DSP Compressor: Sidechain, Exponential Atk/Rls
This is an improvement to the current compressor which I have added to my own Sansa Fuze V2 build. I am submitting here in case others find it interesting. Features added to the existing compressor: Attack, Look-ahead, Sidechain Filtering. Exponential attack and release characteristic response. Benefits from adding missing features: Attack: Preserve perceived "brightness" of tone by letting onset transients come through at a higher level than the rest of the compressed program material. Look-ahead: With Attack comes clipping on the leading several cycles of a transient onset. With look-ahead function, this can be pre-emptively mitigated with a slower gain change (less distortion). Look-ahead limiting is implemented to prevent clipping while keeping gain change ramp to an interval near 3ms instead of instant attack. The existing compressor implementation distorts the leading edge of a transient by causing instant gain change, resulting in log() distortion. This sounds "woofy" to me. Exponential Attack/Release: eMore natural sounding. On attack, this is a true straight line of 10dB per attack interval. Release is a little different, however, sounds natural as an analog compressor. Sidechain Filtering: Mild high-pass filter reduces response to low frequency onsets. For example, a hard kick drum is less likely to make the whole of the program material appear to fade in and out. Combined with a moderate attack time, such a transient will ride through with minimal audible artifact. Overall these changes make dynamic music sound more "open", more natural. The goal of a compressor is to make dyanamic music sound louder without necessarily sounding as though it has been compressed. I believe these changes come closer to this goal. Enjoy. If not, I am enjoying it Change-Id: I664eace546c364b815b4dc9ed4a72849231a0eb2 Reviewed-on: http://gerrit.rockbox.org/626 Tested: Purling Nayuki <cyq.yzfl@gmail.com> Reviewed-by: Michael Giacomelli <giac2000@hotmail.com>
This commit is contained in:
parent
5b5f0755d6
commit
d0918b98fa
7 changed files with 323 additions and 91 deletions
|
@ -11910,6 +11910,23 @@
|
|||
swcodec: "Soft Knee"
|
||||
</voice>
|
||||
</phrase>
|
||||
<phrase>
|
||||
id: LANG_COMPRESSOR_ATTACK
|
||||
desc: in sound settings
|
||||
user: core
|
||||
<source>
|
||||
*: none
|
||||
swcodec: "Attack Time"
|
||||
</source>
|
||||
<dest>
|
||||
*: none
|
||||
swcodec: "Attack Time"
|
||||
</dest>
|
||||
<voice>
|
||||
*: none
|
||||
swcodec: "Attack Time"
|
||||
</voice>
|
||||
</phrase>
|
||||
<phrase>
|
||||
id: LANG_COMPRESSOR_RELEASE
|
||||
desc: in sound settings
|
||||
|
|
|
@ -140,12 +140,15 @@ static int timestretch_callback(int action,const struct menu_item_ex *this_item)
|
|||
MENUITEM_SETTING(compressor_knee,
|
||||
&global_settings.compressor_settings.knee,
|
||||
lowlatency_callback);
|
||||
MENUITEM_SETTING(compressor_attack,
|
||||
&global_settings.compressor_settings.attack_time,
|
||||
lowlatency_callback);
|
||||
MENUITEM_SETTING(compressor_release,
|
||||
&global_settings.compressor_settings.release_time,
|
||||
lowlatency_callback);
|
||||
MAKE_MENU(compressor_menu,ID2P(LANG_COMPRESSOR), NULL, Icon_NOICON,
|
||||
&compressor_threshold, &compressor_gain, &compressor_ratio,
|
||||
&compressor_knee, &compressor_release);
|
||||
&compressor_knee, &compressor_attack, &compressor_release);
|
||||
#endif
|
||||
|
||||
#if (CONFIG_CODEC == MAS3587F) || (CONFIG_CODEC == MAS3539F)
|
||||
|
|
|
@ -1654,6 +1654,10 @@ const struct settings_list settings[] = {
|
|||
LANG_COMPRESSOR_KNEE, 1, "compressor knee",
|
||||
"hard knee,soft knee", compressor_set, 2,
|
||||
ID2P(LANG_COMPRESSOR_HARD_KNEE), ID2P(LANG_COMPRESSOR_SOFT_KNEE)),
|
||||
INT_SETTING_NOWRAP(F_SOUNDSETTING, compressor_settings.attack_time,
|
||||
LANG_COMPRESSOR_ATTACK, 5,
|
||||
"compressor attack time", UNIT_MS, 0, 30,
|
||||
5, NULL, NULL, compressor_set),
|
||||
INT_SETTING_NOWRAP(F_SOUNDSETTING, compressor_settings.release_time,
|
||||
LANG_COMPRESSOR_RELEASE, 500,
|
||||
"compressor release time", UNIT_MS, 100, 1000,
|
||||
|
|
|
@ -632,6 +632,7 @@ Vanja Cvelbar
|
|||
Richard Quirk
|
||||
Kirill Stryaponoff
|
||||
Roman Poltoradnev
|
||||
Ryan Billing
|
||||
|
||||
The libmad team
|
||||
The wavpack team
|
||||
|
|
|
@ -23,24 +23,103 @@
|
|||
#include "fracmul.h"
|
||||
#include <string.h>
|
||||
|
||||
/* Define LOGF_ENABLE to enable logf output in this file */
|
||||
/*#define LOGF_ENABLE*/
|
||||
/* Define LOGF_ENABLE to enable logf output in this file
|
||||
* #define LOGF_ENABLE
|
||||
*/
|
||||
#include "logf.h"
|
||||
#include "dsp_proc_entry.h"
|
||||
#include "compressor.h"
|
||||
#include "dsp_misc.h"
|
||||
|
||||
#define UNITY (1L << 24) /* unity gain in S7.24 format */
|
||||
#define MAX_DLY 960 /* Max number of samples to delay
|
||||
output (960 = 5ms @ 192 kHz)
|
||||
*/
|
||||
#define MAX_CH 4 /* Is there a good malloc() or equal
|
||||
for rockbox?
|
||||
*/
|
||||
#define DLY_TIME 3 /* milliseconds */
|
||||
|
||||
static struct compressor_settings curr_set; /* Cached settings */
|
||||
|
||||
static int32_t comp_rel_slope IBSS_ATTR; /* S7.24 format */
|
||||
static int32_t comp_makeup_gain IBSS_ATTR; /* S7.24 format */
|
||||
static int32_t comp_curve[66] IBSS_ATTR; /* S7.24 format */
|
||||
static int32_t release_gain IBSS_ATTR; /* S7.24 format */
|
||||
static int32_t release_holdoff IBSS_ATTR; /* S7.24 format */
|
||||
|
||||
#define UNITY (1L << 24) /* unity gain in S7.24 format */
|
||||
/* 1-pole filter coefficients for exponential attack/release times */
|
||||
static int32_t rlsca IBSS_ATTR; /* Release 'alpha' */
|
||||
static int32_t rlscb IBSS_ATTR; /* Release 'beta' */
|
||||
|
||||
static int32_t attca IBSS_ATTR; /* Attack 'alpha' */
|
||||
static int32_t attcb IBSS_ATTR; /* Attack 'beta' */
|
||||
|
||||
static int32_t limitca IBSS_ATTR; /* Limiter Attack 'alpha' */
|
||||
|
||||
/* 1-pole filter coefficients for sidechain pre-emphasis filters */
|
||||
static int32_t hp1ca IBSS_ATTR; /* hpf1 'alpha' */
|
||||
static int32_t hp2ca IBSS_ATTR; /* hpf2 'beta' */
|
||||
|
||||
/* 1-pole hp filter state variables for pre-emphasis filters */
|
||||
static int32_t hpfx1 IBSS_ATTR; /* hpf1 and hpf2 x[n-1] */
|
||||
static int32_t hp1y1 IBSS_ATTR; /* hpf2 y[n-1] */
|
||||
static int32_t hp2y1 IBSS_ATTR; /* hpf2 y[n-1] */
|
||||
|
||||
/* Delay Line for look-ahead compression */
|
||||
static int32_t labuf[MAX_CH][MAX_DLY]; /* look-ahead buffer */
|
||||
static int32_t delay_time;
|
||||
static int32_t delay_write;
|
||||
static int32_t delay_read;
|
||||
|
||||
/** 1-Pole LP Filter first coefficient computation
|
||||
* Returns S7.24 format integer used for "a" coefficient
|
||||
* rc: "RC Time Constant", or time to decay to 1/e
|
||||
* fs: Sampling Rate
|
||||
* Interpret attack and release time as an RC time constant
|
||||
* (time to decay to 1/e)
|
||||
* 1-pole filters use approximation
|
||||
* a0 = 1/(fs*rc + 1)
|
||||
* b1 = 1.0 - a0
|
||||
* fs = Sampling Rate
|
||||
* rc = Time to decay to 1/e
|
||||
* y[n] = a0*x[n] + b1*y[n-1]
|
||||
*
|
||||
* According to simulation on Intel hardware
|
||||
* this algorithm produces < 2% error for rc < ~100ms
|
||||
* For rc 100ms - 1000ms, error approaches 0%
|
||||
* For compressor attack/release times, this is more than adequate.
|
||||
*
|
||||
* Error was measured against the more rigorous computation:
|
||||
* a0 = 1.0 - e^(-1.0/(fs*rc))
|
||||
*/
|
||||
|
||||
int32_t get_lpf_coeff(int32_t rc, int32_t fs, int32_t rc_units)
|
||||
{
|
||||
int32_t c = fs*rc;
|
||||
c /= rc_units;
|
||||
c += 1;
|
||||
c = UNITY/c;
|
||||
return c;
|
||||
}
|
||||
|
||||
/** Coefficients to get 10dB change per time period "rc"
|
||||
* from 1-pole LP filter topology
|
||||
* This function is better used to match behavior of
|
||||
* linear release which was implemented prior to implementation
|
||||
* of exponential attack/release function
|
||||
*/
|
||||
|
||||
int32_t get_att_rls_coeff(int32_t rc, int32_t fs)
|
||||
{
|
||||
int32_t c = UNITY/fs;
|
||||
c *= 1152; /* 1000 * 10/( 20*log10( 1/e ) ) */
|
||||
c /= rc;
|
||||
return c;
|
||||
}
|
||||
|
||||
/** COMPRESSOR UPDATE
|
||||
* Called via the menu system to configure the compressor process */
|
||||
* Called via the menu system to configure the compressor process
|
||||
*/
|
||||
static bool compressor_update(struct dsp_config *dsp,
|
||||
const struct compressor_settings *settings)
|
||||
{
|
||||
|
@ -50,10 +129,42 @@ static bool compressor_update(struct dsp_config *dsp,
|
|||
static const int comp_ratios[] = { 2, 4, 6, 10, 0 };
|
||||
int ratio = comp_ratios[settings->ratio];
|
||||
bool soft_knee = settings->knee == 1;
|
||||
int release = settings->release_time *
|
||||
dsp_get_output_frequency(dsp) / 1000;
|
||||
int32_t release = settings->release_time;
|
||||
int32_t attack = settings->attack_time;
|
||||
|
||||
bool changed = settings == &curr_set; /* If frequency change */
|
||||
/* Compute Attack and Release Coefficients */
|
||||
int32_t fs = dsp_get_output_frequency(dsp);
|
||||
|
||||
/* Release */
|
||||
rlsca = get_att_rls_coeff(release, fs);
|
||||
rlscb = UNITY - rlsca ;
|
||||
|
||||
/* Attack */
|
||||
if(attack > 0)
|
||||
{
|
||||
attca = get_att_rls_coeff(attack, fs);
|
||||
attcb = UNITY - attca ;
|
||||
}
|
||||
else {
|
||||
attca = UNITY;
|
||||
attcb = 0;
|
||||
}
|
||||
|
||||
|
||||
/* Sidechain pre-emphasis filter coefficients */
|
||||
hp1ca = fs + 0x003C1; /** The "magic" constant is 1/RC. This filter
|
||||
* cut-off is approximately 237 Hz
|
||||
*/
|
||||
hp1ca = UNITY/hp1ca;
|
||||
hp1ca *= fs;
|
||||
|
||||
hp2ca = fs + 0x02065; /* The "magic" constant is 1/RC. This filter
|
||||
* cut-off is approximately 2.18 kHz
|
||||
*/
|
||||
hp2ca = UNITY/hp2ca;
|
||||
hp2ca *= fs;
|
||||
|
||||
bool changed = settings == &curr_set; /* If frequency changes */
|
||||
bool active = threshold < 0;
|
||||
|
||||
if (memcmp(settings, &curr_set, sizeof (curr_set)))
|
||||
|
@ -91,6 +202,10 @@ static bool compressor_update(struct dsp_config *dsp,
|
|||
{
|
||||
logf(" Compressor Release: %d", release);
|
||||
}
|
||||
if (settings->attack_time != cur_set.attack_time)
|
||||
{
|
||||
logf(" Compressor Attack: %d", attack);
|
||||
}
|
||||
#endif
|
||||
|
||||
curr_set = *settings;
|
||||
|
@ -125,13 +240,13 @@ static bool compressor_update(struct dsp_config *dsp,
|
|||
int32_t offset; /* S15.16 format */
|
||||
} db_curve[5];
|
||||
|
||||
/** Set up the shape of the compression curve first as decibel
|
||||
values */
|
||||
/* db_curve[0] = bottom of knee
|
||||
[1] = threshold
|
||||
[2] = top of knee
|
||||
[3] = 0 db input
|
||||
[4] = ~+12db input (2 bits clipping overhead) */
|
||||
/** Set up the shape of the compression curve first as decibel values
|
||||
* db_curve[0] = bottom of knee
|
||||
* [1] = threshold
|
||||
* [2] = top of knee
|
||||
* [3] = 0 db input
|
||||
* [4] = ~+12db input (2 bits clipping overhead)
|
||||
*/
|
||||
|
||||
db_curve[1].db = threshold << 16;
|
||||
if (soft_knee)
|
||||
|
@ -175,24 +290,28 @@ static bool compressor_update(struct dsp_config *dsp,
|
|||
}
|
||||
|
||||
/** Now set up the comp_curve table with compression offsets in the
|
||||
form of gain factors in S7.24 format */
|
||||
/* comp_curve[0] is 0 (-infinity db) input */
|
||||
* form of gain factors in S7.24 format
|
||||
* comp_curve[0] is 0 (-infinity db) input
|
||||
*/
|
||||
comp_curve[0] = UNITY;
|
||||
/* comp_curve[1 to 63] are intermediate compression values
|
||||
corresponding to the 6 MSB of the input values of a non-clipped
|
||||
signal */
|
||||
/** comp_curve[1 to 63] are intermediate compression values
|
||||
* corresponding to the 6 MSB of the input values of a non-clipped
|
||||
* signal
|
||||
*/
|
||||
for (int i = 1; i < 64; i++)
|
||||
{
|
||||
/* db constants are stored as positive numbers;
|
||||
make them negative here */
|
||||
/** db constants are stored as positive numbers;
|
||||
* make them negative here
|
||||
*/
|
||||
int32_t this_db = -db[i];
|
||||
|
||||
/* no compression below the knee */
|
||||
if (this_db <= db_curve[0].db)
|
||||
comp_curve[i] = UNITY;
|
||||
|
||||
/* if soft knee and below top of knee,
|
||||
interpolate along soft knee slope */
|
||||
/** if soft knee and below top of knee,
|
||||
* interpolate along soft knee slope
|
||||
*/
|
||||
else if (soft_knee && (this_db <= db_curve[2].db))
|
||||
comp_curve[i] = fp_factor(fp_mul(
|
||||
((this_db - db_curve[0].db) / 6),
|
||||
|
@ -204,14 +323,22 @@ static bool compressor_update(struct dsp_config *dsp,
|
|||
fp_div((db_curve[1].db - this_db), db_curve[1].db, 16),
|
||||
db_curve[3].offset, 16), 16) << 8;
|
||||
}
|
||||
/* comp_curve[64] is the compression level of a maximum level,
|
||||
non-clipped signal */
|
||||
/** comp_curve[64] is the compression level of a maximum level,
|
||||
* non-clipped signal
|
||||
*/
|
||||
comp_curve[64] = fp_factor(db_curve[3].offset, 16) << 8;
|
||||
|
||||
/* comp_curve[65] is the compression level of a maximum level,
|
||||
clipped signal */
|
||||
/** comp_curve[65] is the compression level of a maximum level,
|
||||
* clipped signal
|
||||
*/
|
||||
comp_curve[65] = fp_factor(db_curve[4].offset, 16) << 8;
|
||||
|
||||
/** if using auto peak, then makeup gain is max offset -
|
||||
* 3dB headroom
|
||||
*/
|
||||
comp_makeup_gain = auto_gain ?
|
||||
fp_factor(-(db_curve[3].offset) - 0x4AC4, 16) << 8 : UNITY;
|
||||
|
||||
#if defined(ROCKBOX_HAS_LOGF) && defined(LOGF_ENABLE)
|
||||
logf("\n *** Compression Offsets ***");
|
||||
/* some settings for display only, not used in calculations */
|
||||
|
@ -233,20 +360,10 @@ static bool compressor_update(struct dsp_config *dsp,
|
|||
if (i % 4 == 0) DEBUGF("\n");
|
||||
}
|
||||
DEBUGF("\n");
|
||||
|
||||
logf("Makeup gain:\t%.6f", (float)comp_makeup_gain / UNITY);
|
||||
#endif
|
||||
|
||||
/* if using auto peak, then makeup gain is max offset -
|
||||
.1dB headroom */
|
||||
comp_makeup_gain = auto_gain ?
|
||||
fp_factor(-(db_curve[3].offset) - 0x199A, 16) << 8 : UNITY;
|
||||
logf("Makeup gain:\t%.6f", (float)comp_makeup_gain / UNITY);
|
||||
|
||||
/* calculate per-sample gain change a rate of 10db over release time
|
||||
*/
|
||||
comp_rel_slope = 0xAF0BB2 / release;
|
||||
logf("Release slope:\t%.6f", (float)comp_rel_slope / UNITY);
|
||||
|
||||
release_gain = UNITY;
|
||||
return active;
|
||||
}
|
||||
|
||||
|
@ -276,17 +393,19 @@ static inline int32_t get_compression_gain(struct sample_format *format,
|
|||
int index = sample >> 9;
|
||||
int32_t rem = (sample & 0x1FF) << 22;
|
||||
|
||||
/* interpolate from the compression curve:
|
||||
higher gain - ((rem / (1 << 31)) * (higher gain - lower gain)) */
|
||||
/** interpolate from the compression curve:
|
||||
* higher gain - ((rem / (1 << 31)) * (higher gain - lower gain))
|
||||
*/
|
||||
return comp_curve[index] - (FRACMUL(rem,
|
||||
(comp_curve[index] - comp_curve[index + 1])));
|
||||
}
|
||||
/* sample is somewhat clipped, up to 2 bits of overhead */
|
||||
if (sample < (1 << 17))
|
||||
{
|
||||
/* straight interpolation:
|
||||
higher gain - ((clipped portion of sample * 4/3
|
||||
/ (1 << 31)) * (higher gain - lower gain)) */
|
||||
/** straight interpolation:
|
||||
* higher gain - ((clipped portion of sample * 4/3
|
||||
* / (1 << 31)) * (higher gain - lower gain))
|
||||
*/
|
||||
return comp_curve[64] - (FRACMUL(((sample - (1 << 15)) / 3) << 16,
|
||||
(comp_curve[64] - comp_curve[65])));
|
||||
}
|
||||
|
@ -322,55 +441,115 @@ static void compressor_process(struct dsp_proc_entry *this,
|
|||
|
||||
while (count-- > 0)
|
||||
{
|
||||
/* use lowest (most compressed) gain factor of the output buffer
|
||||
sample pair for both samples (mono is also handled correctly here)
|
||||
*/
|
||||
|
||||
/* Use the average of the channels */
|
||||
|
||||
int32_t sample_gain = UNITY;
|
||||
int32_t x = 0;
|
||||
int32_t tmpx = 0;
|
||||
int32_t in_buf_max_level = 0;
|
||||
for (int ch = 0; ch < num_chan; ch++)
|
||||
{
|
||||
int32_t this_gain = get_compression_gain(&buf->format, *in_buf[ch]);
|
||||
if (this_gain < sample_gain)
|
||||
sample_gain = this_gain;
|
||||
tmpx = *in_buf[ch];
|
||||
x += tmpx;
|
||||
labuf[ch][delay_write] = tmpx;
|
||||
/* Limiter detection */
|
||||
if(tmpx < 0) tmpx = -(tmpx + 1);
|
||||
if(tmpx > in_buf_max_level) in_buf_max_level = tmpx;
|
||||
}
|
||||
|
||||
/* perform release slope; skip if no compression and no release slope
|
||||
/** Divide it by the number of channels, roughly
|
||||
* It will be exact if the number of channels a power of 2
|
||||
* it will be imperfect otherwise. Real division costs too
|
||||
* much here, and most of the time it will be 2 channels (stereo)
|
||||
*/
|
||||
if ((sample_gain != UNITY) || (release_gain != UNITY))
|
||||
{
|
||||
/* if larger offset than previous slope, start new release slope
|
||||
x >>= (num_chan >> 1);
|
||||
|
||||
/** 1p HP Filters: y[n] = a*(y[n-1] + x - x[n-1])
|
||||
* Zero and Pole in the same place to reduce computation
|
||||
* Run the first pre-emphasis filter
|
||||
*/
|
||||
int32_t tmp1 = x - hpfx1 + hp1y1;
|
||||
hp1y1 = FRACMUL_SHL(hp1ca, tmp1, 7);
|
||||
|
||||
/* Run the second pre-emphasis filter */
|
||||
tmp1 = x - hpfx1 + hp2y1;
|
||||
hp2y1 = FRACMUL_SHL(hp2ca, tmp1, 7);
|
||||
hpfx1 = x;
|
||||
|
||||
/* Apply weighted sum to the pre-emphasis network */
|
||||
sample_gain = (x>>1) + hp1y1 + (hp2y1<<1); /* x/2 + hp1 + 2*hp2 */
|
||||
sample_gain >>= 1;
|
||||
sample_gain += sample_gain >> 1;
|
||||
sample_gain = get_compression_gain(&buf->format, sample_gain);
|
||||
|
||||
/* Exponential Attack and Release */
|
||||
|
||||
if ((sample_gain <= release_gain) && (sample_gain > 0))
|
||||
{
|
||||
/* Attack */
|
||||
if(attca != UNITY)
|
||||
{
|
||||
int32_t this_gain = FRACMUL_SHL(release_gain, attcb, 7);
|
||||
this_gain += FRACMUL_SHL(sample_gain, attca, 7);
|
||||
release_gain = this_gain;
|
||||
}
|
||||
else
|
||||
{
|
||||
release_gain = sample_gain;
|
||||
}
|
||||
/** reset it to delay time so it cannot release before the
|
||||
* delayed signal releases
|
||||
*/
|
||||
release_holdoff = delay_time;
|
||||
}
|
||||
else
|
||||
/* keep sloping towards unity gain (and ignore invalid value) */
|
||||
/* Reverse exponential decay to current gain value */
|
||||
{
|
||||
release_gain += comp_rel_slope;
|
||||
if (release_gain > UNITY)
|
||||
/* Don't start release while output is still above thresh */
|
||||
if(release_holdoff > 0)
|
||||
{
|
||||
release_gain = UNITY;
|
||||
}
|
||||
release_holdoff--;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Release */
|
||||
int32_t this_gain = FRACMUL_SHL(release_gain, rlscb, 7);
|
||||
this_gain += FRACMUL_SHL(sample_gain,rlsca,7);
|
||||
release_gain = this_gain;
|
||||
}
|
||||
|
||||
/* total gain factor is the product of release gain and makeup gain,
|
||||
but avoid computation if possible */
|
||||
int32_t total_gain = ((release_gain == UNITY) ? comp_makeup_gain :
|
||||
(comp_makeup_gain == UNITY) ? release_gain :
|
||||
FRACMUL_SHL(release_gain, comp_makeup_gain, 7));
|
||||
}
|
||||
|
||||
/* Implement the compressor: apply total gain factor (if any) to the
|
||||
output buffer sample pair/mono sample */
|
||||
/** total gain factor is the product of release gain and makeup gain,
|
||||
* but avoid computation if possible
|
||||
*/
|
||||
|
||||
int32_t total_gain = FRACMUL_SHL(release_gain, comp_makeup_gain, 7);
|
||||
|
||||
/* Look-ahead limiter */
|
||||
int32_t test_gain = FRACMUL_SHL(total_gain, in_buf_max_level, 3);
|
||||
if( test_gain > UNITY)
|
||||
{
|
||||
release_gain -= limitca;
|
||||
}
|
||||
|
||||
/** Implement the compressor: apply total gain factor (if any) to the
|
||||
* output buffer sample pair/mono sample
|
||||
*/
|
||||
if (total_gain != UNITY)
|
||||
{
|
||||
for (int ch = 0; ch < num_chan; ch++)
|
||||
{
|
||||
*in_buf[ch] = FRACMUL_SHL(total_gain, *in_buf[ch], 7);
|
||||
*in_buf[ch] = FRACMUL_SHL(total_gain, labuf[ch][delay_read], 7);
|
||||
}
|
||||
}
|
||||
in_buf[0]++;
|
||||
in_buf[1]++;
|
||||
delay_write++;
|
||||
delay_read++;
|
||||
if(delay_write >= MAX_DLY) delay_write = 0;
|
||||
if(delay_read >= MAX_DLY) delay_read = 0;
|
||||
}
|
||||
|
||||
(void)this;
|
||||
|
@ -382,6 +561,8 @@ static intptr_t compressor_configure(struct dsp_proc_entry *this,
|
|||
unsigned int setting,
|
||||
intptr_t value)
|
||||
{
|
||||
int i,j;
|
||||
|
||||
switch (setting)
|
||||
{
|
||||
case DSP_PROC_INIT:
|
||||
|
@ -394,7 +575,29 @@ static intptr_t compressor_configure(struct dsp_proc_entry *this,
|
|||
/* Fall-through */
|
||||
case DSP_RESET:
|
||||
case DSP_FLUSH:
|
||||
|
||||
release_gain = UNITY;
|
||||
for(i=0; i<MAX_CH; i++)
|
||||
{
|
||||
for(j=0; j<MAX_DLY; j++)
|
||||
{
|
||||
labuf[i][j] = 0; /* All Silence */
|
||||
}
|
||||
}
|
||||
|
||||
/* Delay Line Read/Write Pointers */
|
||||
int32_t fs = dsp_get_output_frequency(dsp);
|
||||
delay_read = 0;
|
||||
delay_write = (DLY_TIME*fs/1000);
|
||||
if(delay_write >= MAX_DLY) {
|
||||
delay_write = MAX_DLY - 1; /* Limit to the max allocated buffer */
|
||||
}
|
||||
|
||||
delay_time = delay_write;
|
||||
release_holdoff = delay_write;
|
||||
limitca = get_att_rls_coeff(DLY_TIME, fs); /** Attack time for
|
||||
* look-ahead limiter
|
||||
*/
|
||||
break;
|
||||
|
||||
case DSP_SET_OUT_FREQUENCY:
|
||||
|
|
|
@ -28,6 +28,7 @@ struct compressor_settings
|
|||
int ratio;
|
||||
int knee;
|
||||
int release_time;
|
||||
int attack_time;
|
||||
};
|
||||
|
||||
void dsp_set_compressor(const struct compressor_settings *settings);
|
||||
|
|
|
@ -603,6 +603,9 @@ non-compressed signal to a compressed signal. Hard Knee means that the
|
|||
transition occurs precisely at the threshold. The Soft Knee setting smoothes
|
||||
the transition from plus or minus three decibels around the threshold.
|
||||
|
||||
The \setting{Attack Time} setting sets the delay in milliseconds between the
|
||||
input signal exceeding the activation threshold and acting upon it.
|
||||
|
||||
The \setting{Release Time} setting sets the recovery time after the signal is
|
||||
compressed. Once the compressor determines that compression is necessary,
|
||||
the input signal is reduced appropriately, but the gain isn't allowed to
|
||||
|
|
Loading…
Reference in a new issue