The Y coordinates have to work on even 8 pixel rows */
ymax = (y + height-1) >> 3;
y >>= 3;
if(x + width > LCD_REMOTE_WIDTH)
width = LCD_REMOTE_WIDTH - x;
if (width <= 0)
return; /* nothing left to do, 0 is harmful to lcd_write_data() */
if(ymax >= LCD_REMOTE_FBHEIGHT)
ymax = LCD_REMOTE_FBHEIGHT-1;
#ifdef HAVE_REMOTE_LCD_TICKING
/* Adjust byte delay for emi reduction */
byte_delay = emireduce ? cpu_frequency / 197600 + 28: 0;
#endif
/* Copy specified rectange bitmap to hardware */
for (; y <= ymax; y++)
{
lcd_remote_write_command(LCD_REMOTE_CNTL_SET_PAGE_ADDRESS | y);
lcd_remote_write_command(LCD_REMOTE_CNTL_HIGHCOL | (((x+xoffset) >> 4) & 0xf));
lcd_remote_write_command(LCD_REMOTE_CNTL_LOWCOL | ((x+xoffset) & 0xf));
lcd_remote_write_data(&lcd_remote_framebuffer[y][x], width);
}
}
#endif /* !SIMULATOR */
/*** parameter handling ***/
void lcd_remote_set_drawmode(int mode)
@ -1430,14 +822,12 @@ static void scroll_thread(void)
switch (ev.id)
{
case REMOTE_INIT_LCD:
remote_lcd_init();
lcd_remote_on();
lcd_remote_update();
break;
case REMOTE_DEINIT_LCD:
CLK_LO;
CS_HI;
remote_initialized = false;
lcd_remote_off();
break;
}
@ -1503,3 +893,15 @@ static void scroll_thread(void)
}
}
/* LCD init */
void lcd_remote_init(void)
{
#ifndef SIMULATOR
/* Call device specific init */
lcd_remote_init_device();
/* private queue */
queue_init(&remote_scroll_queue, false);
#endif
create_thread(scroll_thread, scroll_stack,
sizeof(scroll_stack), scroll_name IF_PRIO(, PRIORITY_USER_INTERFACE));
}

View file

@ -27,13 +27,20 @@
#ifdef HAVE_REMOTE_LCD
#if defined(TARGET_TREE) && !defined(SIMULATOR)
#include "lcd-remote-target.h"
#endif
#if defined(IRIVER_H100_SERIES) || defined(IRIVER_H300_SERIES)
#define REMOTETYPE_UNPLUGGED 0
#define REMOTETYPE_H100_LCD 1
#define REMOTETYPE_H300_LCD 2
#define REMOTETYPE_H300_NONLCD 3
extern int remote_type(void);
extern bool remote_detect(void);
int remote_type(void);
#endif
#ifndef SIMULATOR
extern struct event_queue remote_scroll_queue;
#endif
#define STYLE_DEFAULT 0
@ -105,7 +112,6 @@ extern fb_remote_data lcd_remote_framebuffer[LCD_REMOTE_FBHEIGHT][LCD_REMOTE_FBW
extern void lcd_remote_init(void);
extern int lcd_remote_default_contrast(void);
extern void lcd_remote_set_contrast(int val);
extern void lcd_remote_emireduce(bool state);
extern void lcd_remote_clear_display(void);
extern void lcd_remote_puts(int x, int y, const unsigned char *str);

View file

@ -0,0 +1,610 @@
/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2005 by Richard S. La Charité III
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "system.h"
#include "kernel.h"
#include "lcd-remote.h"
/*** definitions ***/
#define LCD_REMOTE_CNTL_ADC_NORMAL 0xa0
#define LCD_REMOTE_CNTL_ADC_REVERSE 0xa1
#define LCD_REMOTE_CNTL_SHL_NORMAL 0xc0
#define LCD_REMOTE_CNTL_SHL_REVERSE 0xc8
#define LCD_REMOTE_CNTL_DISPLAY_ON_OFF 0xae
#define LCD_REMOTE_CNTL_ENTIRE_ON_OFF 0xa4
#define LCD_REMOTE_CNTL_REVERSE_ON_OFF 0xa6
#define LCD_REMOTE_CNTL_NOP 0xe3
#define LCD_REMOTE_CNTL_POWER_CONTROL 0x2b
#define LCD_REMOTE_CNTL_SELECT_REGULATOR 0x20
#define LCD_REMOTE_CNTL_SELECT_BIAS 0xa2
#define LCD_REMOTE_CNTL_SELECT_VOLTAGE 0x81
#define LCD_REMOTE_CNTL_INIT_LINE 0x40
#define LCD_REMOTE_CNTL_SET_PAGE_ADDRESS 0xB0
#define LCD_REMOTE_CNTL_HIGHCOL 0x10 /* Upper column address */
#define LCD_REMOTE_CNTL_LOWCOL 0x00 /* Lower column address */
#define CS_LO and_l(~0x00000004, &GPIO1_OUT)
#define CS_HI or_l(0x00000004, &GPIO1_OUT)
#define CLK_LO and_l(~0x10000000, &GPIO_OUT)
#define CLK_HI or_l(0x10000000, &GPIO_OUT)
#define DATA_LO and_l(~0x00040000, &GPIO1_OUT)
#define DATA_HI or_l(0x00040000, &GPIO1_OUT)
#define RS_LO and_l(~0x00010000, &GPIO_OUT)
#define RS_HI or_l(0x00010000, &GPIO_OUT)
static int xoffset; /* needed for flip */
/* timeout counter for deasserting /CS after access, <0 means not counting */
static int cs_countdown IDATA_ATTR = 0;
#define CS_TIMEOUT (HZ/10)
#ifdef HAVE_REMOTE_LCD_TICKING
/* If set to true, will prevent "ticking" to headphones. */
static bool emireduce = false;
static int byte_delay = 0;
#endif
bool remote_initialized = false;
static int _remote_type = REMOTETYPE_UNPLUGGED;
/* cached settings values */
static bool cached_invert = false;
static bool cached_flip = false;
static int cached_contrast = DEFAULT_REMOTE_CONTRAST_SETTING;
static void remote_tick(void);
#ifdef HAVE_REMOTE_LCD_TICKING
static inline void _byte_delay(int delay)
{
asm (
"move.l %[dly], %%d0 \n"
"ble.s 2f \n"
"1: \n"
"subq.l #1, %%d0 \n"
"bne.s 1b \n"
"2: \n"
: /* outputs */
: /* inputs */
[dly]"d"(delay)
: /* clobbers */
"d0"
);
}
#endif /* HAVE_REMOTE_LCD_TICKING */
/* Standard low-level byte writer. Requires CLK low on entry */
static inline void _write_byte(unsigned data)
{
asm volatile (
"move.l (%[gpo1]), %%d0 \n" /* Get current state of data line */
"and.l %[dbit], %%d0 \n"
"beq.s 1f \n" /* and set it as previous-state bit */
"bset #8, %[data] \n"
"1: \n"
"move.l %[data], %%d0 \n" /* Compute the 'bit derivative', i.e. a value */
"lsr.l #1, %%d0 \n" /* with 1's where the data changes from the */
"eor.l %%d0, %[data] \n" /* previous state, and 0's where it doesn't */
"swap %[data] \n" /* Shift data to upper byte */
"lsl.l #8, %[data] \n"
"lsl.l #1,%[data] \n" /* Shift out MSB */
"bcc.s 1f \n"
"eor.l %[dbit], (%[gpo1]) \n" /* 1: flip DATA */
"1: \n"
"eor.l %[cbit], (%[gpo0]) \n" /* Flip CLK */
"eor.l %[cbit], (%[gpo0]) \n" /* Flip CLK */
"lsl.l #1,%[data] \n" /* ..unrolled.. */
"bcc.s 1f \n"
"eor.l %[dbit], (%[gpo1]) \n"
"1: \n"
"eor.l %[cbit], (%[gpo0]) \n"
"eor.l %[cbit], (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], (%[gpo1]) \n"
"1: \n"
"eor.l %[cbit], (%[gpo0]) \n"
"eor.l %[cbit], (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], (%[gpo1]) \n"
"1: \n"
"eor.l %[cbit], (%[gpo0]) \n"
"eor.l %[cbit], (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], (%[gpo1]) \n"
"1: \n"
"eor.l %[cbit], (%[gpo0]) \n"
"eor.l %[cbit], (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], (%[gpo1]) \n"
"1: \n"
"eor.l %[cbit], (%[gpo0]) \n"
"eor.l %[cbit], (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], (%[gpo1]) \n"
"1: \n"
"eor.l %[cbit], (%[gpo0]) \n"
"eor.l %[cbit], (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], (%[gpo1]) \n"
"1: \n"
"eor.l %[cbit], (%[gpo0]) \n"
"eor.l %[cbit], (%[gpo0]) \n"
: /* outputs */
[data]"+d"(data)
: /* inputs */
[gpo0]"a"(&GPIO_OUT),
[cbit]"d"(0x10000000),
[gpo1]"a"(&GPIO1_OUT),
[dbit]"d"(0x00040000)
: /* clobbers */
"d0"
);
}
/* Fast low-level byte writer. Don't use with high CPU clock.
* Requires CLK low on entry */
static inline void _write_fast(unsigned data)
{
asm volatile (
"move.w %%sr,%%d3 \n" /* Get current interrupt level */
"move.w #0x2700,%%sr \n" /* Disable interrupts */
"move.l (%[gpo1]), %%d0 \n" /* Get current state of data port */
"move.l %%d0, %%d1 \n"
"and.l %[dbit], %%d1 \n" /* Check current state of data line */
"beq.s 1f \n" /* and set it as previous-state bit */
"bset #8, %[data] \n"
"1: \n"
"move.l %[data], %%d1 \n" /* Compute the 'bit derivative', i.e. a value */
"lsr.l #1, %%d1 \n" /* with 1's where the data changes from the */
"eor.l %%d1, %[data] \n" /* previous state, and 0's where it doesn't */
"swap %[data] \n" /* Shift data to upper byte */
"lsl.l #8, %[data] \n"
"move.l (%[gpo0]), %%d1 \n" /* Get current state of clock port */
"move.l %[cbit], %%d2 \n" /* Precalculate opposite state of clock line */
"eor.l %%d1, %%d2 \n"
"lsl.l #1,%[data] \n" /* Shift out MSB */
"bcc.s 1f \n"
"eor.l %[dbit], %%d0 \n" /* 1: flip data bit */
"move.l %%d0, (%[gpo1]) \n" /* and output new DATA state */
"1: \n"
"move.l %%d2, (%[gpo0]) \n" /* Set CLK */
"move.l %%d1, (%[gpo0]) \n" /* Reset CLK */
"lsl.l #1,%[data] \n" /* ..unrolled.. */
"bcc.s 1f \n"
"eor.l %[dbit], %%d0 \n"
"move.l %%d0, (%[gpo1]) \n"
"1: \n"
"move.l %%d2, (%[gpo0]) \n"
"move.l %%d1, (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], %%d0 \n"
"move.l %%d0, (%[gpo1]) \n"
"1: \n"
"move.l %%d2, (%[gpo0]) \n"
"move.l %%d1, (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], %%d0 \n"
"move.l %%d0, (%[gpo1]) \n"
"1: \n"
"move.l %%d2, (%[gpo0]) \n"
"move.l %%d1, (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], %%d0 \n"
"move.l %%d0, (%[gpo1]) \n"
"1: \n"
"move.l %%d2, (%[gpo0]) \n"
"move.l %%d1, (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], %%d0 \n"
"move.l %%d0, (%[gpo1]) \n"
"1: \n"
"move.l %%d2, (%[gpo0]) \n"
"move.l %%d1, (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], %%d0 \n"
"move.l %%d0, (%[gpo1]) \n"
"1: \n"
"move.l %%d2, (%[gpo0]) \n"
"move.l %%d1, (%[gpo0]) \n"
"lsl.l #1,%[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], %%d0 \n"
"move.l %%d0, (%[gpo1]) \n"
"1: \n"
"move.l %%d2, (%[gpo0]) \n"
"move.l %%d1, (%[gpo0]) \n"
"move.w %%d3, %%sr \n" /* Restore interrupt level */
: /* outputs */
[data]"+d"(data)
: /* inputs */
[gpo0]"a"(&GPIO_OUT),
[cbit]"i"(0x10000000),
[gpo1]"a"(&GPIO1_OUT),
[dbit]"d"(0x00040000)
: /* clobbers */
"d0", "d1", "d2", "d3"
);
}
void lcd_remote_write_command(int cmd)
{
cs_countdown = 0;
RS_LO;
CS_LO;
_write_byte(cmd);
#ifdef HAVE_REMOTE_LCD_TICKING
_byte_delay(byte_delay - 148);
#endif
cs_countdown = CS_TIMEOUT;
}
void lcd_remote_write_command_ex(int cmd, int data)
{
cs_countdown = 0;
RS_LO;
CS_LO;
_write_byte(cmd);
#ifdef HAVE_REMOTE_LCD_TICKING
_byte_delay(byte_delay - 148);
#endif
_write_byte(data);
#ifdef HAVE_REMOTE_LCD_TICKING
_byte_delay(byte_delay - 148);
#endif
cs_countdown = CS_TIMEOUT;
}
void lcd_remote_write_data(const unsigned char* p_bytes, int count) ICODE_ATTR;
void lcd_remote_write_data(const unsigned char* p_bytes, int count)
{
const unsigned char *p_end = p_bytes + count;
cs_countdown = 0;
RS_HI;
CS_LO;
/* This is safe as long as lcd_remote_write_data() isn't called from within
* an ISR. */
if (cpu_frequency < 50000000)
{
while (p_bytes < p_end)
{
_write_fast(*p_bytes++);
#ifdef HAVE_REMOTE_LCD_TICKING
_byte_delay(byte_delay - 87);
#endif
}
}
else
{
while (p_bytes < p_end)
{
_write_byte(*p_bytes++);
#ifdef HAVE_REMOTE_LCD_TICKING
_byte_delay(byte_delay - 148);
#endif
}
}
cs_countdown = CS_TIMEOUT;
}
/*** hardware configuration ***/
int lcd_remote_default_contrast(void)
{
return DEFAULT_REMOTE_CONTRAST_SETTING;
}
#ifdef HAVE_REMOTE_LCD_TICKING
void lcd_remote_emireduce(bool state)
{
emireduce = state;
}
#endif
void lcd_remote_powersave(bool on)
{
if (remote_initialized)
{
lcd_remote_write_command(LCD_REMOTE_CNTL_DISPLAY_ON_OFF | (on ? 0 : 1));
lcd_remote_write_command(LCD_REMOTE_CNTL_ENTIRE_ON_OFF | (on ? 1 : 0));
}
}
void lcd_remote_set_contrast(int val)
{
cached_contrast = val;
if (remote_initialized)
lcd_remote_write_command_ex(LCD_REMOTE_CNTL_SELECT_VOLTAGE, val);
}
void lcd_remote_set_invert_display(bool yesno)
{
cached_invert = yesno;
if (remote_initialized)
lcd_remote_write_command(LCD_REMOTE_CNTL_REVERSE_ON_OFF | (yesno?1:0));
}
/* turn the display upside down (call lcd_remote_update() afterwards) */
void lcd_remote_set_flip(bool yesno)
{
cached_flip = yesno;
if (yesno)
{
xoffset = 0;
if (remote_initialized)
{
lcd_remote_write_command(LCD_REMOTE_CNTL_ADC_NORMAL);
lcd_remote_write_command(LCD_REMOTE_CNTL_SHL_NORMAL);
}
}
else
{
xoffset = 132 - LCD_REMOTE_WIDTH;
if (remote_initialized)
{
lcd_remote_write_command(LCD_REMOTE_CNTL_ADC_REVERSE);
lcd_remote_write_command(LCD_REMOTE_CNTL_SHL_REVERSE);
}
}
}
bool remote_detect(void)
{
return (GPIO_READ & 0x40000000)?false:true;
}
int remote_type(void)
{
return _remote_type;
}
void lcd_remote_init_device(void)
{
#ifdef IRIVER_H300_SERIES
or_l(0x10010000, &GPIO_FUNCTION); /* GPIO16: RS
GPIO28: CLK */
or_l(0x00040006, &GPIO1_FUNCTION); /* GPO33: Backlight
GPIO34: CS
GPIO50: Data */
or_l(0x10010000, &GPIO_ENABLE);
or_l(0x00040006, &GPIO1_ENABLE);
#else
or_l(0x10010800, &GPIO_FUNCTION); /* GPIO11: Backlight
GPIO16: RS
GPIO28: CLK */
or_l(0x00040004, &GPIO1_FUNCTION); /* GPIO34: CS
GPIO50: Data */
or_l(0x10010800, &GPIO_ENABLE);
or_l(0x00040004, &GPIO1_ENABLE);
#endif
lcd_remote_clear_display();
tick_add_task(remote_tick);
}
void lcd_remote_on(void)
{
CS_HI;
CLK_LO;
lcd_remote_write_command(LCD_REMOTE_CNTL_SELECT_BIAS | 0x0);
lcd_remote_write_command(LCD_REMOTE_CNTL_POWER_CONTROL | 0x5);
sleep(1);
lcd_remote_write_command(LCD_REMOTE_CNTL_POWER_CONTROL | 0x6);
sleep(1);
lcd_remote_write_command(LCD_REMOTE_CNTL_POWER_CONTROL | 0x7);
lcd_remote_write_command(LCD_REMOTE_CNTL_SELECT_REGULATOR | 0x4); // 0x4 Select regulator @ 5.0 (default);
sleep(1);
lcd_remote_write_command(LCD_REMOTE_CNTL_INIT_LINE | 0x0); // init line
lcd_remote_write_command(LCD_REMOTE_CNTL_SET_PAGE_ADDRESS | 0x0); // page address
lcd_remote_write_command_ex(0x10, 0x00); // Column MSB + LSB
lcd_remote_write_command(LCD_REMOTE_CNTL_DISPLAY_ON_OFF | 1);
remote_initialized = true;
lcd_remote_set_flip(cached_flip);
lcd_remote_set_contrast(cached_contrast);
lcd_remote_set_invert_display(cached_invert);
}
void lcd_remote_off(void)
{
remote_initialized = false;
CLK_LO;
CS_HI;
}
/* Monitor remote hotswap */
static void remote_tick(void)
{
static bool last_status = false;
static int countdown = 0;
static int init_delay = 0;
bool current_status;
int val;
int level;
current_status = remote_detect();
/* Only report when the status has changed */
if (current_status != last_status)
{
last_status = current_status;
countdown = current_status ? 20*HZ : 1;
}
else
{
/* Count down until it gets negative */
if (countdown >= 0)
countdown--;
if (current_status)
{
if (!(countdown % 8))
{
/* Determine which type of remote it is */
level = set_irq_level(HIGHEST_IRQ_LEVEL);
val = adc_scan(ADC_REMOTEDETECT);
set_irq_level(level);
if (val < ADCVAL_H100_LCD_REMOTE_HOLD)
{
if (val < ADCVAL_H100_LCD_REMOTE)
if (val < ADCVAL_H300_LCD_REMOTE)
_remote_type = REMOTETYPE_H300_LCD; /* hold off */
else
_remote_type = REMOTETYPE_H100_LCD; /* hold off */
else
if (val < ADCVAL_H300_LCD_REMOTE_HOLD)
_remote_type = REMOTETYPE_H300_LCD; /* hold on */
else
_remote_type = REMOTETYPE_H100_LCD; /* hold on */
if (--init_delay <= 0)
{
queue_post(&remote_scroll_queue, REMOTE_INIT_LCD, 0);
init_delay = 6;
}
}
else
{
_remote_type = REMOTETYPE_H300_NONLCD; /* hold on or off */
}
}
}
else
{
if (countdown == 0)
{
_remote_type = REMOTETYPE_UNPLUGGED;
queue_post(&remote_scroll_queue, REMOTE_DEINIT_LCD, 0);
}
}
}
/* handle chip select timeout */
if (cs_countdown >= 0)
cs_countdown--;
if (cs_countdown == 0)
CS_HI;
}
/* Update the display.
This must be called after all other LCD functions that change the display. */
void lcd_remote_update(void) ICODE_ATTR;
void lcd_remote_update(void)
{
int y;
if (!remote_initialized)
return;
#ifdef HAVE_REMOTE_LCD_TICKING
/* Adjust byte delay for emi reduction. */
byte_delay = emireduce ? cpu_frequency / 197600 + 28: 0;
#endif
/* Copy display bitmap to hardware */
for (y = 0; y < LCD_REMOTE_FBHEIGHT; y++)
{
lcd_remote_write_command(LCD_REMOTE_CNTL_SET_PAGE_ADDRESS | y);
lcd_remote_write_command(LCD_REMOTE_CNTL_HIGHCOL | ((xoffset >> 4) & 0xf));
lcd_remote_write_command(LCD_REMOTE_CNTL_LOWCOL | (xoffset & 0xf));
lcd_remote_write_data(lcd_remote_framebuffer[y], LCD_REMOTE_WIDTH);
}
}
/* Update a fraction of the display. */
void lcd_remote_update_rect(int, int, int, int) ICODE_ATTR;
void lcd_remote_update_rect(int x, int y, int width, int height)
{
int ymax;
if (!remote_initialized)
return;
/* The Y coordinates have to work on even 8 pixel rows */
ymax = (y + height-1) >> 3;
y >>= 3;
if(x + width > LCD_REMOTE_WIDTH)
width = LCD_REMOTE_WIDTH - x;
if (width <= 0)
return; /* nothing left to do, 0 is harmful to lcd_write_data() */
if(ymax >= LCD_REMOTE_FBHEIGHT)
ymax = LCD_REMOTE_FBHEIGHT-1;
#ifdef HAVE_REMOTE_LCD_TICKING
/* Adjust byte delay for emi reduction */
byte_delay = emireduce ? cpu_frequency / 197600 + 28: 0;
#endif
/* Copy specified rectange bitmap to hardware */
for (; y <= ymax; y++)
{
lcd_remote_write_command(LCD_REMOTE_CNTL_SET_PAGE_ADDRESS | y);
lcd_remote_write_command(LCD_REMOTE_CNTL_HIGHCOL | (((x+xoffset) >> 4) & 0xf));
lcd_remote_write_command(LCD_REMOTE_CNTL_LOWCOL | ((x+xoffset) & 0xf));
lcd_remote_write_data(&lcd_remote_framebuffer[y][x], width);
}
}

View file

@ -0,0 +1,44 @@
/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id: lcd-remote-target.h 11967 2007-01-09 23:29:07Z linus $
*
* Copyright (C) 2007 by Jens Arnold
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#ifndef LCD_REMOTE_TARGET_H
#define LCD_REMOTE_TARGET_H
#define REMOTE_INIT_LCD 1
#define REMOTE_DEINIT_LCD 2
void lcd_remote_write_command(int cmd);
void lcd_remote_write_command_ex(int cmd, int data);
void lcd_remote_write_data(const unsigned char* p_bytes, int count);
#ifdef HAVE_REMOTE_LCD_TICKING
void lcd_remote_emireduce(bool state);
#endif
void lcd_remote_powersave(bool on);
void lcd_remote_set_invert_display(bool yesno);
void lcd_remote_set_flip(bool yesno);
bool remote_detect(void);
void lcd_remote_init_device(void);
void lcd_remote_on(void);
void lcd_remote_off(void);
void lcd_remote_update(void);
void lcd_remote_update_rect(int, int, int, int);
extern bool remote_initialized;
#endif