Sansa c200v2 : lcd & backlight support, using the c200v1 lcd driver

The LCD driver is unified and lcd_send_command now takes 2 arguments : the command and its argument.
    If there is no argument, it's set to 0 and a NOP command is issued
    If there is more than one argument (set X/Y address), the 2nd argument is sent as a 2nd command, and a NOP command is issued after it.
    Benefit : c200v2 transfers the command and the argument in one 16 bits transfer
    Performance should not be affected since commands without argument are only used in lcd_init() and lcd_enable()

lcd_send_data() now transfers whole lines (or columns) instead of single pixels
yuv is disabled for c200v2 for now

Some buttons can be read, including left button (bit 6 of DBOP_DIN), but for some reason they have no effect in rockbox: to be investigated

git-svn-id: svn://svn.rockbox.org/rockbox/trunk@21321 a1c6a512-1295-4272-9138-f99709370657
This commit is contained in:
Rafaël Carré 2009-06-17 19:55:27 +00:00
parent bc1fd05dc1
commit 3520d8e90e
8 changed files with 286 additions and 602 deletions

View file

@ -27,7 +27,7 @@
#include <inttypes.h>
#include "config.h"
#include "lcd.h"
#include "backlight-target.h"
#include "backlight.h"
#include "button-target.h"
#include "common.h"
#include "storage.h"
@ -48,14 +48,12 @@ void main(void)
system_init();
kernel_init();
#ifdef SANSA_C200V2
/* stop here */
while(1);
#endif
enable_irq();
lcd_init();
show_logo();
_backlight_on();
backlight_init();
button_init_device();
int btn = button_read_device();
@ -79,8 +77,6 @@ void main(void)
verbose = true;
}
enable_irq();
ret = storage_init();
if(ret < 0)
error(EATA,ret);

View file

@ -535,7 +535,7 @@ target/arm/powermgmt-ascodec.c
target/arm/usb-fw-pp502x.c
target/arm/sandisk/backlight-c200_e200.c
target/arm/sandisk/power-c200_e200.c
target/arm/sandisk/sansa-c200/lcd-c200.c
target/arm/lcd-c200_c200v2.c
target/arm/sandisk/sansa-c200/lcd-as-c200.S
target/arm/sandisk/sansa-c200/button-c200.c
target/arm/sandisk/sansa-c200/powermgmt-c200.c
@ -1137,7 +1137,7 @@ target/arm/as3525/sansa-e200v2/powermgmt-e200v2.c
#ifdef SANSA_C200V2
#ifndef SIMULATOR
target/arm/as3525/sansa-c200v2/lcd-c200v2.c
target/arm/lcd-c200_c200v2.c
target/arm/as3525/sansa-c200v2/button-c200v2.c
target/arm/as3525/sansa-c200v2/backlight-c200v2.c
#ifndef BOOTLOADER

View file

@ -1,21 +1,25 @@
/*
* This config file is for the Sandisk Sansa e200
* This config file is for the Sandisk Sansa c200v2
*/
#define TARGET_TREE /* this target is using the target tree system */
/* For Rolo and boot loader */
#define MODEL_NUMBER 44
#define MODEL_NAME "Sandisk Sansa c200v2 series"
#define FIRMWARE_OFFSET_FILE_DATA 8
#define FIRMWARE_OFFSET_FILE_CRC 0
#if 0
#define HW_SAMPR_CAPS (SAMPR_CAP_44)
#if 0
/* define this if you have recording possibility */
#define HAVE_RECORDING
#define REC_SAMPR_CAPS (SAMPR_CAP_22)
#define REC_FREQ_DEFAULT REC_FREQ_22 /* Default is not 44.1kHz */
#define REC_SAMPR_DEFAULT SAMPR_22
#endif
/* Define bitmask of input sources - recordable bitmask can be defined
@ -55,7 +59,6 @@
#define LCD_DEPTH 16 /* 65536 colours */
#define LCD_PIXELFORMAT RGB565 /* rgb565 */
#ifndef BOOTLOADER
/* define this if you have LCD enable function */
#define HAVE_LCD_ENABLE
@ -63,22 +66,21 @@
should be defined as well. */
/* TODO: #define HAVE_LCD_SLEEP */
/* TODO: #define HAVE_LCD_SLEEP_SETTING <= optional */
#endif
/* define this if you can flip your LCD */
#define HAVE_LCD_FLIP
/* define this if you can invert the colours on your LCD */
/* TODO: #define HAVE_LCD_INVERT */
#if 0
/* Define this if your LCD can set contrast */
#define HAVE_LCD_CONTRAST
#define MIN_CONTRAST_SETTING 0
#define MAX_CONTRAST_SETTING 255
#define DEFAULT_CONTRAST_SETTING 85
#endif
/* #define IRAM_LCDFRAMEBUFFER IDATA_ATTR *//* put the lcd frame buffer in IRAM */
#define IRAM_LCDFRAMEBUFFER IDATA_ATTR /* put the lcd frame buffer in IRAM */
#define CONFIG_KEYPAD SANSA_C200_PAD
@ -91,7 +93,7 @@
/* There is no hardware tone control */
#define HAVE_SW_TONE_CONTROLS
/* The PP5024 has a built-in AustriaMicrosystems AS3514 */
/* The AS3525 has a built-in AS3514 (or a newer version) */
#define HAVE_AS3514
/* define this if you have a real-time clock */
@ -114,7 +116,7 @@
#define AB_REPEAT_ENABLE 1
/* FM Tuner - suspected to be the SI4702 */
#define CONFIG_TUNER SI4700
//#define CONFIG_TUNER SI4700
/* #define HAVE_TUNER_PWR_CTRL */
/* Define this for LCD backlight available */
@ -159,30 +161,22 @@
#define ROM_START 0x00000000
/* Define this to the CPU frequency */
#define CPU_FREQ 75000000
#define CPU_FREQ 250000000
/* Type of LCD TODO: hopefully the same as the x5 but check this*/
#define CONFIG_LCD LCD_C200
/* Offset ( in the firmware file's header ) to the file CRC and data. These are
only used when loading the old format rockbox.e200 file */
#define FIRMWARE_OFFSET_FILE_CRC 0x0
#define FIRMWARE_OFFSET_FILE_DATA 0x8
#define USB_HANDLED_BY_OF
#ifndef BOOTLOADER
#define HAVE_MULTIVOLUME
#define HAVE_HOTSWAP
//#define HAVE_MULTIVOLUME
//#define HAVE_HOTSWAP
#endif
/* USB On-the-go */
#define CONFIG_USBOTG USBOTG_ARC
/* enable these for the experimental usb stack */
//#define HAVE_USBSTACK
//#define USB_VENDOR_ID 0x0781
//#define USB_PRODUCT_ID 0x7450
//#define USB_PRODUCT_ID 0x7452
/* Virtual LED (icon) */
#define CONFIG_LED LED_VIRTUAL

View file

@ -26,8 +26,12 @@
#include "ascodec-target.h"
#include "as3514.h"
/* TODO: This file is copy & pasted from backlight-e200v2-fuze.c, as I think
* it'll be the same for c200v2; prove it */
bool _backlight_init(void)
{
GPIOA_DIR |= 1<<5;
return true;
}
void _backlight_set_brightness(int brightness)
{
if (brightness > 0)
@ -41,12 +45,12 @@ void _backlight_on(void)
#ifdef HAVE_LCD_ENABLE
lcd_enable(true); /* power on lcd + visible display */
#endif
ascodec_write(AS3514_DCDC15, backlight_brightness);
GPIOA_PIN(5) = 1<<5;
}
void _backlight_off(void)
{
ascodec_write(AS3514_DCDC15, 0x0);
GPIOA_PIN(5) = 0;
#ifdef HAVE_LCD_ENABLE
lcd_enable(false); /* power off visible display */
#endif

View file

@ -21,7 +21,9 @@
#ifndef BACKLIGHT_TARGET_H
#define BACKLIGHT_TARGET_H
#define _backlight_init() true
#include <stdbool.h>
bool _backlight_init(void);
void _backlight_on(void);
void _backlight_off(void);
void _backlight_set_brightness(int brightness);

View file

@ -19,47 +19,70 @@
*
****************************************************************************/
/* Taken from button-h10.c by Barry Wardell and reverse engineering by MrH. */
#include "system.h"
#include "button-target.h"
#include "button.h"
#include "backlight.h"
#include "powermgmt.h"
#ifndef BOOTLOADER
/* Buttons */
unsigned short _dbop_din = 0;
/* in the lcd driver */
extern bool lcd_button_support(void);
static bool hold_button = false;
#ifndef BOOTLOADER
static bool hold_button_old = false;
#define _button_hold() hold_button
#else
#define _button_hold() false /* FIXME */
#endif /* BOOTLOADER */
static int int_btn = BUTTON_NONE;
#endif
void button_init_device(void)
{
GPIOA_DIR &= ~(1<<3);
}
bool button_hold(void)
{
return _button_hold();
return hold_button;
}
/* device buttons */
void button_int(void)
static void button_read_dbop(void)
{
int delay = 0x50;
/* Set up dbop for input */
DBOP_CTRL |= (1<<19); /* Tri-state DBOP on read cycle */
DBOP_CTRL &= ~(1<<16); /* disable output (1:write enabled) */
DBOP_TIMPOL_01 = 0xe167e167; /* Set Timing & Polarity regs 0 & 1 */
DBOP_TIMPOL_23 = 0xe167006e; /* Set Timing & Polarity regs 2 & 3 */
int i = 50;
while(i--) asm volatile ("nop\n");
DBOP_CTRL |= (1<<15); /* start read */
while (!(DBOP_STAT & (1<<16))); /* wait for valid data */
_dbop_din = DBOP_DIN; /* Read dbop data*/
/* Reset dbop for output */
DBOP_TIMPOL_01 = 0x6e167; /* Set Timing & Polarity regs 0 & 1 */
DBOP_TIMPOL_23 = 0xa167e06f; /* Set Timing & Polarity regs 2 & 3 */
DBOP_CTRL |= (1<<16); /* Enable output (0:write disable) */
DBOP_CTRL &= ~(1<<19); /* Tri-state when no active write */
}
/*
* Get button pressed from hardware
*/
int button_read_device(void)
{
int delay;
int dir_save_c = 0;
int afsel_save_c = 0;
int_btn = BUTTON_NONE;
int btn = BUTTON_NONE;
/* Save the current direction and afsel */
dir_save_c = GPIOC_DIR;
afsel_save_c = GPIOC_AFSEL;
GPIOA_DIR &= ~(1<<3);
GPIOC_AFSEL &= ~(1<<6|1<<5|1<<4|1<<3);
GPIOC_DIR |= (1<<6|1<<5|1<<4|1<<3);
@ -72,32 +95,32 @@ void button_int(void)
GPIOC_PIN(3) = (1<<3);
GPIOC_DIR &= ~(1<<6|1<<5|1<<4|1<<3);
while(delay--);
delay = 100;
while(delay--)
asm volatile("nop\n");
/* direct GPIO connections */
if (GPIOA_PIN(3))
int_btn |= BUTTON_POWER;
btn |= BUTTON_POWER;
if (!GPIOC_PIN(6))
int_btn |= BUTTON_RIGHT;
btn |= BUTTON_RIGHT;
if (!GPIOC_PIN(5))
int_btn |= BUTTON_UP;
btn |= BUTTON_UP;
if (!GPIOC_PIN(4))
int_btn |= BUTTON_SELECT;
btn |= BUTTON_SELECT;
if (!GPIOC_PIN(3))
int_btn |= BUTTON_DOWN;
btn |= BUTTON_DOWN;
/* return to settings needed for lcd */
GPIOC_DIR = dir_save_c;
GPIOC_AFSEL = afsel_save_c;
}
/*
* Get button pressed from hardware
*/
int button_read_device(void)
{
/* Read buttons directly */
button_int();
if(lcd_button_support())
button_read_dbop();
if(_dbop_din & (1<<6))
btn |= BUTTON_LEFT;
#ifndef BOOTLOADER
/* light handling */
if (hold_button != hold_button_old)
@ -107,5 +130,5 @@ int button_read_device(void)
}
#endif /* BOOTLOADER */
return int_btn;
return btn;
}

View file

@ -1,429 +0,0 @@
/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id: lcd-e200v2.c 19453 2008-12-16 02:50:39Z saratoga $
*
* Copyright (C) 2004 by Linus Nielsen Feltzing
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
/* FIXME: Copied from e200v2 lcd driver, unlikely to work, but maybe */
#include "config.h"
#include "cpu.h"
#include "lcd.h"
#include "kernel.h"
#include "thread.h"
#include <string.h>
#include <stdlib.h>
#include "file.h"
#include "debug.h"
#include "system.h"
#include "font.h"
#include "bidi.h"
#include "clock-target.h"
static bool display_on = false; /* is the display turned on? */
static bool display_flipped = false;
static int y_offset = 0; /* needed for flip */
/* register defines */
#define R_START_OSC 0x00
#define R_DRV_OUTPUT_CONTROL 0x01
#define R_DRV_WAVEFORM_CONTROL 0x02
#define R_ENTRY_MODE 0x03
#define R_COMPARE_REG1 0x04
#define R_COMPARE_REG2 0x05
#define R_DISP_CONTROL1 0x07
#define R_DISP_CONTROL2 0x08
#define R_DISP_CONTROL3 0x09
#define R_FRAME_CYCLE_CONTROL 0x0b
#define R_EXT_DISP_IF_CONTROL 0x0c
#define R_POWER_CONTROL1 0x10
#define R_POWER_CONTROL2 0x11
#define R_POWER_CONTROL3 0x12
#define R_POWER_CONTROL4 0x13
#define R_RAM_ADDR_SET 0x21
#define R_WRITE_DATA_2_GRAM 0x22
#define R_GAMMA_FINE_ADJ_POS1 0x30
#define R_GAMMA_FINE_ADJ_POS2 0x31
#define R_GAMMA_FINE_ADJ_POS3 0x32
#define R_GAMMA_GRAD_ADJ_POS 0x33
#define R_GAMMA_FINE_ADJ_NEG1 0x34
#define R_GAMMA_FINE_ADJ_NEG2 0x35
#define R_GAMMA_FINE_ADJ_NEG3 0x36
#define R_GAMMA_GRAD_ADJ_NEG 0x37
#define R_GAMMA_AMP_ADJ_RES_POS 0x38
#define R_GAMMA_AMP_AVG_ADJ_RES_NEG 0x39
#define R_GATE_SCAN_POS 0x40
#define R_VERT_SCROLL_CONTROL 0x41
#define R_1ST_SCR_DRV_POS 0x42
#define R_2ND_SCR_DRV_POS 0x43
#define R_HORIZ_RAM_ADDR_POS 0x44
#define R_VERT_RAM_ADDR_POS 0x45
#define R_ENTRY_MODE_HORZ 0x7030
#define R_ENTRY_MODE_VERT 0x7038
#define R_ENTRY_MODE_SOLID_VERT 0x1038
/* TODO: Implement this function */
static void lcd_delay(int x)
{
/* This is just arbitrary - the OF does something more complex */
x *= 1024;
while (x--);
}
/* DBOP initialisation, do what OF does */
static void ams3525_dbop_init(void)
{
CGU_DBOP = (1<<3) | AS3525_DBOP_DIV;
DBOP_TIMPOL_01 = 0xe167e167;
DBOP_TIMPOL_23 = 0xe167006e;
DBOP_CTRL = 0x41008;
GPIOB_AFSEL = 0xfc;
GPIOC_AFSEL = 0xff;
DBOP_TIMPOL_23 = 0x6000e;
DBOP_CTRL = 0x51008;
DBOP_TIMPOL_01 = 0x6e167;
DBOP_TIMPOL_23 = 0xa167e06f;
/* TODO: The OF calls some other functions here, but maybe not important */
}
static void lcd_write_cmd(int cmd)
{
/* Write register */
DBOP_CTRL &= ~(1<<14);
DBOP_TIMPOL_23 = 0xa167006e;
DBOP_DOUT = cmd;
/* Wait for fifo to empty */
while ((DBOP_STAT & (1<<10)) == 0);
DBOP_TIMPOL_23 = 0xa167e06f;
}
void lcd_write_data(const fb_data* p_bytes, int count)
{
while (count--)
{
DBOP_DOUT = *p_bytes++;
/* Wait for fifo to empty */
while ((DBOP_STAT & (1<<10)) == 0);
}
}
static void lcd_write_reg(int reg, int value)
{
unsigned short data = value;
lcd_write_cmd(reg);
lcd_write_data(&data, 1);
}
/*** hardware configuration ***/
void lcd_set_contrast(int val)
{
(void)val;
}
void lcd_set_invert_display(bool yesno)
{
(void)yesno;
}
static void flip_lcd(bool yesno)
{
(void)yesno;
}
/* turn the display upside down (call lcd_update() afterwards) */
void lcd_set_flip(bool yesno)
{
display_flipped = yesno;
y_offset = yesno ? 4 : 0; /* FIXME: Is a y_offset needed? */
if (display_on)
flip_lcd(yesno);
}
static void _display_on(void)
{
/* Initialisation the display the same way as the original firmware */
lcd_write_reg(R_START_OSC, 0x0001); /* Start Oscilation */
lcd_write_reg(R_DRV_OUTPUT_CONTROL, 0x011b); /* 220 lines, GS=0, SS=1 */
/* B/C = 1: n-line inversion form
* EOR = 1: polarity inversion occurs by applying an EOR to odd/even
* frame select signal and an n-line inversion signal.
* FLD = 01b: 1 field interlaced scan, external display iface */
lcd_write_reg(R_DRV_WAVEFORM_CONTROL, 0x0700);
/* Address counter updated in horizontal direction; left to right;
* vertical increment horizontal increment.
* data format for 8bit transfer or spi = 65k (5,6,5) */
lcd_write_reg(R_ENTRY_MODE, 0x0030);
/* Replace data on writing to GRAM */
lcd_write_reg(R_COMPARE_REG1, 0);
lcd_write_reg(R_COMPARE_REG2, 0);
lcd_write_reg(R_DISP_CONTROL1, 0x0000); /* GON = 0, DTE = 0, D1-0 = 00b */
/* Front porch lines: 2; Back porch lines: 2; */
lcd_write_reg(R_DISP_CONTROL2, 0x0203);
/* Scan cycle = 0 frames */
lcd_write_reg(R_DISP_CONTROL3, 0x0000);
/* 16 clocks */
lcd_write_reg(R_FRAME_CYCLE_CONTROL, 0x0000);
/* 18-bit RGB interface (one transfer/pixel)
* internal clock operation;
* System interface/VSYNC interface */
lcd_write_reg(R_EXT_DISP_IF_CONTROL, 0x0000);
/* zero everything*/
lcd_write_reg(R_POWER_CONTROL1, 0x0000); /* STB = 0, SLP = 0 */
lcd_delay(10);
/* initialise power supply */
/* DC12-10 = 000b: Step-up1 = clock/8,
* DC02-00 = 000b: Step-up2 = clock/16,
* VC2-0 = 010b: VciOUT = 0.87 * VciLVL */
lcd_write_reg(R_POWER_CONTROL2, 0x0002);
/* VRH3-0 = 1000b: Vreg1OUT = REGP * 1.90 */
lcd_write_reg(R_POWER_CONTROL3, 0x0008);
lcd_delay(40);
lcd_write_reg(R_POWER_CONTROL4, 0x0000); /* VCOMG = 0 */
/* This register is unknown */
lcd_write_reg(0x56, 0x80f);
lcd_write_reg(R_POWER_CONTROL1, 0x4140);
lcd_delay(10);
lcd_write_reg(R_POWER_CONTROL2, 0x0000);
lcd_write_reg(R_POWER_CONTROL3, 0x0013);
lcd_delay(20);
lcd_write_reg(R_POWER_CONTROL4, 0x6d0e);
lcd_delay(20);
lcd_write_reg(R_POWER_CONTROL4, 0x6d0e);
lcd_write_reg(R_GAMMA_FINE_ADJ_POS1, 0x0002);
lcd_write_reg(R_GAMMA_FINE_ADJ_POS2, 0x0707);
lcd_write_reg(R_GAMMA_FINE_ADJ_POS3, 0x0182);
lcd_write_reg(R_GAMMA_GRAD_ADJ_POS, 0x0203);
lcd_write_reg(R_GAMMA_FINE_ADJ_NEG1, 0x0706);
lcd_write_reg(R_GAMMA_FINE_ADJ_NEG2, 0x0006);
lcd_write_reg(R_GAMMA_FINE_ADJ_NEG3, 0x0706);
lcd_write_reg(R_GAMMA_GRAD_ADJ_NEG, 0x0000);
lcd_write_reg(R_GAMMA_AMP_ADJ_RES_POS, 0x030f);
lcd_write_reg(R_GAMMA_AMP_AVG_ADJ_RES_NEG, 0x0f08);
lcd_write_reg(R_RAM_ADDR_SET, 0);
lcd_write_reg(R_GATE_SCAN_POS, 0);
lcd_write_reg(R_VERT_SCROLL_CONTROL, 0);
lcd_write_reg(R_1ST_SCR_DRV_POS, (LCD_HEIGHT-1) << 8);
lcd_write_reg(R_2ND_SCR_DRV_POS, (LCD_HEIGHT-1) << 8);
lcd_write_reg(R_HORIZ_RAM_ADDR_POS, (LCD_WIDTH-1) << 8);
lcd_write_reg(R_VERT_RAM_ADDR_POS, (LCD_HEIGHT-1) << 8);
lcd_write_reg(R_DISP_CONTROL1, 0x0037);
display_on=true; /* must be done before calling lcd_update() */
lcd_update();
}
/* LCD init */
void lcd_init_device(void)
{
ams3525_dbop_init();
/* Init GPIOs the same as the OF */
GPIOA_DIR |= (1<<5);
GPIOA_PIN(5) = 0;
GPIOA_PIN(3) = (1<<3);
GPIOA_DIR |= (3<<3);
GPIOA_PIN(3) = (1<<3);
GPIOA_PIN(4) = 0; /*c80b0040 := 0;*/
GPIOA_DIR |= (1<<7);
GPIOA_PIN(7) = 0;
lcd_delay(1);
GPIOA_PIN(5) = (1<<5);
lcd_delay(1);
_display_on();
}
void lcd_enable(bool on)
{
if(display_on!=on)
{
if(on)
{
_display_on();
lcd_activation_call_hook();
}
else
{
/* TODO: Implement off sequence */
display_on=false;
}
}
}
bool lcd_active(void)
{
return display_on;
}
void lcd_sleep(void)
{
/* TODO */
}
/*** update functions ***/
/* Performance function to blit a YUV bitmap directly to the LCD
* src_x, src_y, width and height should be even
* x, y, width and height have to be within LCD bounds
*/
void lcd_blit_yuv(unsigned char * const src[3],
int src_x, int src_y, int stride,
int x, int y, int width, int height)
{
(void)src;
(void)src_x;
(void)src_y;
(void)stride;
(void)x;
(void)y;
(void)width;
(void)height;
}
/* Update the display.
This must be called after all other LCD functions that change the display. */
void lcd_update(void)
{
if (!display_on)
return;
lcd_write_reg(R_ENTRY_MODE, R_ENTRY_MODE_HORZ);
/* Set start position and window */
lcd_write_reg(R_HORIZ_RAM_ADDR_POS, (LCD_WIDTH-1) << 8);
lcd_write_reg(R_VERT_RAM_ADDR_POS,
((y_offset + LCD_HEIGHT-1) << 8) | y_offset);
lcd_write_reg(R_RAM_ADDR_SET, (y_offset) << 8);
lcd_write_cmd(R_WRITE_DATA_2_GRAM);
lcd_write_data((unsigned short *)lcd_framebuffer, LCD_WIDTH*LCD_HEIGHT);
} /* lcd_update */
/* Update a fraction of the display. */
void lcd_update_rect(int x, int y, int width, int height)
{
int ymax;
const unsigned short *ptr;
if (!display_on)
return;
if (x + width > LCD_WIDTH)
width = LCD_WIDTH - x; /* Clip right */
if (x < 0)
width += x, x = 0; /* Clip left */
if (width <= 0)
return; /* nothing left to do */
ymax = y + height;
if (ymax > LCD_HEIGHT)
ymax = LCD_HEIGHT; /* Clip bottom */
if (y < 0)
y = 0; /* Clip top */
if (y >= ymax)
return; /* nothing left to do */
lcd_write_reg(R_ENTRY_MODE, R_ENTRY_MODE_HORZ);
/* Set start position and window */
lcd_write_reg(R_HORIZ_RAM_ADDR_POS,
((x + width-1) << 8) | x);
lcd_write_reg(R_VERT_RAM_ADDR_POS,
((y_offset + y + height - 1) << 8) | (y_offset + y));
lcd_write_reg(R_RAM_ADDR_SET, ((y + y_offset) << 8) | x);
lcd_write_cmd(R_WRITE_DATA_2_GRAM);
ptr = (unsigned short *)&lcd_framebuffer[y][x];
do
{
lcd_write_data(ptr, width);
ptr += LCD_WIDTH;
}
while (++y < ymax);
} /* lcd_update_rect */

View file

@ -24,6 +24,11 @@
#include "kernel.h"
#include "system.h"
#ifdef SANSA_C200V2
/* button driver needs to know if a lcd operation is in progress */
static bool lcd_busy = false;
#endif
/* Display status */
static unsigned lcd_yuv_options SHAREDBSS_ATTR = 0;
static bool is_lcd_enabled = true;
@ -65,7 +70,7 @@ static bool is_lcd_enabled = true;
#define R_SCROLL_START_LINE 0x5a
#define R_DATA_FORMAT_SELECT 0x60
#if defined(SANSA_C200)
/* wait for LCD */
static inline void lcd_wait_write(void)
{
@ -73,23 +78,28 @@ static inline void lcd_wait_write(void)
}
/* send LCD data */
static void lcd_send_data(unsigned data)
static void lcd_send_data(const fb_data *data, int width)
{
lcd_wait_write();
LCD1_DATA = data >> 8;
lcd_wait_write();
LCD1_DATA = data & 0xff;
while(width--)
{
lcd_wait_write();
LCD1_DATA = *data >> 8;
lcd_wait_write();
LCD1_DATA = *data++ & 0xff;
}
}
/* send LCD command */
static void lcd_send_command(unsigned cmd)
static void lcd_send_command(unsigned char cmd, unsigned char arg)
{
lcd_wait_write();
LCD1_CMD = cmd;
/* if the argument is 0, we send a NOP (= 0) command */
lcd_wait_write();
LCD1_CMD = arg;
}
/* LCD init */
void lcd_init_device(void)
static inline void c200v1_lcd_init(void)
{
/* This is from the c200 of bootloader beginning at offset 0xbbf4 */
outl(inl(0x70000010) & ~0xfc000000, 0x70000010);
@ -106,70 +116,138 @@ void lcd_init_device(void)
LCD1_CONTROL = 0x0084; /* bits (9,10) = 00 -> fastest setting */
udelay(10000);
}
lcd_send_command(R_STANDBY_OFF);
udelay(20000);
#define lcd_delay(delay) udelay((delay) * 1000)
lcd_send_command(R_OSCILLATION_MODE);
lcd_send_command(0x01);
udelay(20000);
#elif defined(SANSA_C200V2)
lcd_send_command(R_DCDC_AMP_ONOFF);
lcd_send_command(0x01);
udelay(20000);
static inline void lcd_delay(int delay)
{ //TUNEME : delay is in milliseconds
delay <<= 14;
while(delay--) ;
}
lcd_send_command(R_DCDC_AMP_ONOFF);
lcd_send_command(0x09);
udelay(20000);
/* send LCD data */
static void lcd_send_data(const fb_data *data, int width)
{
while(width--)
{
DBOP_DOUT = *data << 8 | *data >> 8;
data++;
while ((DBOP_STAT & (1<<10)) == 0);
}
}
lcd_send_command(R_DCDC_AMP_ONOFF);
lcd_send_command(0x0b);
udelay(20000);
/* send LCD command */
static void lcd_send_command(unsigned char cmd, unsigned char val)
{
DBOP_TIMPOL_23 = 0xa167006e;
lcd_send_command(R_DCDC_AMP_ONOFF);
lcd_send_command(0x0f);
udelay(20000);
DBOP_DOUT = cmd | val << 8;
lcd_send_command(R_DRIVER_OUTPUT_MODE);
lcd_send_command(0x07);
while ((DBOP_STAT & (1<<10)) == 0);
lcd_send_command(R_DCDC_SET);
lcd_send_command(0x03);
DBOP_TIMPOL_23 = 0xa167e06f;
}
lcd_send_command(R_DCDC_CLOCK_DIV);
lcd_send_command(0x03);
static inline void as3525_dbop_init(void)
{
CGU_DBOP = (1<<3) | AS3525_DBOP_DIV;
lcd_send_command(R_TEMP_COMPENSATION);
lcd_send_command(0x01);
DBOP_TIMPOL_01 = 0xe167e167;
DBOP_TIMPOL_23 = 0xe167006e;
DBOP_CTRL = 0x40008;
lcd_send_command(R_CONTRAST_CONTROL1);
lcd_send_command(0x55);
GPIOB_AFSEL = 0xc;
GPIOC_AFSEL = 0xff;
lcd_send_command(R_ADDRESSING_MODE);
lcd_send_command(0x10);
DBOP_TIMPOL_23 = 0x6006e;
DBOP_CTRL = 0x52008;
DBOP_TIMPOL_01 = 0x6e167;
DBOP_TIMPOL_23 = 0xa167e06f;
lcd_send_command(R_ROW_VECTOR_MODE);
lcd_send_command(0x0e);
lcd_delay(20);
}
lcd_send_command(R_N_LINE_INVERSION);
lcd_send_command(0x0d);
/* we need to set the DBOP_DOUT pins high, for correct dbop reads */
bool lcd_button_support(void)
{
const fb_data data = 0xffff;
lcd_send_command(R_FRAME_FREQ_CONTROL);
lcd_send_command(0);
if (lcd_busy) /* we can't use dbop for reading if we are in the */
return false; /* middle of a write operation */
lcd_send_command(R_ENTRY_MODE);
lcd_send_command(0x82);
/* use out of screen coordinates */
lcd_send_command(R_X_ADDR_AREA, 0);
lcd_send_command(1, 0);
lcd_send_command(R_Y_ADDR_AREA, 0);
lcd_send_command(1, 0);
lcd_send_command(R_Y_ADDR_AREA); /* vertical dimensions */
lcd_send_command(0x1a); /* y1 + 0x1a */
lcd_send_command(LCD_HEIGHT - 1 + 0x1a); /* y2 + 0x1a */
lcd_send_data(&data, 1);
lcd_send_command(R_X_ADDR_AREA); /* horizontal dimensions */
lcd_send_command(0); /* x1 */
lcd_send_command(LCD_WIDTH - 1); /* x2 */
udelay(100000);
return true;
}
#endif
lcd_send_command(R_DISPLAY_ON);
/* LCD init */
void lcd_init_device(void)
{
#if defined(SANSA_C200)
c200v1_lcd_init();
#elif defined(SANSA_C200V2)
as3525_dbop_init();
#endif
lcd_send_command(R_STANDBY_OFF, 0);
lcd_delay(20);
lcd_send_command(R_OSCILLATION_MODE, 0x01);
lcd_delay(20);
lcd_send_command(R_DCDC_AMP_ONOFF, 0x01);
lcd_delay(20);
lcd_send_command(R_DCDC_AMP_ONOFF, 0x09);
lcd_delay(20);
lcd_send_command(R_DCDC_AMP_ONOFF, 0x0b);
lcd_delay(20);
lcd_send_command(R_DCDC_AMP_ONOFF, 0x0f);
lcd_delay(20);
lcd_send_command(R_DRIVER_OUTPUT_MODE, 0x07);
lcd_send_command(R_DCDC_SET, 0x03);
lcd_send_command(R_DCDC_CLOCK_DIV, 0x03);
lcd_send_command(R_TEMP_COMPENSATION, 0x01);
lcd_send_command(R_CONTRAST_CONTROL1, 0x55);
lcd_send_command(R_ADDRESSING_MODE, 0x10);
lcd_send_command(R_ROW_VECTOR_MODE, 0x0e);
lcd_send_command(R_N_LINE_INVERSION, 0x0d);
lcd_send_command(R_FRAME_FREQ_CONTROL, 0);
lcd_send_command(R_ENTRY_MODE, 0x82);
/* vertical dimensions */
lcd_send_command(R_Y_ADDR_AREA, 0x1a); /* y1 + 0x1a */
lcd_send_command(LCD_HEIGHT - 1 + 0x1a, 0); /* y2 + 0x1a */
/* horizontal dimensions */
lcd_send_command(R_X_ADDR_AREA, 0); /* x1 */
lcd_send_command(LCD_WIDTH - 1, 0); /* x2 */
lcd_delay(100);
lcd_send_command(R_DISPLAY_ON, 0);
}
/*** hardware configuration ***/
@ -180,8 +258,13 @@ int lcd_default_contrast(void)
void lcd_set_contrast(int val)
{
lcd_send_command(R_CONTRAST_CONTROL1);
lcd_send_command(val);
#ifdef SANSA_C200V2
lcd_busy = true;
#endif
lcd_send_command(R_CONTRAST_CONTROL1, val);
#ifdef SANSA_C200V2
lcd_busy = false;
#endif
}
void lcd_set_invert_display(bool yesno)
@ -196,16 +279,22 @@ void lcd_enable(bool yesno)
if (yesno == is_lcd_enabled)
return;
#ifdef SANSA_C200V2
lcd_busy = true;
#endif
if ((is_lcd_enabled = yesno))
{
lcd_send_command(R_STANDBY_OFF);
lcd_send_command(R_DISPLAY_ON);
lcd_send_command(R_STANDBY_OFF, 0);
lcd_send_command(R_DISPLAY_ON, 0);
lcd_activation_call_hook();
}
else
{
lcd_send_command(R_STANDBY_ON);
lcd_send_command(R_STANDBY_ON, 0);
}
#ifdef SANSA_C200V2
lcd_busy = false;
#endif
}
#endif
@ -220,8 +309,13 @@ bool lcd_active(void)
/* turn the display upside down (call lcd_update() afterwards) */
void lcd_set_flip(bool yesno)
{
lcd_send_command(R_DRIVER_OUTPUT_MODE);
lcd_send_command(yesno ? 0x02 : 0x07);
#ifdef SANSA_C200V2
lcd_busy = true;
#endif
lcd_send_command(R_DRIVER_OUTPUT_MODE, yesno ? 0x02 : 0x07);
#ifdef SANSA_C200V2
lcd_busy = false;
#endif
}
/*** update functions ***/
@ -248,6 +342,10 @@ void lcd_blit_yuv(unsigned char * const src[3],
unsigned char const * yuv_src[3];
off_t z;
#ifdef SANSA_C200V2
lcd_busy = true;
#endif
/* Sorry, but width and height must be >= 2 or else */
width &= ~1;
height >>= 1;
@ -259,27 +357,21 @@ void lcd_blit_yuv(unsigned char * const src[3],
yuv_src[1] = src[1] + (z >> 2) + (src_x >> 1);
yuv_src[2] = src[2] + (yuv_src[1] - src[1]);
lcd_send_command(R_ENTRY_MODE);
lcd_send_command(0x80);
lcd_send_command(R_ENTRY_MODE, 0x80);
lcd_send_command(R_X_ADDR_AREA);
lcd_send_command(x);
lcd_send_command(x + width - 1);
lcd_send_command(R_X_ADDR_AREA, x);
lcd_send_command(x + width - 1, 0);
if (lcd_yuv_options & LCD_YUV_DITHER)
{
do
{
lcd_send_command(R_Y_ADDR_AREA);
lcd_send_command(y);
lcd_send_command(y + 1);
/* NOP needed because on some c200s, the previous lcd_send_command
is interpreted as a separate command instead of part of
R_Y_ADDR_AREA. */
lcd_send_command(R_NOP);
lcd_send_command(R_Y_ADDR_AREA, y);
lcd_send_command(y + 1, 0);
#ifndef SANSA_C200V2 // TODO
lcd_write_yuv420_lines_odither(yuv_src, width, stride, x, y);
#endif
yuv_src[0] += stride << 1; /* Skip down two luma lines */
yuv_src[1] += stride >> 1; /* Skip down one chroma line */
yuv_src[2] += stride >> 1;
@ -291,13 +383,12 @@ void lcd_blit_yuv(unsigned char * const src[3],
{
do
{
lcd_send_command(R_Y_ADDR_AREA);
lcd_send_command(y);
lcd_send_command(y + 1);
lcd_send_command(R_NOP);
lcd_send_command(R_Y_ADDR_AREA, y);
lcd_send_command(y + 1, 0);
#ifndef SANSA_C200V2 // TODO
lcd_write_yuv420_lines(yuv_src, width, stride);
#endif
yuv_src[0] += stride << 1; /* Skip down two luma lines */
yuv_src[1] += stride >> 1; /* Skip down one chroma line */
yuv_src[2] += stride >> 1;
@ -305,6 +396,10 @@ void lcd_blit_yuv(unsigned char * const src[3],
}
while (--height > 0);
}
#ifdef SANSA_C200V2
lcd_busy = false;
#endif
}
/* Update the display.
@ -329,33 +424,32 @@ void lcd_update_rect(int x, int y, int width, int height)
addr = &lcd_framebuffer[y][x];
#ifdef SANSA_C200V2
lcd_busy = true;
#endif
if (width <= 1) {
lcd_send_command(R_ENTRY_MODE); /* The X end address must be larger */
lcd_send_command(0x80); /* that the X start address, so we */
lcd_send_command(R_X_ADDR_AREA); /* switch to vertical mode for */
lcd_send_command(x); /* single column updates and set */
lcd_send_command(x + 1); /* the window width to 2 */
/* The X end address must be larger than the X start address, so we
* switch to vertical mode for single column updates and set the
* window width to 2 */
lcd_send_command(R_ENTRY_MODE, 0x80);
lcd_send_command(R_X_ADDR_AREA, x);
lcd_send_command(x + 1, 0);
} else {
lcd_send_command(R_ENTRY_MODE);
lcd_send_command(0x82);
lcd_send_command(R_X_ADDR_AREA);
lcd_send_command(x);
lcd_send_command(x + width - 1);
lcd_send_command(R_ENTRY_MODE, 0x82);
lcd_send_command(R_X_ADDR_AREA, x);
lcd_send_command(x + width - 1, 0);
}
lcd_send_command(R_Y_ADDR_AREA);
lcd_send_command(y + 0x1a);
lcd_send_command(y + height - 1 + 0x1a);
/* NOP needed because on some c200s, the previous lcd_send_command is
interpreted as a separate command instead of part of R_Y_ADDR_AREA. */
lcd_send_command(R_NOP);
lcd_send_command(R_Y_ADDR_AREA, y + 0x1a);
lcd_send_command(y + height - 1 + 0x1a, 0);
do {
int w = width;
do {
lcd_send_data(*addr++);
} while (--w > 0);
addr += LCD_WIDTH - width;
lcd_send_data(addr, width);
addr += LCD_WIDTH;
} while (--height > 0);
#ifdef SANSA_C200V2
lcd_busy = false;
#endif
}