Iriver remote LCD driver: * Split out assembler parts. * Reintroduced the 2 transfer routine variants (low/high CPU clock), and made the version for high CPU clock a little slower because there were problems reported. The function can be slowed down more if there are still problems.

git-svn-id: svn://svn.rockbox.org/rockbox/trunk@17006 a1c6a512-1295-4272-9138-f99709370657
This commit is contained in:
Jens Arnold 2008-04-06 23:57:37 +00:00
parent 01eb385f57
commit 9737fc7c26
3 changed files with 311 additions and 204 deletions

View file

@ -535,6 +535,7 @@ target/coldfire/ata-as-coldfire.S
target/coldfire/pcf50606-coldfire.c
target/coldfire/iriver/ata-iriver.c
target/coldfire/iriver/lcd-remote-iriver.c
target/coldfire/iriver/lcd-remote-as-iriver.S
target/coldfire/iriver/system-iriver.c
target/coldfire/iriver/fmradio_i2c-iriver.c
target/coldfire/iriver/h300/sw_i2c-h300.c
@ -559,6 +560,7 @@ drivers/sw_i2c.c
target/coldfire/ata-as-coldfire.S
target/coldfire/iriver/ata-iriver.c
target/coldfire/iriver/lcd-remote-iriver.c
target/coldfire/iriver/lcd-remote-as-iriver.S
target/coldfire/iriver/system-iriver.c
target/coldfire/iriver/fmradio_i2c-iriver.c
target/coldfire/iriver/h100/adc-h100.c

View file

@ -0,0 +1,302 @@
/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2008 by Jens Arnold
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#define RS_MASK 0x00010000
#define CLOCK_MASK 0x10000000
#define GPIO_OUT_ADDR 0x80000004
#define CS_MASK 0x00000004 /* used in moveq.l */
#define DATA_MASK 0x00040000
#define GPIO1_OUT_ADDR 0x800000b4
#define CS_TIMEOUT 10 /* HZ/10 */
.extern cpu_frequency /* Global variable from system.c */
.extern remote_byte_delay /* Global variable from lcd-remote-iriver.c */
.extern remote_cs_countdown /* Global variable from lcd-remote-iriver.c */
.section .icode,"ax",@progbits
/* Output 8 bits to the LCD. Instruction order is devised to maximize the
* delay between changing the data line and the CLK L->H transition, which
* makes the LCD controller sample DATA.
* Requires CLK = 0 on entry.
*
* Custom calling convention:
* %a0 - GPIO_OUT_ADDR
* %a1 - GPIO1_OUT_ADDR
* %d4 - data byte
* %d6 - DATA_MASK
* Clobbers:
* %d0..%d4
*/
#ifdef HAVE_REMOTE_LCD_TICKING
.write_byte_delayed:
move.l remote_byte_delay, %d0
1:
subq.l #1, %d0
bne.s 1b
#endif
.write_byte:
move.w %sr, %d3 /* Get current interrupt level */
move.w #0x2700, %sr /* Disable interrupts */
move.l (%a1), %d0 /* Get current state of data port */
move.l %d0, %d1
and.l %d6, %d1 /* Check current state of data line */
beq.s 1f /* and set it as previous-state bit */
bset #8, %d4
1:
move.l %d4, %d1 /* Compute the 'bit derivative', i.e. a value */
lsr.l #1, %d1 /* with 1's where the data changes from the */
eor.l %d1, %d4 /* previous state, and 0's where it doesn't */
swap %d4 /* Shift data to upper byte */
lsl.l #8, %d4
move.l (%a0),%d1 /* Get current state of clock port */
move.l %d1, %d2 /* Precalculate opposite state of clock line */
eor.l #CLOCK_MASK, %d2
lsl.l #1, %d4 /* Invert data line for bit7 ? */
bcc.s 1f /* no: skip */
eor.l %d6, %d0 /* invert data bit */
move.l %d0, (%a1) /* output data bit7 */
nop
1:
.macro bit_out
lsl.l #1, %d4 /* Invert data line for bit6 ? */
bcc.s 1f /* no: skip */
eor.l %d6, %d0 /* Invert data bit */
move.l %d2, (%a0) /* Bit7: set CLK = 1 */
move.l %d1, (%a0) /* set CLK = 0 */
move.l %d0, (%a1) /* Output data bit6 */
bra.s 2f /* slower than trapf.l - required here */
1: /* else */
move.l %d2, (%a0) /* Bit7: set CLK = 1 */
move.l %d1, (%a0) /* set CLK = 0 */
2:
.endm
bit_out
bit_out
bit_out
bit_out
bit_out
bit_out
bit_out
nop /* Let data line settle */
move.l %d2, (%a0) /* Bit0: Set CLK = 1 */
move.l %d1, (%a0) /* Set CLK = 0 */
move.w %d3, %sr /* Restore interrupt level */
rts
/* Output 8 bits to the LCD as fast as possible. Use only at < 60MHz.
*
* Custom calling convention:
* %a0 - GPIO_OUT_ADDR
* %a1 - GPIO1_OUT_ADDR
* %d4 - data word
* %d6 - DATA_MASK
* Clobbers:
* %d0..%d4
*/
#ifdef HAVE_REMOTE_LCD_TICKING
.write_byte_fast_delayed:
move.l remote_byte_delay, %d0
1:
subq.l #1, %d0
bne.s 1b
#endif
.write_byte_fast:
move.w %sr, %d3 /* Get current interrupt level */
move.w #0x2700,%sr /* Disable interrupts */
move.l (%a1), %d0 /* Get current state of data port */
move.l %d0, %d1
and.l %d6, %d1 /* Check current state of data line */
beq.s 1f /* and set it as previous-state bit */
bset #8, %d4
1:
move.l %d4, %d1 /* Compute the 'bit derivative', i.e. a value */
lsr.l #1, %d1 /* with 1's where the data changes from the */
eor.l %d1, %d4 /* previous state, and 0's where it doesn't */
swap %d4 /* Shift data to upper byte */
lsl.l #8, %d4
move.l (%a0), %d1 /* Get current state of clock port */
move.l %d1, %d2 /* Precalculate opposite state of clock line */
eor.l #CLOCK_MASK, %d2
.macro bit_out_fast
lsl.l #1,%d4 /* Shift out MSB */
bcc.s 1f
eor.l %d6, %d0 /* 1: flip data bit */
move.l %d0, (%a1) /* and output new DATA state */
1:
move.l %d2, (%a0) /* Set CLK */
move.l %d1, (%a0) /* Reset CLK */
.endm
bit_out_fast
bit_out_fast
bit_out_fast
bit_out_fast
bit_out_fast
bit_out_fast
bit_out_fast
bit_out_fast
move.w %d3, %sr /* Restore interrupt level */
rts
.global lcd_remote_write_command
.type lcd_remote_write_command, @function
lcd_remote_write_command:
lea.l (-4*4, %sp), %sp
movem.l %d2-%d4/%d6, (%sp)
move.l (4*4+4, %sp), %d4 /* cmd */
lea.l GPIO_OUT_ADDR, %a0
lea.l GPIO1_OUT_ADDR, %a1
move.l #DATA_MASK, %d6
clr.l remote_cs_countdown
move.l #~RS_MASK, %d0
and.l %d0, (%a0)
moveq.l #~CS_MASK, %d0
and.l %d0, (%a1)
#ifdef HAVE_REMOTE_LCD_TICKING
tst.l remote_byte_delay
ble.s 1f
bsr.w .write_byte_delayed
bra.s 2f
1:
#endif
bsr.w .write_byte
2:
moveq.l #CS_TIMEOUT, %d0
move.l %d0, remote_cs_countdown
movem.l (%sp), %d2-%d4/%d6
lea.l (4*4, %sp), %sp
rts
.global lcd_remote_write_command_ex
.type lcd_remote_write_command_ex, @function
lcd_remote_write_command_ex:
lea.l (-4*4, %sp), %sp
movem.l %d2-%d4/%d6, (%sp)
lea.l GPIO_OUT_ADDR, %a0
lea.l GPIO1_OUT_ADDR, %a1
move.l #DATA_MASK, %d6
clr.l remote_cs_countdown
move.l #~RS_MASK, %d0
and.l %d0, (%a0)
moveq.l #~CS_MASK, %d0
and.l %d0, (%a1)
move.l (4*4+4, %sp), %d4
#ifdef HAVE_REMOTE_LCD_TICKING
tst.l remote_byte_delay
ble.s 1f
bsr.w .write_byte_delayed
move.l (4*4+8, %sp), %d4
bsr.w .write_byte_delayed
bra.s 2f
1:
#endif
bsr.w .write_byte
move.l (4*4+8, %sp), %d4
bsr.w .write_byte
2:
moveq.l #CS_TIMEOUT, %d0
move.l %d0, remote_cs_countdown
movem.l (%sp), %d2-%d4/%d6
lea.l (4*4, %sp), %sp
rts
.global lcd_remote_write_data
.type lcd_remote_write_data, @function
lcd_remote_write_data:
lea.l (-7*4, %sp), %sp
movem.l %d2-%d6/%a2-%a3, (%sp)
move.l (7*4+4, %sp), %a2 /* p_bytes */
move.l (7*4+8, %sp), %d5 /* count */
lea.l GPIO_OUT_ADDR, %a0
lea.l GPIO1_OUT_ADDR, %a1
move.l #DATA_MASK, %d6
lea.l .write_byte, %a3
move.l cpu_frequency, %d0
cmp.l #60000000, %d0
bhi.b 1f
lea.l .write_byte_fast, %a3
1:
#ifdef HAVE_REMOTE_LCD_TICKING
tst.l remote_byte_delay
ble.s 1f
moveq.l #(.write_byte_delayed - .write_byte), %d0
add.l %d0, %a3
1:
#endif
clr.l remote_cs_countdown
move.l #RS_MASK, %d0
or.l %d0, (%a0)
moveq.l #~CS_MASK, %d0
and.l %d0, (%a1)
.wd_loop:
clr.l %d4
move.b (%a2)+, %d4
jsr (%a3)
subq.l #1, %d5
bne.s .wd_loop
moveq.l #CS_TIMEOUT, %d0
move.l %d0, remote_cs_countdown
movem.l (%sp), %d2-%d6/%a2-%a3
lea.l (7*4, %sp), %sp
rts

View file

@ -56,13 +56,13 @@
static int xoffset; /* needed for flip */
/* timeout counter for deasserting /CS after access, <0 means not counting */
static int cs_countdown IDATA_ATTR = 0;
int remote_cs_countdown IDATA_ATTR = 0;
#define CS_TIMEOUT (HZ/10)
#ifdef HAVE_REMOTE_LCD_TICKING
/* If set to true, will prevent "ticking" to headphones. */
static bool emireduce = false;
static int byte_delay = 0;
int remote_byte_delay = 0; /* used in lcd-remote-as-iriver.S */
#endif
bool remote_initialized = false;
@ -74,203 +74,6 @@ static bool cached_flip = false;
static int cached_contrast = DEFAULT_REMOTE_CONTRAST_SETTING;
#ifdef HAVE_REMOTE_LCD_TICKING
static inline void _byte_delay(int delay)
{
asm (
"move.l %[dly], %%d0 \n"
"ble.s 2f \n"
"1: \n"
"subq.l #1, %%d0 \n"
"bne.s 1b \n"
"2: \n"
: /* outputs */
: /* inputs */
[dly]"d"(delay)
: /* clobbers */
"d0"
);
}
#endif /* HAVE_REMOTE_LCD_TICKING */
/* Low-level byte writer. Instruction order is devised to maximize the delay
* between changing the data line and the CLK L->H transition, which makes
* the LCD controller sample DATA, so it's fast yet usable even when boosted.
* Requires CLK low on entry */
static inline void _write_byte(unsigned data)
{
asm volatile (
"move.w %%sr, %%d3 \n" /* Get current interrupt level */
"move.w #0x2700, %%sr \n" /* Disable interrupts */
"move.l (%[gpo1]), %%d0 \n" /* Get current state of data port */
"move.l %%d0, %%d1 \n"
"and.l %[dbit], %%d1 \n" /* Check current state of data line */
"beq.s 1f \n" /* and set it as previous-state bit */
"bset #8, %[data] \n"
"1: \n"
"move.l %[data], %%d1 \n" /* Compute the 'bit derivative', i.e. a value */
"lsr.l #1, %%d1 \n" /* with 1's where the data changes from the */
"eor.l %%d1, %[data] \n" /* previous state, and 0's where it doesn't */
"swap %[data] \n" /* Shift data to upper byte */
"lsl.l #8, %[data] \n"
"move.l (%[gpo0]),%%d1 \n" /* Get current state of clock port */
"move.l %%d1, %%d2 \n" /* Precalculate opposite state of clock line */
"eor.l %[cbit], %%d2 \n"
"lsl.l #1, %[data] \n" /* Invert data line for bit7 ? */
"bcc.s 1f \n" /* no: skip */
"eor.l %[dbit], %%d0 \n" /* invert data bit */
"move.l %%d0, (%[gpo1]) \n" /* output data bit7 */
"1: \n"
"lsl.l #1, %[data] \n" /* Invert data line for bit6 ? */
"bcc.s 1f \n" /* no: skip */
"eor.l %[dbit], %%d0 \n" /* Invert data bit */
"move.l %%d2, (%[gpo0]) \n" /* Bit7: set CLK = 1 */
"move.l %%d1, (%[gpo0]) \n" /* set CLK = 0 */
"move.l %%d0, (%[gpo1]) \n" /* Output data bit6 */
".word 0x51fb \n" /* trapf.l - skip next 2 insns */
"1: \n" /* else */
"move.l %%d2, (%[gpo0]) \n" /* Bit7: set CLK = 1 */
"move.l %%d1, (%[gpo0]) \n" /* set CLK = 0 */
"lsl.l #1, %[data] \n" /* Unrolled */
"bcc.s 1f \n"
"eor.l %[dbit], %%d0 \n"
"move.l %%d2, (%[gpo0]) \n"
"move.l %%d1, (%[gpo0]) \n"
"move.l %%d0, (%[gpo1]) \n"
".word 0x51fb \n"
"1: \n"
"move.l %%d2, (%[gpo0]) \n"
"move.l %%d1, (%[gpo0]) \n"
"lsl.l #1, %[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], %%d0 \n"
"move.l %%d2, (%[gpo0]) \n"
"move.l %%d1, (%[gpo0]) \n"
"move.l %%d0, (%[gpo1]) \n"
".word 0x51fb \n"
"1: \n"
"move.l %%d2, (%[gpo0]) \n"
"move.l %%d1, (%[gpo0]) \n"
"lsl.l #1, %[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], %%d0 \n"
"move.l %%d2, (%[gpo0]) \n"
"move.l %%d1, (%[gpo0]) \n"
"move.l %%d0, (%[gpo1]) \n"
".word 0x51fb \n"
"1: \n"
"move.l %%d2, (%[gpo0]) \n"
"move.l %%d1, (%[gpo0]) \n"
"lsl.l #1, %[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], %%d0 \n"
"move.l %%d2, (%[gpo0]) \n"
"move.l %%d1, (%[gpo0]) \n"
"move.l %%d0, (%[gpo1]) \n"
".word 0x51fb \n"
"1: \n"
"move.l %%d2, (%[gpo0]) \n"
"move.l %%d1, (%[gpo0]) \n"
"lsl.l #1, %[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], %%d0 \n"
"move.l %%d2, (%[gpo0]) \n"
"move.l %%d1, (%[gpo0]) \n"
"move.l %%d0, (%[gpo1]) \n"
".word 0x51fb \n"
"1: \n"
"move.l %%d2, (%[gpo0]) \n"
"move.l %%d1, (%[gpo0]) \n"
"lsl.l #1, %[data] \n"
"bcc.s 1f \n"
"eor.l %[dbit], %%d0 \n"
"move.l %%d2, (%[gpo0]) \n"
"move.l %%d1, (%[gpo0]) \n"
"move.l %%d0, (%[gpo1]) \n"
".word 0x51fb \n"
"1: \n"
"move.l %%d2, (%[gpo0]) \n"
"move.l %%d1, (%[gpo0]) \n"
"nop \n" /* Let data line settle */
"move.l %%d2, (%[gpo0]) \n" /* Bit0: Set CLK = 1 */
"move.l %%d1, (%[gpo0]) \n" /* Set CLK = 0 */
"move.w %%d3, %%sr \n" /* Restore interrupt level */
: /* outputs */
[data]"+d"(data)
: /* inputs */
[gpo0]"a"(&GPIO_OUT),
[cbit]"i"(0x10000000),
[gpo1]"a"(&GPIO1_OUT),
[dbit]"d"(0x00040000)
: /* clobbers */
"d0", "d1", "d2", "d3"
);
}
void lcd_remote_write_command(int cmd)
{
cs_countdown = 0;
RS_LO;
CS_LO;
_write_byte(cmd);
#ifdef HAVE_REMOTE_LCD_TICKING
_byte_delay(byte_delay);
#endif
cs_countdown = CS_TIMEOUT;
}
void lcd_remote_write_command_ex(int cmd, int data)
{
cs_countdown = 0;
RS_LO;
CS_LO;
_write_byte(cmd);
#ifdef HAVE_REMOTE_LCD_TICKING
_byte_delay(byte_delay);
#endif
_write_byte(data);
#ifdef HAVE_REMOTE_LCD_TICKING
_byte_delay(byte_delay);
#endif
cs_countdown = CS_TIMEOUT;
}
void lcd_remote_write_data(const unsigned char* p_bytes, int count) ICODE_ATTR;
void lcd_remote_write_data(const unsigned char* p_bytes, int count)
{
const unsigned char *p_end = p_bytes + count;
cs_countdown = 0;
RS_HI;
CS_LO;
while (p_bytes < p_end)
{
_write_byte(*p_bytes++);
#ifdef HAVE_REMOTE_LCD_TICKING
_byte_delay(byte_delay);
#endif
}
cs_countdown = CS_TIMEOUT;
}
/*** hardware configuration ***/
int lcd_remote_default_contrast(void)
@ -448,9 +251,9 @@ static void remote_tick(void)
}
/* handle chip select timeout */
if (cs_countdown >= 0)
cs_countdown--;
if (cs_countdown == 0)
if (remote_cs_countdown >= 0)
remote_cs_countdown--;
if (remote_cs_countdown == 0)
CS_HI;
}
#endif
@ -496,7 +299,7 @@ void lcd_remote_update(void)
#ifdef HAVE_REMOTE_LCD_TICKING
/* Adjust byte delay for emi reduction. */
byte_delay = emireduce ? cpu_frequency / 192800 - 90: 0;
remote_byte_delay = emireduce ? cpu_frequency / 192800 - 100: 0;
#endif
/* Copy display bitmap to hardware */
@ -530,7 +333,7 @@ void lcd_remote_update_rect(int x, int y, int width, int height)
#ifdef HAVE_REMOTE_LCD_TICKING
/* Adjust byte delay for emi reduction */
byte_delay = emireduce ? cpu_frequency / 192800 - 90: 0;
remote_byte_delay = emireduce ? cpu_frequency / 192800 - 100: 0;
#endif
/* Copy specified rectange bitmap to hardware */