AXP PMU rewrite (again)

I noticed a few mistakes in the old driver code and it was in
need of an overhaul anyway... I decided to scale things back,
simplify the code and remove most of the debug menus, netting
a nice code size savings.

One new feature is an advanced debug menu which is accessible
by recompiling the code with AXP_EXTRA_DEBUG. It adds quite a
bit of code size and isn't useful other than for development
so it must be manually enabled by editing the source.

Change-Id: I30e17c1194c14823decd726a574ed14451d4cb2d
This commit is contained in:
Aidan MacDonald 2021-12-05 14:30:03 +00:00
parent b774699560
commit 2d89143962
12 changed files with 1354 additions and 900 deletions

View file

@ -1947,8 +1947,8 @@ drivers/touchpad.c
#ifdef HAVE_I2C_ASYNC
drivers/i2c-async.c
#endif
#ifdef HAVE_AXP_PMU
drivers/axp-pmu.c
#if defined(HAVE_AXP_PMU) && HAVE_AXP_PMU == 192
drivers/axp192.c
#endif
#ifdef HAVE_FT6x06
drivers/ft6x06.c

View file

@ -1,670 +0,0 @@
/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2021 Aidan MacDonald
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "axp-pmu.h"
#include "power.h"
#include "system.h"
#include "i2c-async.h"
#include <string.h>
/* Headers for the debug menu */
#ifndef BOOTLOADER
# include "action.h"
# include "list.h"
# include <stdio.h>
#endif
struct axp_adc_info {
uint8_t reg;
uint8_t en_reg;
uint8_t en_bit;
};
struct axp_supply_info {
uint8_t volt_reg;
uint8_t volt_reg_mask;
uint8_t en_reg;
uint8_t en_bit;
int min_mV;
int max_mV;
int step_mV;
};
static const struct axp_adc_info axp_adc_info[NUM_ADC_CHANNELS] = {
{0x56, AXP_REG_ADCENABLE1, 5}, /* ACIN_VOLTAGE */
{0x58, AXP_REG_ADCENABLE1, 4}, /* ACIN_CURRENT */
{0x5a, AXP_REG_ADCENABLE1, 3}, /* VBUS_VOLTAGE */
{0x5c, AXP_REG_ADCENABLE1, 2}, /* VBUS_CURRENT */
{0x5e, AXP_REG_ADCENABLE2, 7}, /* INTERNAL_TEMP */
{0x62, AXP_REG_ADCENABLE1, 1}, /* TS_INPUT */
{0x78, AXP_REG_ADCENABLE1, 7}, /* BATTERY_VOLTAGE */
{0x7a, AXP_REG_ADCENABLE1, 6}, /* CHARGE_CURRENT */
{0x7c, AXP_REG_ADCENABLE1, 6}, /* DISCHARGE_CURRENT */
{0x7e, AXP_REG_ADCENABLE1, 1}, /* APS_VOLTAGE */
{0x70, 0xff, 0}, /* BATTERY_POWER */
};
static const struct axp_supply_info axp_supply_info[AXP_NUM_SUPPLIES] = {
#if HAVE_AXP_PMU == 192
[AXP_SUPPLY_DCDC1] = {
.volt_reg = 0x26,
.volt_reg_mask = 0x7f,
.en_reg = 0x12,
.en_bit = 0,
.min_mV = 700,
.max_mV = 3500,
.step_mV = 25,
},
[AXP_SUPPLY_DCDC2] = {
.volt_reg = 0x23,
.volt_reg_mask = 0x3f,
.en_reg = 0x10,
.en_bit = 0,
.min_mV = 700,
.max_mV = 2275,
.step_mV = 25,
},
[AXP_SUPPLY_DCDC3] = {
.volt_reg = 0x27,
.volt_reg_mask = 0x7f,
.en_reg = 0x12,
.en_bit = 1,
.min_mV = 700,
.max_mV = 3500,
.step_mV = 25,
},
/*
* NOTE: LDO1 is always on, and we can't query it or change voltages
*/
[AXP_SUPPLY_LDO2] = {
.volt_reg = 0x28,
.volt_reg_mask = 0xf0,
.en_reg = 0x12,
.en_bit = 2,
.min_mV = 1800,
.max_mV = 3300,
.step_mV = 100,
},
[AXP_SUPPLY_LDO3] = {
.volt_reg = 0x28,
.volt_reg_mask = 0x0f,
.en_reg = 0x12,
.en_bit = 3,
.min_mV = 1800,
.max_mV = 3300,
.step_mV = 100,
},
[AXP_SUPPLY_LDO_IO0] = {
.volt_reg = 0x91,
.volt_reg_mask = 0xf0,
.en_reg = 0x90,
.en_bit = 0xff, /* this one requires special handling */
.min_mV = 1800,
.max_mV = 3300,
.step_mV = 100,
},
#else
# error "Untested AXP chip"
#endif
};
static struct axp_driver {
int adc_enable;
int chargecurrent_setting;
int chip_id;
} axp;
static void axp_init_enabled_adcs(void)
{
axp.adc_enable = 0;
/* Read chip ID, so we can display it on the debug screen.
* This is undocumented but there's Linux driver code floating around
* which suggests this should work for many AXP chips. */
axp.chip_id = i2c_reg_read1(AXP_PMU_BUS, AXP_PMU_ADDR, AXP_REG_CHIP_ID);
/* Read enabled ADCs from the hardware */
uint8_t regs[2];
int rc = i2c_reg_read(AXP_PMU_BUS, AXP_PMU_ADDR,
AXP_REG_ADCENABLE1, 2, &regs[0]);
if(rc != I2C_STATUS_OK)
return;
/* Parse registers to set ADC enable bits */
const struct axp_adc_info* info = axp_adc_info;
for(int i = 0; i < NUM_ADC_CHANNELS; ++i) {
if(info[i].en_reg == 0xff)
continue;
if(regs[info[i].en_reg - AXP_REG_ADCENABLE1] & info[i].en_bit)
axp.adc_enable |= 1 << i;
}
/* Handle battery power ADC */
if((axp.adc_enable & (1 << ADC_BATTERY_VOLTAGE)) &&
(axp.adc_enable & (1 << ADC_DISCHARGE_CURRENT))) {
axp.adc_enable |= (1 << ADC_BATTERY_POWER);
}
}
void axp_init(void)
{
axp_init_enabled_adcs();
/* We need discharge current ADC to reliably poll for a full battery */
int bits = axp.adc_enable;
bits |= (1 << ADC_DISCHARGE_CURRENT);
axp_adc_set_enabled(bits);
/* Read the maximum charging current */
int value = i2c_reg_read1(AXP_PMU_BUS, AXP_PMU_ADDR, AXP_REG_CHARGECONTROL1);
axp.chargecurrent_setting = (value < 0) ? -1 : (value & 0xf);
}
void axp_supply_set_voltage(int supply, int voltage)
{
const struct axp_supply_info* info = &axp_supply_info[supply];
if(info->volt_reg == 0 || info->volt_reg_mask == 0)
return;
if(voltage > 0 && info->step_mV != 0) {
if(voltage < info->min_mV || voltage > info->max_mV)
return;
int regval = (voltage - info->min_mV) / info->step_mV;
i2c_reg_modify1(AXP_PMU_BUS, AXP_PMU_ADDR, info->volt_reg,
info->volt_reg_mask, regval, NULL);
}
if(info->en_bit != 0xff) {
i2c_reg_setbit1(AXP_PMU_BUS, AXP_PMU_ADDR,
info->en_reg, info->en_bit,
voltage > 0 ? 1 : 0, NULL);
}
}
int axp_supply_get_voltage(int supply)
{
const struct axp_supply_info* info = &axp_supply_info[supply];
if(info->volt_reg == 0)
return AXP_SUPPLY_NOT_PRESENT;
if(info->en_reg != 0) {
int r = i2c_reg_read1(AXP_PMU_BUS, AXP_PMU_ADDR, info->en_reg);
if(r < 0)
return AXP_SUPPLY_DISABLED;
#if HAVE_AXP_PMU == 192
if(supply == AXP_SUPPLY_LDO_IO0) {
if((r & 7) != 2)
return AXP_SUPPLY_DISABLED;
} else
#endif
{
if(r & (1 << info->en_bit) == 0)
return AXP_SUPPLY_DISABLED;
}
}
/* Hack, avoid undefined shift below. Can be useful too... */
if(info->volt_reg_mask == 0)
return info->min_mV;
int r = i2c_reg_read1(AXP_PMU_BUS, AXP_PMU_ADDR, info->volt_reg);
if(r < 0)
return 0;
int bit = find_first_set_bit(info->volt_reg_mask);
int val = (r & info->volt_reg_mask) >> bit;
return info->min_mV + (val * info->step_mV);
}
/* TODO: this can STILL indicate some false positives! */
int axp_battery_status(void)
{
int r = i2c_reg_read1(AXP_PMU_BUS, AXP_PMU_ADDR, AXP_REG_POWERSTATUS);
if(r >= 0) {
/* Charging bit indicates we're currently charging */
if((r & 0x04) != 0)
return AXP_BATT_CHARGING;
/* Not plugged in means we're discharging */
if((r & 0xf0) == 0)
return AXP_BATT_DISCHARGING;
} else {
/* Report discharging if we can't find out power status */
return AXP_BATT_DISCHARGING;
}
/* If the battery is full and not in use, the charging bit will be 0,
* there will be an external power source, AND the discharge current
* will be zero. Seems to rule out all false positives. */
int d = axp_adc_read_raw(ADC_DISCHARGE_CURRENT);
if(d == 0)
return AXP_BATT_FULL;
return AXP_BATT_DISCHARGING;
}
int axp_input_status(void)
{
#ifdef HAVE_BATTERY_SWITCH
int input_status = 0;
#else
int input_status = AXP_INPUT_BATTERY;
#endif
int r = i2c_reg_read1(AXP_PMU_BUS, AXP_PMU_ADDR, AXP_REG_POWERSTATUS);
if(r < 0)
return input_status;
/* Check for AC input */
if(r & 0x80)
input_status |= AXP_INPUT_AC;
/* Only report USB if ACIN and VBUS are not shorted */
if((r & 0x20) != 0 && (r & 0x02) == 0)
input_status |= AXP_INPUT_USB;
#ifdef HAVE_BATTERY_SWITCH
/* Check for battery presence if target defines it as removable */
r = i2c_reg_read1(AXP_PMU_BUS, AXP_PMU_ADDR, AXP_REG_CHARGESTATUS);
if(r >= 0 && (r & 0x20) != 0)
input_status |= AXP_INPUT_BATTERY;
#endif
return input_status;
}
int axp_adc_read(int adc)
{
int value = axp_adc_read_raw(adc);
if(value == INT_MIN)
return INT_MIN;
return axp_adc_conv_raw(adc, value);
}
int axp_adc_read_raw(int adc)
{
/* Don't give a reading if the ADC is not enabled */
if((axp.adc_enable & (1 << adc)) == 0)
return INT_MIN;
/* Read the ADC */
uint8_t buf[3];
int count = (adc == ADC_BATTERY_POWER) ? 3 : 2;
uint8_t reg = axp_adc_info[adc].reg;
int rc = i2c_reg_read(AXP_PMU_BUS, AXP_PMU_ADDR, reg, count, &buf[0]);
if(rc != I2C_STATUS_OK)
return INT_MIN;
/* Parse the value */
if(adc == ADC_BATTERY_POWER)
return (buf[0] << 16) | (buf[1] << 8) | buf[2];
else if(adc == ADC_CHARGE_CURRENT || adc == ADC_DISCHARGE_CURRENT)
return (buf[0] << 5) | (buf[1] & 0x1f);
else
return (buf[0] << 4) | (buf[1] & 0xf);
}
int axp_adc_conv_raw(int adc, int value)
{
switch(adc) {
case ADC_ACIN_VOLTAGE:
case ADC_VBUS_VOLTAGE:
/* 0 mV ... 6.9615 mV, step 1.7 mV */
return value * 17 / 10;
case ADC_ACIN_CURRENT:
/* 0 mA ... 2.5594 A, step 0.625 mA */
return value * 5 / 8;
case ADC_VBUS_CURRENT:
/* 0 mA ... 1.5356 A, step 0.375 mA */
return value * 3 / 8;
case ADC_INTERNAL_TEMP:
/* -144.7 C ... 264.8 C, step 0.1 C */
return value - 1447;
case ADC_TS_INPUT:
/* 0 mV ... 3.276 V, step 0.8 mV */
return value * 4 / 5;
case ADC_BATTERY_VOLTAGE:
/* 0 mV ... 4.5045 V, step 1.1 mV */
return value * 11 / 10;
case ADC_CHARGE_CURRENT:
case ADC_DISCHARGE_CURRENT:
/* 0 mA to 4.095 A, step 0.5 mA */
return value / 2;
case ADC_APS_VOLTAGE:
/* 0 mV to 5.733 V, step 1.4 mV */
return value * 7 / 5;
case ADC_BATTERY_POWER:
/* 0 uW to 23.6404 W, step 0.55 uW */
return value * 11 / 20;
default:
/* Shouldn't happen */
return INT_MIN;
}
}
int axp_adc_get_enabled(void)
{
return axp.adc_enable;
}
void axp_adc_set_enabled(int adc_bits)
{
/* Ignore no-op */
if(adc_bits == axp.adc_enable)
return;
/* Compute the new register values */
const struct axp_adc_info* info = axp_adc_info;
uint8_t regs[2] = {0, 0};
for(int i = 0; i < NUM_ADC_CHANNELS; ++i) {
if(info[i].en_reg == 0xff)
continue;
if(adc_bits & (1 << i))
regs[info[i].en_reg - 0x82] |= 1 << info[i].en_bit;
}
/* These ADCs share an enable bit */
if(adc_bits & ((1 << ADC_CHARGE_CURRENT)|(1 << ADC_DISCHARGE_CURRENT))) {
adc_bits |= (1 << ADC_CHARGE_CURRENT);
adc_bits |= (1 << ADC_DISCHARGE_CURRENT);
}
/* Enable required bits for battery power ADC */
if(adc_bits & (1 << ADC_BATTERY_POWER)) {
regs[0] |= 1 << info[ADC_DISCHARGE_CURRENT].en_bit;
regs[0] |= 1 << info[ADC_BATTERY_VOLTAGE].en_bit;
}
/* Update the configuration */
i2c_reg_write(AXP_PMU_BUS, AXP_PMU_ADDR, AXP_REG_ADCENABLE1, 2, &regs[0]);
axp.adc_enable = adc_bits;
}
int axp_adc_get_rate(void)
{
int r = i2c_reg_read1(AXP_PMU_BUS, AXP_PMU_ADDR, AXP_REG_ADCSAMPLERATE);
if(r < 0)
return AXP_ADC_RATE_100HZ; /* an arbitrary value */
return (r >> 6) & 3;
}
void axp_adc_set_rate(int rate)
{
i2c_reg_modify1(AXP_PMU_BUS, AXP_PMU_ADDR, AXP_REG_ADCSAMPLERATE,
0xc0, (rate & 3) << 6, NULL);
}
static uint32_t axp_cc_parse(const uint8_t* buf)
{
return ((uint32_t)buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
}
void axp_cc_read(uint32_t* charge, uint32_t* discharge)
{
uint8_t buf[8];
int rc = i2c_reg_read(AXP_PMU_BUS, AXP_PMU_ADDR,
AXP_REG_COULOMBCOUNTERBASE, 8, &buf[0]);
if(rc != I2C_STATUS_OK) {
if(charge)
*charge = 0;
if(discharge)
*discharge = 0;
return;
}
if(charge)
*charge = axp_cc_parse(&buf[0]);
if(discharge)
*discharge = axp_cc_parse(&buf[4]);
}
void axp_cc_clear(void)
{
i2c_reg_setbit1(AXP_PMU_BUS, AXP_PMU_ADDR,
AXP_REG_COULOMBCOUNTERCTRL, 5, 1, NULL);
}
void axp_cc_enable(bool en)
{
i2c_reg_setbit1(AXP_PMU_BUS, AXP_PMU_ADDR,
AXP_REG_COULOMBCOUNTERCTRL, 7, en ? 1 : 0, NULL);
}
bool axp_cc_is_enabled(void)
{
int reg = i2c_reg_read1(AXP_PMU_BUS, AXP_PMU_ADDR,
AXP_REG_COULOMBCOUNTERCTRL);
return reg >= 0 && (reg & 0x40) != 0;
}
static const int chargecurrent_tbl[] = {
100, 190, 280, 360,
450, 550, 630, 700,
780, 880, 960, 1000,
1080, 1160, 1240, 1320,
};
static const int chargecurrent_tblsz = sizeof(chargecurrent_tbl)/sizeof(int);
void axp_set_charge_current(int maxcurrent)
{
/* Find the charge current just higher than maxcurrent */
int value = 0;
while(value < chargecurrent_tblsz &&
chargecurrent_tbl[value] <= maxcurrent)
++value;
/* Select the next lower current, the greatest current <= maxcurrent */
if(value >= chargecurrent_tblsz)
value = chargecurrent_tblsz - 1;
else if(value > 0)
--value;
/* Don't issue i2c write if desired setting is already in use */
if(value == axp.chargecurrent_setting)
return;
/* Update register */
i2c_reg_modify1(AXP_PMU_BUS, AXP_PMU_ADDR,
AXP_REG_CHARGECONTROL1, 0x0f, value, NULL);
axp.chargecurrent_setting = value;
}
int axp_get_charge_current(void)
{
if(axp.chargecurrent_setting < 0)
return chargecurrent_tbl[0];
else
return chargecurrent_tbl[axp.chargecurrent_setting];
}
void axp_power_off(void)
{
/* Set the shutdown bit */
i2c_reg_setbit1(AXP_PMU_BUS, AXP_PMU_ADDR,
AXP_REG_SHUTDOWNLEDCTRL, 7, 1, NULL);
}
#ifndef BOOTLOADER
enum {
AXP_DEBUG_CHIP_ID,
AXP_DEBUG_BATTERY_STATUS,
AXP_DEBUG_INPUT_STATUS,
AXP_DEBUG_CHARGE_CURRENT,
AXP_DEBUG_COULOMB_COUNTERS,
AXP_DEBUG_ADC_RATE,
AXP_DEBUG_FIRST_ADC,
AXP_DEBUG_FIRST_SUPPLY = AXP_DEBUG_FIRST_ADC + NUM_ADC_CHANNELS,
AXP_DEBUG_NUM_ENTRIES = AXP_DEBUG_FIRST_SUPPLY + AXP_NUM_SUPPLIES,
};
static int axp_debug_menu_cb(int action, struct gui_synclist* lists)
{
(void)lists;
if(action == ACTION_NONE)
action = ACTION_REDRAW;
return action;
}
static const char* axp_debug_menu_get_name(int item, void* data,
char* buf, size_t buflen)
{
(void)data;
static const char* const adc_names[] = {
"V_acin", "I_acin", "V_vbus", "I_vbus", "T_int",
"V_ts", "V_batt", "I_chrg", "I_dchg", "V_aps", "P_batt"
};
static const char* const adc_units[] = {
"mV", "mA", "mV", "mA", "C", "mV", "mV", "mA", "mA", "mV", "uW",
};
static const char* const supply_names[] = {
"DCDC1", "DCDC2", "DCDC3",
"LDO1", "LDO2", "LDO3", "LDO_IO0",
};
int adc = item - AXP_DEBUG_FIRST_ADC;
if(item >= AXP_DEBUG_FIRST_ADC && adc < NUM_ADC_CHANNELS) {
int raw_value = axp_adc_read_raw(adc);
if(raw_value == INT_MIN) {
snprintf(buf, buflen, "%s: [Disabled]", adc_names[adc]);
return buf;
}
int value = axp_adc_conv_raw(adc, raw_value);
if(adc == ADC_INTERNAL_TEMP) {
snprintf(buf, buflen, "%s: %d.%d %s", adc_names[adc],
value/10, value%10, adc_units[adc]);
} else {
snprintf(buf, buflen, "%s: %d %s", adc_names[adc],
value, adc_units[adc]);
}
return buf;
}
int supply = item - AXP_DEBUG_FIRST_SUPPLY;
if(item >= AXP_DEBUG_FIRST_SUPPLY && supply < AXP_NUM_SUPPLIES) {
int voltage = axp_supply_get_voltage(supply);
if(voltage == AXP_SUPPLY_NOT_PRESENT)
snprintf(buf, buflen, "%s: [Not Present]", supply_names[supply]);
else if(voltage == AXP_SUPPLY_DISABLED)
snprintf(buf, buflen, "%s: [Disabled]", supply_names[supply]);
else
snprintf(buf, buflen, "%s: %d mV", supply_names[supply], voltage);
return buf;
}
switch(item) {
case AXP_DEBUG_CHIP_ID: {
snprintf(buf, buflen, "Chip ID: %d (%02x) [Driver: AXP%d]",
axp.chip_id, axp.chip_id, HAVE_AXP_PMU);
return buf;
} break;
case AXP_DEBUG_BATTERY_STATUS: {
switch(axp_battery_status()) {
case AXP_BATT_FULL:
return "Battery: Full";
case AXP_BATT_CHARGING:
return "Battery: Charging";
case AXP_BATT_DISCHARGING:
return "Battery: Discharging";
default:
return "Battery: Unknown";
}
} break;
case AXP_DEBUG_INPUT_STATUS: {
int s = axp_input_status();
const char* ac = (s & AXP_INPUT_AC) ? " AC" : "";
const char* usb = (s & AXP_INPUT_USB) ? " USB" : "";
const char* batt = (s & AXP_INPUT_BATTERY) ? " Battery" : "";
snprintf(buf, buflen, "Inputs:%s%s%s", ac, usb, batt);
return buf;
} break;
case AXP_DEBUG_CHARGE_CURRENT: {
int current = axp_get_charge_current();
snprintf(buf, buflen, "Max charge current: %d mA", current);
return buf;
} break;
case AXP_DEBUG_COULOMB_COUNTERS: {
uint32_t charge, discharge;
axp_cc_read(&charge, &discharge);
snprintf(buf, buflen, "Coulomb counters: +%lu / -%lu",
(unsigned long)charge, (unsigned long)discharge);
return buf;
} break;
case AXP_DEBUG_ADC_RATE: {
int rate = 25 << axp_adc_get_rate();
snprintf(buf, buflen, "ADC sample rate: %d Hz", rate);
return buf;
} break;
default:
return "---";
}
}
bool axp_debug_menu(void)
{
struct simplelist_info info;
simplelist_info_init(&info, "AXP debug", AXP_DEBUG_NUM_ENTRIES, NULL);
info.action_callback = axp_debug_menu_cb;
info.get_name = axp_debug_menu_get_name;
return simplelist_show_list(&info);
}
#endif /* !BOOTLOADER */
/* This is basically the only valid implementation, so define it here */
unsigned int power_input_status(void)
{
unsigned int state = 0;
int input_status = axp_input_status();
if(input_status & AXP_INPUT_AC)
state |= POWER_INPUT_MAIN_CHARGER;
if(input_status & AXP_INPUT_USB)
state |= POWER_INPUT_USB_CHARGER;
#ifdef HAVE_BATTERY_SWITCH
if(input_status & AXP_INPUT_BATTERY)
state |= POWER_INPUT_BATTERY;
#endif
return state;
}

810
firmware/drivers/axp192.c Normal file
View file

@ -0,0 +1,810 @@
/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2021 Aidan MacDonald
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "axp192.h"
#include "system.h"
#include "power.h"
#include "i2c-async.h"
#include "logf.h"
/*
* Direct register access
*/
int axp_read(uint8_t reg)
{
int ret = i2c_reg_read1(AXP_PMU_BUS, AXP_PMU_ADDR, reg);
if(ret < 0)
logf("axp: read reg %02x err=%d", reg, ret);
return ret;
}
int axp_write(uint8_t reg, uint8_t value)
{
int ret = i2c_reg_write1(AXP_PMU_BUS, AXP_PMU_ADDR, reg, value);
if(ret < 0)
logf("axp: write reg %02x err=%d", reg, ret);
return ret;
}
int axp_modify(uint8_t reg, uint8_t clr, uint8_t set)
{
int ret = i2c_reg_modify1(AXP_PMU_BUS, AXP_PMU_ADDR, reg, clr, set, NULL);
if(ret < 0)
logf("axp: modify reg %02x err=%d", reg, ret);
return ret;
}
/*
* Power supplies: enable/disable, set voltage
*/
struct axp_supplydata {
uint8_t en_reg;
uint8_t en_bit;
uint8_t volt_reg;
uint8_t volt_msb: 4;
uint8_t volt_lsb: 4;
short min_mV;
short step_mV;
};
static const struct axp_supplydata supplydata[] = {
[AXP_SUPPLY_EXTEN] = {
.en_reg = AXP_REG_PWRCTL1,
.en_bit = 1 << 2,
.volt_reg = 0xff, /* undefined */
.volt_msb = 0xf,
.volt_lsb = 0xf,
.min_mV = 0,
.step_mV = 0,
},
[AXP_SUPPLY_DCDC1] = {
.en_reg = AXP_REG_PWRCTL2,
.en_bit = 1 << 0,
.volt_reg = AXP_REG_DCDC1VOLT,
.volt_msb = 6,
.volt_lsb = 0,
.min_mV = 700,
.step_mV = 25,
},
[AXP_SUPPLY_DCDC2] = {
.en_reg = AXP_REG_PWRCTL1,
.en_bit = 1 << 0,
.volt_reg = AXP_REG_DCDC2VOLT,
.volt_msb = 5,
.volt_lsb = 0,
.min_mV = 700,
.step_mV = 25,
},
[AXP_SUPPLY_DCDC3] = {
.en_reg = AXP_REG_PWRCTL2,
.en_bit = 1 << 1,
.volt_reg = AXP_REG_DCDC3VOLT,
.volt_msb = 6,
.volt_lsb = 0,
.min_mV = 700,
.step_mV = 25,
},
[AXP_SUPPLY_LDO2] = {
.en_reg = AXP_REG_PWRCTL2,
.en_bit = 1 << 2,
.volt_reg = AXP_REG_LDO2LDO3VOLT,
.volt_msb = 7,
.volt_lsb = 4,
.min_mV = 1800,
.step_mV = 100,
},
[AXP_SUPPLY_LDO3] = {
.en_reg = AXP_REG_PWRCTL2,
.en_bit = 1 << 3,
.volt_reg = AXP_REG_LDO2LDO3VOLT,
.volt_msb = 3,
.volt_lsb = 0,
.min_mV = 1800,
.step_mV = 100,
},
[AXP_SUPPLY_LDOIO0] = {
.en_reg = 0xff, /* undefined */
.en_bit = 0,
.volt_reg = AXP_REG_GPIO0LDO,
.volt_msb = 7,
.volt_lsb = 4,
.min_mV = 1800,
.step_mV = 100,
},
};
void axp_enable_supply(int supply, bool enable)
{
const struct axp_supplydata* data = &supplydata[supply];
axp_modify(data->en_reg, data->en_bit, enable ? data->en_bit : 0);
}
void axp_set_enabled_supplies(unsigned int supply_mask)
{
uint8_t xfer[3];
xfer[0] = 0;
xfer[1] = AXP_REG_PWRCTL2;
xfer[2] = 0;
for(int i = 0; i < AXP_NUM_SUPPLIES; ++i) {
if(!(supply_mask & (1 << i)))
continue;
const struct axp_supplydata* data = &supplydata[i];
if(data->en_reg == AXP_REG_PWRCTL1) {
xfer[0] |= data->en_bit;
xfer[2] |= data->en_bit << 4; /* HACK: work around AXP quirk */
} else {
xfer[2] |= data->en_bit;
}
}
i2c_reg_write(AXP_PMU_BUS, AXP_PMU_ADDR, AXP_REG_PWRCTL1, 3, xfer);
}
void axp_set_supply_voltage(int supply, int output_mV)
{
const struct axp_supplydata* data = &supplydata[supply];
uint8_t mask = (1 << (data->volt_msb - data->volt_lsb + 1)) - 1;
uint8_t value = (output_mV - data->min_mV) / data->step_mV;
axp_modify(data->volt_reg, mask << data->volt_lsb, value << data->volt_lsb);
}
/*
* ADC control: enable/disable, read
*/
struct axp_adcdata {
uint8_t data_reg;
uint8_t en_reg;
uint8_t en_bit;
int8_t num;
int8_t den;
};
static const struct axp_adcdata adcdata[] = {
[AXP_ADC_ACIN_VOLTAGE] = {0x56, AXP_REG_ADCEN1, 1 << 5, 17, 10},
[AXP_ADC_ACIN_CURRENT] = {0x58, AXP_REG_ADCEN1, 1 << 4, 5, 8},
[AXP_ADC_VBUS_VOLTAGE] = {0x5a, AXP_REG_ADCEN1, 1 << 3, 17, 10},
[AXP_ADC_VBUS_CURRENT] = {0x5c, AXP_REG_ADCEN1, 1 << 2, 3, 8},
[AXP_ADC_INTERNAL_TEMP] = {0x5e, AXP_REG_ADCEN2, 1 << 7, 0, 0},
[AXP_ADC_TS_INPUT] = {0x62, AXP_REG_ADCEN1, 1 << 0, 4, 5},
[AXP_ADC_GPIO0] = {0x64, AXP_REG_ADCEN2, 1 << 3, 1, 2},
[AXP_ADC_GPIO1] = {0x66, AXP_REG_ADCEN2, 1 << 2, 1, 2},
[AXP_ADC_GPIO2] = {0x68, AXP_REG_ADCEN2, 1 << 1, 1, 2},
[AXP_ADC_GPIO3] = {0x6a, AXP_REG_ADCEN2, 1 << 0, 1, 2},
[AXP_ADC_BATTERY_VOLTAGE] = {0x78, AXP_REG_ADCEN1, 1 << 7, 11, 10},
[AXP_ADC_CHARGE_CURRENT] = {0x7a, AXP_REG_ADCEN1, 1 << 6, 1, 2},
[AXP_ADC_DISCHARGE_CURRENT] = {0x7c, AXP_REG_ADCEN1, 1 << 6, 1, 2},
[AXP_ADC_APS_VOLTAGE] = {0x7e, AXP_REG_ADCEN1, 1 << 1, 7, 5},
};
void axp_enable_adc(int adc, bool enable)
{
const struct axp_adcdata* data = &adcdata[adc];
axp_modify(data->en_reg, data->en_bit, enable ? data->en_bit : 0);
}
void axp_set_enabled_adcs(unsigned int adc_mask)
{
uint8_t xfer[3];
xfer[0] = 0;
xfer[1] = AXP_REG_ADCEN2;
xfer[2] = 0;
for(int i = 0; i < AXP_NUM_ADCS; ++i) {
if(!(adc_mask & (1 << i)))
continue;
const struct axp_adcdata* data = &adcdata[i];
if(data->en_reg == AXP_REG_ADCEN1)
xfer[0] |= data->en_bit;
else
xfer[2] |= data->en_bit;
}
i2c_reg_write(AXP_PMU_BUS, AXP_PMU_ADDR, AXP_REG_ADCEN1, 3, xfer);
}
int axp_read_adc_raw(int adc)
{
uint8_t data[2];
int ret = i2c_reg_read(AXP_PMU_BUS, AXP_PMU_ADDR,
adcdata[adc].data_reg, 2, data);
if(ret < 0) {
logf("axp: ADC read failed, err=%d", ret);
return INT_MIN;
}
if(adc == AXP_ADC_CHARGE_CURRENT || adc == AXP_ADC_DISCHARGE_CURRENT)
return (data[0] << 5) | data[1];
else
return (data[0] << 4) | data[1];
}
int axp_conv_adc(int adc, int value)
{
const struct axp_adcdata* data = &adcdata[adc];
if(adc == AXP_ADC_INTERNAL_TEMP)
return value - 1447;
else
return data->num * value / data->den;
}
int axp_read_adc(int adc)
{
int ret = axp_read_adc_raw(adc);
if(ret == INT_MIN)
return ret;
return axp_conv_adc(adc, ret);
}
/*
* GPIOs: set function, pull down control, get/set pin level
*/
struct axp_gpiodata {
uint8_t func_reg;
uint8_t func_msb: 4;
uint8_t func_lsb: 4;
uint8_t level_reg;
uint8_t level_out: 4;
uint8_t level_in: 4;
};
static const struct axp_gpiodata gpiodata[] = {
{AXP_REG_GPIO0FUNC, 2, 0, AXP_REG_GPIOLEVEL1, 0, 4},
{AXP_REG_GPIO1FUNC, 2, 0, AXP_REG_GPIOLEVEL1, 1, 5},
{AXP_REG_GPIO2FUNC, 2, 0, AXP_REG_GPIOLEVEL1, 2, 6},
{AXP_REG_GPIO3GPIO4FUNC, 1, 0, AXP_REG_GPIOLEVEL2, 0, 4},
{AXP_REG_GPIO3GPIO4FUNC, 3, 2, AXP_REG_GPIOLEVEL2, 1, 5},
{AXP_REG_NRSTO, 7, 6, AXP_REG_NRSTO, 4, 5},
};
static const uint8_t gpio34funcmap[8] = {
[AXP_GPIO_SPECIAL] = 0x0,
[AXP_GPIO_OPEN_DRAIN_OUTPUT] = 0x1,
[AXP_GPIO_INPUT] = 0x2,
[AXP_GPIO_ADC_IN] = 0x3,
};
static const uint8_t nrstofuncmap[8] = {
[AXP_GPIO_SPECIAL] = 0x0,
[AXP_GPIO_OPEN_DRAIN_OUTPUT] = 0x2,
[AXP_GPIO_INPUT] = 0x3,
};
void axp_set_gpio_function(int gpio, int function)
{
const struct axp_gpiodata* data = &gpiodata[gpio];
int mask = (1 << (data->func_msb - data->func_lsb + 1)) - 1;
if(gpio == 5)
function = nrstofuncmap[function];
else if(gpio >= 3)
function = gpio34funcmap[function];
axp_modify(data->func_reg, mask << data->func_lsb, function << data->func_lsb);
}
void axp_set_gpio_pulldown(int gpio, bool enable)
{
int bit = 1 << gpio;
axp_modify(AXP_REG_GPIOPULL, bit, enable ? bit : 0);
}
int axp_get_gpio(int gpio)
{
const struct axp_gpiodata* data = &gpiodata[gpio];
return axp_read(data->level_reg) & (1 << data->level_in);
}
void axp_set_gpio(int gpio, bool enable)
{
const struct axp_gpiodata* data = &gpiodata[gpio];
uint8_t bit = 1 << data->level_out;
axp_modify(data->level_reg, bit, enable ? bit : 0);
}
/*
* Charging: set charging current, query charging/input status
*/
static const short chargecurrent_tbl[] = {
100, 190, 280, 360,
450, 550, 630, 700,
780, 880, 960, 1000,
1080, 1160, 1240, 1320,
};
void axp_set_charge_current(int current_mA)
{
/* find greatest charging current not exceeding requested current */
unsigned int index = 0;
while(index < ARRAYLEN(chargecurrent_tbl)-1 &&
chargecurrent_tbl[index+1] <= current_mA)
++index;
axp_modify(AXP_REG_CHGCTL1, BM_AXP_CHGCTL1_CHARGE_CURRENT,
index << BP_AXP_CHGCTL1_CHARGE_CURRENT);
}
int axp_get_charge_current(void)
{
int value = axp_read(AXP_REG_CHGCTL1);
if(value < 0)
value = 0;
value &= BM_AXP_CHGCTL1_CHARGE_CURRENT;
value >>= BP_AXP_CHGCTL1_CHARGE_CURRENT;
return chargecurrent_tbl[value];
}
void axp_set_vbus_limit(int mode)
{
const int mask = BM_AXP_VBUSIPSOUT_VHOLD_LIM |
BM_AXP_VBUSIPSOUT_VBUS_LIM |
BM_AXP_VBUSIPSOUT_LIM_100mA;
axp_modify(AXP_REG_VBUSIPSOUT, mask, mode);
}
void axp_set_vhold_level(int vhold_mV)
{
if(vhold_mV < 4000)
vhold_mV = 4000;
else if(vhold_mV > 4700)
vhold_mV = 4700;
int level = (vhold_mV - 4000) / 100;
axp_modify(AXP_REG_VBUSIPSOUT, BM_AXP_VBUSIPSOUT_VHOLD_LEV,
level << BP_AXP_VBUSIPSOUT_VHOLD_LEV);
}
bool axp_is_charging(void)
{
int value = axp_read(AXP_REG_CHGSTS);
return (value >= 0) && (value & BM_AXP_CHGSTS_CHARGING);
}
unsigned int axp_power_input_status(void)
{
unsigned int state = 0;
int value = axp_read(AXP_REG_PWRSTS);
if(value >= 0) {
/* ACIN is the main charger. Includes USB */
if(value & BM_AXP_PWRSTS_ACIN_VALID)
state |= POWER_INPUT_MAIN_CHARGER;
/* Report USB separately if discernable from ACIN */
if((value & BM_AXP_PWRSTS_VBUS_VALID) &&
!(value & BM_AXP_PWRSTS_PCB_SHORTED))
state |= POWER_INPUT_USB_CHARGER;
}
#ifdef HAVE_BATTERY_SWITCH
/* If target allows switching batteries then report if the
* battery is present or not */
value = axp_read(AXP_REG_CHGSTS);
if(value >= 0 && (value & BM_AXP_CHGSTS_BATT_PRESENT))
state |= POWER_INPUT_BATTERY;
#endif
return state;
}
/*
* Misc. functions
*/
void axp_power_off(void)
{
axp_modify(AXP_REG_PWROFF, BM_AXP_PWROFF_SHUTDOWN, BM_AXP_PWROFF_SHUTDOWN);
}
/*
* Debug menu
*/
#ifndef BOOTLOADER
#include "action.h"
#include "list.h"
#include "splash.h"
#include <stdio.h>
/* enable extra debug menus which are only useful for development,
* allow potentially dangerous operations and increase code size
* significantly */
/*#define AXP_EXTRA_DEBUG*/
enum {
MODE_ADC,
#ifdef AXP_EXTRA_DEBUG
MODE_SUPPLY,
MODE_REGISTER,
#endif
NUM_MODES,
};
static const char* const axp_modenames[NUM_MODES] = {
[MODE_ADC] = "ADCs",
#ifdef AXP_EXTRA_DEBUG
[MODE_SUPPLY] = "Power supplies",
[MODE_REGISTER] = "Register viewer",
#endif
};
struct axp_adcdebuginfo {
const char* name;
const char* unit;
};
static const struct axp_adcdebuginfo adc_debuginfo[AXP_NUM_ADCS] = {
[AXP_ADC_ACIN_VOLTAGE] = {"V_acin", "mV"},
[AXP_ADC_ACIN_CURRENT] = {"I_acin", "mA"},
[AXP_ADC_VBUS_VOLTAGE] = {"V_vbus", "mV"},
[AXP_ADC_VBUS_CURRENT] = {"I_vbus", "mA"},
[AXP_ADC_INTERNAL_TEMP] = {"T_int", "C"},
[AXP_ADC_TS_INPUT] = {"V_ts", "mV"},
[AXP_ADC_GPIO0] = {"V_gpio0", "mV"},
[AXP_ADC_GPIO1] = {"V_gpio1", "mV"},
[AXP_ADC_GPIO2] = {"V_gpio2", "mV"},
[AXP_ADC_GPIO3] = {"V_gpio3", "mV"},
[AXP_ADC_BATTERY_VOLTAGE] = {"V_batt", "mV"},
[AXP_ADC_CHARGE_CURRENT] = {"I_chrg", "mA"},
[AXP_ADC_DISCHARGE_CURRENT] = {"I_dchg", "mA"},
[AXP_ADC_APS_VOLTAGE] = {"V_aps", "mV"},
};
#ifdef AXP_EXTRA_DEBUG
static const char* supply_names[AXP_NUM_SUPPLIES] = {
[AXP_SUPPLY_EXTEN] = "EXTEN",
[AXP_SUPPLY_DCDC1] = "DCDC1",
[AXP_SUPPLY_DCDC2] = "DCDC2",
[AXP_SUPPLY_DCDC3] = "DCDC3",
[AXP_SUPPLY_LDO2] = "LDO2",
[AXP_SUPPLY_LDO3] = "LDO3",
[AXP_SUPPLY_LDOIO0] = "LDOIO0",
};
struct axp_fieldinfo {
uint8_t rnum;
uint8_t msb: 4;
uint8_t lsb: 4;
};
enum {
#define DEFREG(name, ...) AXP_RNUM_##name,
#include "axp192-defs.h"
AXP_NUM_REGS,
};
enum {
#define DEFFLD(regname, fldname, ...) AXP_FNUM_##regname##_##fldname,
#include "axp192-defs.h"
AXP_NUM_FIELDS,
};
static const uint8_t axp_regaddr[AXP_NUM_REGS] = {
#define DEFREG(name, addr) addr,
#include "axp192-defs.h"
};
static const struct axp_fieldinfo axp_fieldinfo[AXP_NUM_FIELDS] = {
#define DEFFLD(regname, fldname, _msb, _lsb, ...) \
{.rnum = AXP_RNUM_##regname, .msb = _msb, .lsb = _lsb},
#include "axp192-defs.h"
};
static const char* const axp_regnames[AXP_NUM_REGS] = {
#define DEFREG(name, ...) #name,
#include "axp192-defs.h"
};
static const char* const axp_fldnames[AXP_NUM_FIELDS] = {
#define DEFFLD(regname, fldname, ...) #fldname,
#include "axp192-defs.h"
};
#endif /* AXP_EXTRA_DEBUG */
struct axp_debug_menu_state {
int mode;
#ifdef AXP_EXTRA_DEBUG
int reg_num;
int field_num;
int field_cnt;
uint8_t cache[AXP_NUM_REGS];
uint8_t is_cached[AXP_NUM_REGS];
#endif
};
#ifdef AXP_EXTRA_DEBUG
static void axp_debug_clear_cache(struct axp_debug_menu_state* state)
{
memset(state->is_cached, 0, sizeof(state->is_cached));
}
static int axp_debug_get_rnum(uint8_t addr)
{
for(int i = 0; i < AXP_NUM_REGS; ++i)
if(axp_regaddr[i] == addr)
return i;
return -1;
}
static uint8_t axp_debug_read(struct axp_debug_menu_state* state, int rnum)
{
if(state->is_cached[rnum])
return state->cache[rnum];
int value = axp_read(axp_regaddr[rnum]);
if(value < 0)
return 0;
state->is_cached[rnum] = 1;
state->cache[rnum] = value;
return value;
}
static void axp_debug_get_sel(const struct axp_debug_menu_state* state,
int item, int* rnum, int* fnum)
{
if(state->reg_num >= 0 && state->field_num >= 0) {
int i = item - state->reg_num;
if(i <= 0) {
/* preceding register is selected */
} else if(i <= state->field_cnt) {
/* field is selected */
*rnum = state->reg_num;
*fnum = i + state->field_num - 1;
return;
} else {
/* subsequent regiser is selected */
item -= state->field_cnt;
}
}
/* register is selected */
*rnum = item;
*fnum = -1;
}
static int axp_debug_set_sel(struct axp_debug_menu_state* state, int rnum)
{
state->reg_num = rnum;
state->field_num = -1;
state->field_cnt = 0;
for(int i = 0; i < AXP_NUM_FIELDS; ++i) {
if(axp_fieldinfo[i].rnum != rnum)
continue;
state->field_num = i;
do {
state->field_cnt++;
i++;
} while(axp_fieldinfo[i].rnum == rnum);
break;
}
return rnum;
}
#endif /* AXP_EXTRA_DEBUG */
static const char* axp_debug_menu_get_name(int item, void* data,
char* buf, size_t buflen)
{
struct axp_debug_menu_state* state = data;
int value;
/* for safety */
buf[0] = '\0';
if(state->mode == MODE_ADC && item < AXP_NUM_ADCS)
{
const struct axp_adcdebuginfo* info = &adc_debuginfo[item];
value = axp_read_adc(item);
if(item == AXP_ADC_INTERNAL_TEMP) {
snprintf(buf, buflen, "%s: %d.%d %s",
info->name, value/10, value%10, info->unit);
} else {
snprintf(buf, buflen, "%s: %d %s", info->name, value, info->unit);
}
}
#ifdef AXP_EXTRA_DEBUG
else if(state->mode == MODE_SUPPLY && item < AXP_NUM_SUPPLIES)
{
const struct axp_supplydata* data = &supplydata[item];
int en_rnum = axp_debug_get_rnum(data->en_reg);
int volt_rnum = axp_debug_get_rnum(data->volt_reg);
bool enabled = false;
int voltage = -1;
if(en_rnum >= 0) {
value = axp_debug_read(state, en_rnum);
if(value & data->en_bit)
enabled = true;
else
enabled = false;
} else if(item == AXP_SUPPLY_LDOIO0) {
value = axp_debug_read(state, AXP_RNUM_GPIO0FUNC);
if((value & 0x7) == AXP_GPIO_SPECIAL)
enabled = true;
else
enabled = false;
}
if(volt_rnum >= 0) {
voltage = axp_debug_read(state, volt_rnum);
voltage >>= data->volt_lsb;
voltage &= (1 << (data->volt_msb - data->volt_lsb + 1)) - 1;
/* convert to mV */
voltage = data->min_mV + voltage * data->step_mV;
}
if(enabled && voltage >= 0) {
snprintf(buf, buflen, "%s: %d mV",
supply_names[item], voltage);
} else {
snprintf(buf, buflen, "%s: %sabled",
supply_names[item], enabled ? "en" : "dis");
}
}
else if(state->mode == MODE_REGISTER)
{
int rnum, fnum;
axp_debug_get_sel(state, item, &rnum, &fnum);
if(fnum >= 0) {
const struct axp_fieldinfo* info = &axp_fieldinfo[fnum];
value = axp_debug_read(state, info->rnum);
value >>= info->lsb;
value &= (1 << (info->msb - info->lsb + 1)) - 1;
snprintf(buf, buflen, "\t%s: %d (0x%x)",
axp_fldnames[fnum], value, value);
} else if(rnum < AXP_NUM_REGS) {
value = axp_debug_read(state, rnum);
snprintf(buf, buflen, "%s: 0x%02x", axp_regnames[rnum], value);
}
}
#endif /* AXP_EXTRA_DEBUG */
return buf;
}
static int axp_debug_menu_cb(int action, struct gui_synclist* lists)
{
struct axp_debug_menu_state* state = lists->data;
if(state->mode == MODE_ADC)
{
/* update continuously */
if(action == ACTION_NONE)
action = ACTION_REDRAW;
}
#ifdef AXP_EXTRA_DEBUG
else if(state->mode == MODE_REGISTER)
{
if(action == ACTION_STD_OK) {
/* expand a register to show its fields */
int rnum, fnum;
int sel_pos = gui_synclist_get_sel_pos(lists);
axp_debug_get_sel(state, sel_pos, &rnum, &fnum);
if(fnum < 0 && rnum < AXP_NUM_REGS) {
int delta_items = -state->field_cnt;
if(rnum != state->reg_num) {
if(rnum > state->reg_num)
sel_pos += delta_items;
axp_debug_set_sel(state, rnum);
delta_items += state->field_cnt;
} else {
state->reg_num = -1;
state->field_num = -1;
state->field_cnt = 0;
}
gui_synclist_set_nb_items(lists, lists->nb_items + delta_items);
gui_synclist_select_item(lists, sel_pos);
action = ACTION_REDRAW;
}
}
}
else if(state->mode == MODE_SUPPLY)
{
/* disable a supply... use with caution */
if(action == ACTION_STD_CONTEXT) {
int sel_pos = gui_synclist_get_sel_pos(lists);
axp_enable_supply(sel_pos, false);
}
}
#endif
#ifdef AXP_EXTRA_DEBUG
/* clear register cache to refresh values */
if(state->mode != MODE_ADC && action == ACTION_STD_CONTEXT) {
splashf(HZ/2, "Refreshed");
axp_debug_clear_cache(state);
action = ACTION_REDRAW;
}
#endif
/* mode switching */
if(action == ACTION_STD_MENU) {
state->mode = (state->mode + 1) % NUM_MODES;
gui_synclist_set_title(lists, (char*)axp_modenames[state->mode], Icon_NOICON);
action = ACTION_REDRAW;
switch(state->mode) {
case MODE_ADC:
gui_synclist_set_nb_items(lists, AXP_NUM_ADCS);
gui_synclist_select_item(lists, 0);
break;
#ifdef AXP_EXTRA_DEBUG
case MODE_SUPPLY:
axp_debug_clear_cache(state);
gui_synclist_set_nb_items(lists, AXP_NUM_SUPPLIES);
gui_synclist_select_item(lists, 0);
break;
case MODE_REGISTER:
state->reg_num = -1;
state->field_num = -1;
state->field_cnt = 0;
axp_debug_clear_cache(state);
gui_synclist_set_nb_items(lists, AXP_NUM_REGS);
gui_synclist_select_item(lists, 0);
break;
#endif
}
}
return action;
}
bool axp_debug_menu(void)
{
struct axp_debug_menu_state state;
state.mode = MODE_ADC;
#ifdef AXP_EXTRA_DEBUG
state.reg_num = -1;
state.field_num = -1;
state.field_cnt = 0;
axp_debug_clear_cache(&state);
#endif
struct simplelist_info info;
simplelist_info_init(&info, (char*)axp_modenames[state.mode],
AXP_NUM_ADCS, &state);
info.get_name = axp_debug_menu_get_name;
info.action_callback = axp_debug_menu_cb;
return simplelist_show_list(&info);
}
#endif

View file

@ -1,151 +0,0 @@
/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2021 Aidan MacDonald
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#ifndef __AXP_PMU_H__
#define __AXP_PMU_H__
#include "config.h"
#include <stdbool.h>
#include <stdint.h>
/* ADC channels */
#define ADC_ACIN_VOLTAGE 0
#define ADC_ACIN_CURRENT 1
#define ADC_VBUS_VOLTAGE 2
#define ADC_VBUS_CURRENT 3
#define ADC_INTERNAL_TEMP 4
#define ADC_TS_INPUT 5
#define ADC_BATTERY_VOLTAGE 6
#define ADC_CHARGE_CURRENT 7
#define ADC_DISCHARGE_CURRENT 8
#define ADC_APS_VOLTAGE 9
#define ADC_BATTERY_POWER 10
#define NUM_ADC_CHANNELS 11
/* ADC sampling rates */
#define AXP_ADC_RATE_25HZ 0
#define AXP_ADC_RATE_50HZ 1
#define AXP_ADC_RATE_100HZ 2
#define AXP_ADC_RATE_200HZ 3
/* Return values of axp_battery_status() */
#define AXP_BATT_DISCHARGING 0
#define AXP_BATT_CHARGING 1
#define AXP_BATT_FULL 2
/* Bits returned by axp_input_status() */
#define AXP_INPUT_AC (1 << 0)
#define AXP_INPUT_USB (1 << 1)
#define AXP_INPUT_BATTERY (1 << 2)
#define AXP_INPUT_EXTERNAL (AXP_INPUT_AC|AXP_INPUT_USB)
/* Power supplies known by this driver. Not every chip has all supplies! */
#define AXP_SUPPLY_DCDC1 0
#define AXP_SUPPLY_DCDC2 1
#define AXP_SUPPLY_DCDC3 2
#define AXP_SUPPLY_LDO1 3
#define AXP_SUPPLY_LDO2 4
#define AXP_SUPPLY_LDO3 5
#define AXP_SUPPLY_LDO_IO0 6
#define AXP_NUM_SUPPLIES 7
/* Special values returned by axp_supply_get_voltage */
#define AXP_SUPPLY_NOT_PRESENT INT_MIN
#define AXP_SUPPLY_DISABLED (-1)
/* Registers -- common to AXP173 and AXP192 (incomplete listing) */
#define AXP_REG_POWERSTATUS 0x00
#define AXP_REG_CHARGESTATUS 0x01
#define AXP_REG_CHIP_ID 0x03
#define AXP_REG_PWROUTPUTCTRL1 0x10
#define AXP_REG_PWROUTPUTCTRL2 0x12
#define AXP_REG_SHUTDOWNLEDCTRL 0x32
#define AXP_REG_CHARGECONTROL1 0x33
#define AXP_REG_DCDCWORKINGMODE 0x80
#define AXP_REG_ADCENABLE1 0x82
#define AXP_REG_ADCENABLE2 0x83
#define AXP_REG_ADCSAMPLERATE 0x84
#define AXP_REG_COULOMBCOUNTERBASE 0xb0
#define AXP_REG_COULOMBCOUNTERCTRL 0xb8
/* AXP192-only registers (incomplete listing) */
#define AXP192_REG_GPIO0FUNCTION 0x90
#define AXP192_REG_GPIO1FUNCTION 0x92
#define AXP192_REG_GPIO2FUNCTION 0x93
#define AXP192_REG_GPIOSTATE1 0x94
/* Must be called from power_init() to initialize the driver state */
extern void axp_init(void);
/* - axp_supply_set_voltage(): set a supply voltage to the given value
* in millivolts. Pass a voltage of AXP_SUPPLY_DISABLED to shut off
* the supply. Any invalid supply or voltage will make the call a no-op.
*
* - axp_supply_get_voltage() returns a supply voltage in millivolts.
* If the supply is powered off, returns AXP_SUPPLY_DISABLED.
* If the chip does not have the supply, returns AXP_SUPPLY_NOT_PRESENT.
*/
extern void axp_supply_set_voltage(int supply, int voltage);
extern int axp_supply_get_voltage(int supply);
/* Basic battery and power supply status */
extern int axp_battery_status(void);
extern int axp_input_status(void);
/* ADC access -- ADCs which are not enabled will return INT_MIN if read.
* The output of axp_adc_read() is normalized to appropriate units:
*
* - for voltages, the scale is millivolts
* - for currents, the scale is milliamps
* - for temperatures, the scale is tenths of a degree Celsius
* - for power, the scale is microwatts
*
* See the comment in axp_adc_conv_raw() for raw value precision/scale.
*/
extern int axp_adc_read(int adc);
extern int axp_adc_read_raw(int adc);
extern int axp_adc_conv_raw(int adc, int value);
extern int axp_adc_get_enabled(void);
extern void axp_adc_set_enabled(int adc_bits);
extern int axp_adc_get_rate(void);
extern void axp_adc_set_rate(int rate);
/* - axp_cc_read() reads the coulomb counters
* - axp_cc_clear() resets both counters to zero
* - axp_cc_enable() will stop/start the counters running
* - axp_cc_is_enabled() returns true if the counters are running
*/
extern void axp_cc_read(uint32_t* charge, uint32_t* discharge);
extern void axp_cc_clear(void);
extern void axp_cc_enable(bool en);
extern bool axp_cc_is_enabled(void);
/* Set/get maximum charging current in milliamps */
extern void axp_set_charge_current(int maxcurrent);
extern int axp_get_charge_current(void);
/* Set the shutdown bit */
extern void axp_power_off(void);
/* Debug menu */
extern bool axp_debug_menu(void);
#endif /* __AXP_PMU_H__ */

View file

@ -0,0 +1,308 @@
/* Internal header for axp192 driver - not for general inclusion */
#ifndef DEFREG
# define DEFREG(...)
#endif
#ifndef DEFFLD
# define DEFFLD(...)
#endif
#define DEFBIT(regname, fldname, bitpos, ...) \
DEFFLD(regname, fldname, bitpos, bitpos, __VA_ARGS__)
DEFREG(PWRSTS, 0x00)
DEFREG(CHGSTS, 0x01)
DEFREG(CHIPID, 0x03)
DEFREG(VBUSSTS, 0x04)
DEFREG(DATA0, 0x06)
DEFREG(DATA1, 0x07)
DEFREG(DATA2, 0x08)
DEFREG(DATA3, 0x09)
DEFREG(DATA4, 0x0a)
DEFREG(DATA5, 0x0b)
DEFREG(PWRCTL1, 0x10)
DEFREG(PWRCTL2, 0x12)
DEFREG(DCDC2VOLT, 0x23)
DEFREG(DCDC2RAMP, 0x25)
DEFREG(DCDC1VOLT, 0x26)
DEFREG(DCDC3VOLT, 0x27)
DEFREG(LDO2LDO3VOLT, 0x28)
DEFREG(VBUSIPSOUT, 0x30)
DEFREG(VOFF, 0x31)
DEFREG(PWROFF, 0x32)
DEFREG(CHGCTL1, 0x33)
DEFREG(CHGCTL2, 0x34)
DEFREG(BKPCHGCTL, 0x35)
DEFREG(PEKPARAM, 0x36)
DEFREG(DCDCFREQ, 0x37)
DEFREG(VLTFCHG, 0x38)
DEFREG(VHTFCHG, 0x39)
DEFREG(APSLOW1, 0x3a)
DEFREG(APSLOW2, 0x3b)
DEFREG(VLTFDCHG, 0x3c)
DEFREG(VHTFDCHG, 0x3d)
DEFREG(IRQEN1, 0x40)
DEFREG(IRQEN2, 0x41)
DEFREG(IRQEN3, 0x42)
DEFREG(IRQEN4, 0x43)
DEFREG(IRQSTS1, 0x44)
DEFREG(IRQSTS2, 0x45)
DEFREG(IRQSTS3, 0x46)
DEFREG(IRQSTS4, 0x47)
DEFREG(IRQEN5, 0x4a)
DEFREG(IRQSTS5, 0x4d)
DEFREG(DCDCMODE, 0x80)
DEFREG(ADCEN1, 0x82)
DEFREG(ADCEN2, 0x83)
DEFREG(ADCCTL, 0x84)
DEFREG(ADCRANGE, 0x85)
DEFREG(TIMERCTL, 0x8a)
DEFREG(VBUSSRP, 0x8b)
DEFREG(OTPOWEROFF, 0x8f)
DEFREG(GPIO0FUNC, 0x90)
DEFREG(GPIO0LDO, 0x91)
DEFREG(GPIO1FUNC, 0x92)
DEFREG(GPIO2FUNC, 0x93)
DEFREG(GPIOLEVEL1, 0x94)
DEFREG(GPIO3GPIO4FUNC, 0x95)
DEFREG(GPIOLEVEL2, 0x96)
DEFREG(GPIOPULL, 0x97)
DEFREG(PWM1X, 0x98)
DEFREG(PWM1Y1, 0x99)
DEFREG(PWM1Y2, 0x9a)
DEFREG(PWM2X, 0x9b)
DEFREG(PWM2Y1, 0x9c)
DEFREG(PWM2Y2, 0x9d)
DEFREG(NRSTO, 0x9e)
DEFREG(CC_CTL, 0xb8)
DEFBIT(PWRSTS, ACIN_PRESENT, 7)
DEFBIT(PWRSTS, ACIN_VALID, 6)
DEFBIT(PWRSTS, VBUS_PRESENT, 5)
DEFBIT(PWRSTS, VBUS_VALID, 4)
DEFBIT(PWRSTS, VBUS_VHOLD, 3)
DEFBIT(PWRSTS, BATT_CURR_DIR, 2)
DEFBIT(PWRSTS, PCB_SHORTED, 1)
DEFBIT(PWRSTS, BOOT_TRIG, 0)
DEFBIT(VBUSSTS, VALID, 2)
DEFBIT(VBUSSTS, SESS_AB_VALID, 1)
DEFBIT(VBUSSTS, SESS_END, 0)
DEFBIT(CHGSTS, OVER_TEMP, 7)
DEFBIT(CHGSTS, CHARGING, 6)
DEFBIT(CHGSTS, BATT_PRESENT, 5)
DEFBIT(CHGSTS, BATT_ERROR, 3)
DEFBIT(CHGSTS, LOW_CHARGE, 2)
/* NOTE: These two bits are mirrored in the upper nibble of PWRCTL2.
* Modifications through one register will immediately reflect in the
* other register. */
DEFBIT(PWRCTL1, EXTEN_SW, 2)
DEFBIT(PWRCTL1, DCDC2_SW, 0)
DEFBIT(PWRCTL2, EXTEN_SW, 6)
DEFBIT(PWRCTL2, DCDC2_SW, 4)
DEFBIT(PWRCTL2, LDO3_SW, 3)
DEFBIT(PWRCTL2, LDO2_SW, 2)
DEFBIT(PWRCTL2, DCDC3_SW, 1)
DEFBIT(PWRCTL2, DCDC1_SW, 0)
DEFFLD(DCDC2VOLT, VALUE, 5, 0)
DEFBIT(DCDC2RAMP, ENABLE, 2)
DEFBIT(DCDC2RAMP, SLOPE, 0)
DEFFLD(DCDC1VOLT, VALUE, 6, 0)
DEFFLD(DCDC3VOLT, VALUE, 6, 0)
DEFFLD(LDO2LDO3VOLT, LDO2_VALUE, 7, 4)
DEFFLD(LDO2LDO3VOLT, LDO3_VALUE, 3, 0)
DEFBIT(VBUSIPSOUT, ACCESS, 7)
DEFBIT(VBUSIPSOUT, VHOLD_LIM, 6)
DEFFLD(VBUSIPSOUT, VHOLD_LEV, 5, 3)
DEFBIT(VBUSIPSOUT, VBUS_LIM, 1)
DEFBIT(VBUSIPSOUT, LIM_100mA, 0)
DEFFLD(VOFF, VALUE, 3, 0)
DEFBIT(PWROFF, SHUTDOWN, 7)
DEFBIT(PWROFF, MON_EN, 6)
DEFFLD(PWROFF, LEDFUNC, 5, 4)
DEFBIT(PWROFF, LEDCTL, 3)
DEFBIT(PWROFF, DELAY, 1, 0)
DEFBIT(CHGCTL1, CHARGE_EN, 7)
DEFFLD(CHGCTL1, CHARGE_TGT, 6, 5)
DEFBIT(CHGCTL1, CHARGE_ENDCURR, 4)
DEFFLD(CHGCTL1, CHARGE_CURRENT, 3, 0)
DEFFLD(CHGCTL2, PRECHARGE_OT, 7, 6)
DEFFLD(CHGCTL2, EACCESS_CURRENT, 5, 3)
DEFBIT(CHGCTL2, EACCESS_CHG_EN, 2)
DEFFLD(CHGCTL2, CONST_CURR_OT, 1, 0)
DEFBIT(BKPCHGCTL, ENABLE, 7)
DEFFLD(BKPCHGCTL, TGT_VOLTAGE, 6, 5)
DEFFLD(BKPCHGCTL, CHARGE_CURRENT, 1, 0)
DEFFLD(PEKPARAM, POWER_ON_TIME, 7, 6)
DEFFLD(PEKPARAM, LONG_TIME, 5, 4)
DEFBIT(PEKPARAM, POWEROFF_EN, 3)
DEFBIT(PEKPARAM, PWROK_DELAY, 2)
DEFFLD(PEKPARAM, POWEROFF_TIME, 1, 0)
DEFFLD(DCDCFREQ, VALUE, 3, 0)
DEFFLD(VLTFCHG, VALUE, 7, 0)
DEFFLD(VHTFCHG, VALUE, 7, 0)
DEFFLD(APSLOW1, VALUE, 7, 0)
DEFFLD(APSLOW2, VALUE, 7, 0)
DEFFLD(VLTFDCHG, VALUE, 7, 0)
DEFFLD(VHTFDCHG, VALUE, 7, 0)
DEFBIT(IRQEN1, ACIN_OVER_VOLTAGE, 7)
DEFBIT(IRQEN1, ACIN_INSERT, 6)
DEFBIT(IRQEN1, ACIN_REMOVE, 5)
DEFBIT(IRQEN1, VBUS_OVER_VOLTAGE, 4)
DEFBIT(IRQEN1, VBUS_INSERT, 3)
DEFBIT(IRQEN1, VBUS_REMOVE, 2)
DEFBIT(IRQEN1, VBUS_BELOW_VHOLD, 1)
DEFBIT(IRQEN2, BATTERY_INSERT, 7)
DEFBIT(IRQEN2, BATTERY_REMOVE, 6)
DEFBIT(IRQEN2, BATTERY_ERROR, 5)
DEFBIT(IRQEN2, BATTERY_ERROR_CLR, 4)
DEFBIT(IRQEN2, CHARGING_STARTED, 3)
DEFBIT(IRQEN2, CHARGING_COMPLETE, 2)
DEFBIT(IRQEN2, BATTERY_OVER_TEMP, 1)
DEFBIT(IRQEN2, BATTERY_UNDER_TEMP, 0)
DEFBIT(IRQEN3, INTERNAL_OVER_TEMP, 7)
DEFBIT(IRQEN3, LOW_CHARGE_CURRENT, 6)
DEFBIT(IRQEN3, DCDC1_UNDER_VOLT, 5)
DEFBIT(IRQEN3, DCDC2_UNDER_VOLT, 4)
DEFBIT(IRQEN3, DCDC3_UNDER_VOLT, 3)
DEFBIT(IRQEN3, SHORT_PRESS, 1)
DEFBIT(IRQEN3, LONG_PRESS, 0)
DEFBIT(IRQEN4, POWER_ON_N_OE, 7)
DEFBIT(IRQEN4, POWER_OFF_N_OE, 6)
DEFBIT(IRQEN4, VBUS_VALID, 5)
DEFBIT(IRQEN4, VBUS_INVALID, 4)
DEFBIT(IRQEN4, VBUS_SESS_AB, 3)
DEFBIT(IRQEN4, VBUS_SESS_END, 2)
DEFBIT(IRQEN4, APS_UNDER_VOLT, 0)
DEFBIT(IRQSTS1, ACIN_OVER_VOLTAGE, 7)
DEFBIT(IRQSTS1, ACIN_INSERT, 6)
DEFBIT(IRQSTS1, ACIN_REMOVE, 5)
DEFBIT(IRQSTS1, VBUS_OVER_VOLTAGE, 4)
DEFBIT(IRQSTS1, VBUS_INSERT, 3)
DEFBIT(IRQSTS1, VBUS_REMOVE, 2)
DEFBIT(IRQSTS1, VBUS_BELOW_VHOLD, 1)
DEFBIT(IRQSTS2, BATTERY_INSERT, 7)
DEFBIT(IRQSTS2, BATTERY_REMOVE, 6)
DEFBIT(IRQSTS2, BATTERY_ERROR, 5)
DEFBIT(IRQSTS2, BATTERY_ERROR_CLR, 4)
DEFBIT(IRQSTS2, CHARGING_STARTED, 3)
DEFBIT(IRQSTS2, CHARGING_STOPPED, 2)
DEFBIT(IRQSTS2, BATTERY_OVER_TEMP, 1)
DEFBIT(IRQSTS2, BATTERY_UNDER_TEMP, 0)
DEFBIT(IRQSTS3, INTERNAL_OVER_TEMP, 7)
DEFBIT(IRQSTS3, LOW_CHARGE_CURRENT, 6)
DEFBIT(IRQSTS3, DCDC1_UNDER_VOLT, 5)
DEFBIT(IRQSTS3, DCDC2_UNDER_VOLT, 4)
DEFBIT(IRQSTS3, DCDC3_UNDER_VOLT, 3)
DEFBIT(IRQSTS3, SHORT_PRESS, 1)
DEFBIT(IRQSTS3, LONG_PRESS, 0)
DEFBIT(IRQSTS4, POWER_ON_N_OE, 7)
DEFBIT(IRQSTS4, POWER_OFF_N_OE, 6)
DEFBIT(IRQSTS4, VBUS_VALID, 5)
DEFBIT(IRQSTS4, VBUS_INVALID, 4)
DEFBIT(IRQSTS4, VBUS_SESS_AB, 3)
DEFBIT(IRQSTS4, VBUS_SESS_END, 2)
DEFBIT(IRQSTS4, APS_UNDER_VOLT, 0)
/* NOTE: IRQEN5 and IRQSTS5 are only listed on the Chinese datasheet. */
DEFBIT(IRQEN5, TIME_OUT, 7)
DEFBIT(IRQEN5, GPIO2_CHANGE, 2)
DEFBIT(IRQEN5, GPIO1_CHANGE, 1)
DEFBIT(IRQEN5, GPIO0_CHANGE, 0)
DEFBIT(IRQSTS5, TIME_OUT, 7)
DEFBIT(IRQSTS5, GPIO2_CHANGE, 2)
DEFBIT(IRQSTS5, GPIO1_CHANGE, 1)
DEFBIT(IRQSTS5, GPIO0_CHANGE, 0)
DEFFLD(DCDCMODE, VALUE, 3, 1)
DEFBIT(ADCEN1, BATTERY_VOLTAGE, 7)
DEFBIT(ADCEN1, BATTERY_CURRENT, 6)
DEFBIT(ADCEN1, ACIN_VOLTAGE, 5)
DEFBIT(ADCEN1, ACIN_CURRENT, 4)
DEFBIT(ADCEN1, VBUS_VOLTAGE, 3)
DEFBIT(ADCEN1, VBUS_CURRENT, 2)
DEFBIT(ADCEN1, APS_VOLTAGE, 1)
DEFBIT(ADCEN1, TS_PIN, 0)
DEFBIT(ADCEN2, INTERNAL_TEMP, 7)
DEFBIT(ADCEN2, GPIO0, 3)
DEFBIT(ADCEN2, GPIO1, 2)
DEFBIT(ADCEN2, GPIO2, 1)
DEFBIT(ADCEN2, GPIO3, 0)
DEFFLD(ADCCTL, SAMPLE_RATE, 7, 6)
DEFFLD(ADCCTL, TS_OUT_CURR, 5, 4)
DEFBIT(ADCCTL, TS_FUNCTION, 2)
DEFFLD(ADCCTL, TS_OUT_MODE, 1, 0)
DEFBIT(ADCRANGE, GPIO3HIGH, 3)
DEFBIT(ADCRANGE, GPIO2HIGH, 2)
DEFBIT(ADCRANGE, GPIO1HIGH, 1)
DEFBIT(ADCRANGE, GPIO0HIGH, 0)
DEFBIT(TIMERCTL, TIMEOUT, 7)
DEFFLD(TIMERCTL, DURATION, 6, 0)
DEFFLD(VBUSSRP, VBUSVALID_VOLTAGE, 5, 4)
DEFBIT(VBUSSRP, VBUSVALID_MONITOR, 3)
DEFBIT(VBUSSRP, VBUS_SESS_MONITOR, 2)
DEFBIT(VBUSSRP, VBUS_DCHG_RESISTOR, 1)
DEFBIT(VBUSSRP, VBUS_CHG_RESISTOR, 0)
DEFBIT(OTPOWEROFF, ENABLE, 2)
DEFFLD(GPIO0FUNC, VALUE, 2, 0)
DEFFLD(GPIO0LDO, VALUE, 7, 4)
DEFFLD(GPIO1FUNC, VALUE, 2, 0)
DEFFLD(GPIO2FUNC, VALUE, 2, 0)
DEFBIT(GPIOLEVEL1, IN2, 6)
DEFBIT(GPIOLEVEL1, IN1, 5)
DEFBIT(GPIOLEVEL1, IN0, 4)
DEFBIT(GPIOLEVEL1, OUT2, 2)
DEFBIT(GPIOLEVEL1, OUT1, 1)
DEFBIT(GPIOLEVEL1, OUT0, 0)
DEFFLD(GPIO3GPIO4FUNC, FUNC3, 3, 2)
DEFFLD(GPIO3GPIO4FUNC, FUNC4, 1, 0)
DEFBIT(GPIOLEVEL2, IN4, 5)
DEFBIT(GPIOLEVEL2, IN3, 4)
DEFBIT(GPIOLEVEL2, OUT4, 1)
DEFBIT(GPIOLEVEL2, OUT3, 0)
DEFBIT(GPIOPULL, PULL2, 2)
DEFBIT(GPIOPULL, PULL1, 1)
DEFBIT(GPIOPULL, PULL0, 0)
DEFBIT(NRSTO, FUNC, 7)
DEFBIT(NRSTO, GPIO_DIR, 6)
DEFBIT(NRSTO, GPIO_OUT, 5)
DEFBIT(NRSTO, GPIO_IN, 4)
DEFBIT(CC_CTL, OPEN, 7)
DEFBIT(CC_CTL, PAUSE, 6)
DEFBIT(CC_CTL, CLEAR, 5)
#undef DEFBIT
#undef DEFFLD
#undef DEFREG

131
firmware/export/axp192.h Normal file
View file

@ -0,0 +1,131 @@
/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2021 Aidan MacDonald
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#ifndef __AXP192_H__
#define __AXP192_H__
#include <stdint.h>
#include <stdbool.h>
enum {
#define DEFREG(regname, addr) AXP_REG_##regname = addr,
#include "axp192-defs.h"
};
enum {
#define DEFFLD(regname, fldname, msb, lsb, ...) \
BM_AXP_##regname##_##fldname = ((1 << ((msb) - (lsb) + 1)) - 1) << lsb, \
BP_AXP_##regname##_##fldname = lsb,
#include "axp192-defs.h"
};
enum {
AXP_SUPPLY_EXTEN,
AXP_SUPPLY_DCDC1,
AXP_SUPPLY_DCDC2,
AXP_SUPPLY_DCDC3,
AXP_SUPPLY_LDO2,
AXP_SUPPLY_LDO3,
AXP_SUPPLY_LDOIO0,
AXP_NUM_SUPPLIES,
};
enum {
AXP_ADC_ACIN_VOLTAGE,
AXP_ADC_ACIN_CURRENT,
AXP_ADC_VBUS_VOLTAGE,
AXP_ADC_VBUS_CURRENT,
AXP_ADC_INTERNAL_TEMP,
AXP_ADC_TS_INPUT,
AXP_ADC_GPIO0,
AXP_ADC_GPIO1,
AXP_ADC_GPIO2,
AXP_ADC_GPIO3,
AXP_ADC_BATTERY_VOLTAGE,
AXP_ADC_CHARGE_CURRENT,
AXP_ADC_DISCHARGE_CURRENT,
AXP_ADC_APS_VOLTAGE,
AXP_NUM_ADCS,
};
enum {
AXP_GPIO_OPEN_DRAIN_OUTPUT = 0x0,
AXP_GPIO_INPUT = 0x1,
AXP_GPIO_SPECIAL = 0x2,
AXP_GPIO_ADC_IN = 0x4,
AXP_GPIO_LOW_OUTPUT = 0x5,
AXP_GPIO_FLOATING = 0x7,
};
enum {
/* Limit USB current consumption to 100 mA. */
AXP_VBUS_LIMIT_100mA = (1 << BP_AXP_VBUSIPSOUT_VHOLD_LIM) |
(1 << BP_AXP_VBUSIPSOUT_VBUS_LIM) |
(1 << BP_AXP_VBUSIPSOUT_LIM_100mA),
/* Limit USB current consumption to 500 mA. */
AXP_VBUS_LIMIT_500mA = (1 << BP_AXP_VBUSIPSOUT_VHOLD_LIM) |
(1 << BP_AXP_VBUSIPSOUT_VBUS_LIM) |
(0 << BP_AXP_VBUSIPSOUT_LIM_100mA),
/* No upper bound on USB current, but the current will still
* be reduced to maintain the bus voltage above V_hold. */
AXP_VBUS_UNLIMITED = (1 << BP_AXP_VBUSIPSOUT_VHOLD_LIM) |
(0 << BP_AXP_VBUSIPSOUT_VBUS_LIM) |
(0 << BP_AXP_VBUSIPSOUT_LIM_100mA),
/* Unlimited USB current consumption. Voltage is allowed to drop
* below V_hold, which may interfere with normal USB operation.
* This mode is really only useful with AC charging adapters. */
AXP_VBUS_FULLY_UNLIMITED = (0 << BP_AXP_VBUSIPSOUT_VHOLD_LIM) |
(0 << BP_AXP_VBUSIPSOUT_VBUS_LIM) |
(0 << BP_AXP_VBUSIPSOUT_LIM_100mA),
};
extern int axp_read(uint8_t reg);
extern int axp_write(uint8_t reg, uint8_t value);
extern int axp_modify(uint8_t reg, uint8_t clr, uint8_t set);
extern void axp_enable_supply(int supply, bool enable);
extern void axp_set_enabled_supplies(unsigned int supply_mask);
extern void axp_set_supply_voltage(int supply, int output_mV);
extern void axp_enable_adc(int adc, bool enable);
extern void axp_set_enabled_adcs(unsigned int adc_mask);
extern int axp_read_adc_raw(int adc);
extern int axp_conv_adc(int adc, int value);
extern int axp_read_adc(int adc);
extern void axp_set_gpio_function(int gpio, int function);
extern void axp_set_gpio_pulldown(int gpio, bool enable);
extern int axp_get_gpio(int gpio);
extern void axp_set_gpio(int gpio, bool enable);
extern void axp_set_charge_current(int current_mA);
extern int axp_get_charge_current(void);
extern void axp_set_vbus_limit(int vbus_limit);
extern void axp_set_vhold_level(int vhold_mV);
extern bool axp_is_charging(void);
extern unsigned int axp_power_input_status(void);
extern void axp_power_off(void);
#endif /* __AXP192_H__ */

View file

@ -24,7 +24,7 @@
#include "backlight.h"
#include "powermgmt.h"
#include "panic.h"
#include "axp-pmu.h"
#include "axp192.h"
#include "gpio-x1000.h"
#include "irq-x1000.h"
#include "i2c-x1000.h"
@ -89,7 +89,7 @@ static int hp_detect_tmo_cb(struct timeout* tmo)
static void hp_detect_init(void)
{
static struct timeout tmo;
static const uint8_t gpio_reg = AXP192_REG_GPIOSTATE1;
static const uint8_t gpio_reg = AXP_REG_GPIOLEVEL1;
static i2c_descriptor desc = {
.slave_addr = AXP_PMU_ADDR,
.bus_cond = I2C_START | I2C_STOP,
@ -105,11 +105,11 @@ static void hp_detect_init(void)
/* Headphone and LO detects are wired to AXP192 GPIOs 0 and 1,
* set them to inputs. */
i2c_reg_write1(AXP_PMU_BUS, AXP_PMU_ADDR, AXP192_REG_GPIO0FUNCTION, 0x01); /* HP detect */
i2c_reg_write1(AXP_PMU_BUS, AXP_PMU_ADDR, AXP192_REG_GPIO1FUNCTION, 0x01); /* LO detect */
axp_set_gpio_function(0, AXP_GPIO_INPUT); /* HP detect */
axp_set_gpio_function(1, AXP_GPIO_INPUT); /* LO detect */
/* Get an initial reading before startup */
int r = i2c_reg_read1(AXP_PMU_BUS, AXP_PMU_ADDR, gpio_reg);
int r = axp_read(gpio_reg);
if(r >= 0)
{
hp_detect_reg = r;

View file

@ -28,7 +28,7 @@
#ifdef HAVE_USB_CHARGING_ENABLE
# include "usb_core.h"
#endif
#include "axp-pmu.h"
#include "axp192.h"
#include "i2c-x1000.h"
const unsigned short battery_level_dangerous[BATTERY_TYPES_COUNT] =
@ -56,27 +56,30 @@ const unsigned short percent_to_volt_charge[11] =
void power_init(void)
{
/* Initialize driver */
i2c_x1000_set_freq(2, I2C_FREQ_400K);
axp_init();
/* Configure I2C bus */
i2c_x1000_set_freq(AXP_PMU_BUS, I2C_FREQ_400K);
/* Set lowest sample rate */
axp_adc_set_rate(AXP_ADC_RATE_25HZ);
/* FIXME: Copy paste from M3K. Probably not necessary */
axp_modify(AXP_REG_DCDCMODE, 0, 0xc0);
/* Ensure battery voltage ADC is enabled */
int bits = axp_adc_get_enabled();
bits |= (1 << ADC_BATTERY_VOLTAGE);
axp_adc_set_enabled(bits);
/* Power on required supplies */
axp_set_enabled_supplies(
(1 << AXP_SUPPLY_EXTEN) |
(1 << AXP_SUPPLY_DCDC1) |
(1 << AXP_SUPPLY_DCDC2) |
(1 << AXP_SUPPLY_DCDC3) |
(1 << AXP_SUPPLY_LDO2) |
(1 << AXP_SUPPLY_LDO3));
/* Turn on all power outputs */
i2c_reg_modify1(AXP_PMU_BUS, AXP_PMU_ADDR,
AXP_REG_PWROUTPUTCTRL2, 0, 0x5f, NULL);
i2c_reg_modify1(AXP_PMU_BUS, AXP_PMU_ADDR,
AXP_REG_DCDCWORKINGMODE, 0, 0xc0, NULL);
/* Set the default charging current. This is the same as the
* OF's setting, although it's not strictly within the USB spec. */
axp_set_charge_current(780);
/* Enable required ADCs */
axp_set_enabled_adcs(
(1 << AXP_ADC_BATTERY_VOLTAGE) |
(1 << AXP_ADC_CHARGE_CURRENT) |
(1 << AXP_ADC_DISCHARGE_CURRENT) |
(1 << AXP_ADC_VBUS_VOLTAGE) |
(1 << AXP_ADC_VBUS_CURRENT) |
(1 << AXP_ADC_INTERNAL_TEMP) |
(1 << AXP_ADC_APS_VOLTAGE));
/* Delay to give power outputs time to stabilize.
* With the power thread delay, this can apparently go as low as 50,
@ -104,20 +107,25 @@ void power_off(void)
bool charging_state(void)
{
return axp_battery_status() == AXP_BATT_CHARGING;
return axp_is_charging();
}
unsigned int power_input_status(void)
{
return axp_power_input_status();
}
int _battery_voltage(void)
{
return axp_adc_read(ADC_BATTERY_VOLTAGE);
return axp_read_adc(AXP_ADC_BATTERY_VOLTAGE);
}
#if CONFIG_BATTERY_MEASURE & CURRENT_MEASURE
int _battery_current(void)
{
if(charging_state())
return axp_adc_read(ADC_CHARGE_CURRENT);
return axp_read_adc(AXP_ADC_CHARGE_CURRENT);
else
return axp_adc_read(ADC_DISCHARGE_CURRENT);
return axp_read_adc(AXP_ADC_DISCHARGE_CURRENT);
}
#endif

View file

@ -24,7 +24,7 @@
#include "backlight.h"
#include "powermgmt.h"
#include "panic.h"
#include "axp-pmu.h"
#include "axp192.h"
#include "ft6x06.h"
#include "gpio-x1000.h"
#include "irq-x1000.h"
@ -393,7 +393,7 @@ static int hp_detect_tmo_cb(struct timeout* tmo)
static void hp_detect_init(void)
{
static struct timeout tmo;
static const uint8_t gpio_reg = AXP192_REG_GPIOSTATE1;
static const uint8_t gpio_reg = AXP_REG_GPIOLEVEL1;
static i2c_descriptor desc = {
.slave_addr = AXP_PMU_ADDR,
.bus_cond = I2C_START | I2C_STOP,
@ -408,10 +408,10 @@ static void hp_detect_init(void)
};
/* Headphone detect is wired to AXP192 GPIO: set it to input state */
i2c_reg_write1(AXP_PMU_BUS, AXP_PMU_ADDR, AXP192_REG_GPIO2FUNCTION, 0x01);
axp_set_gpio_function(2, AXP_GPIO_INPUT);
/* Get an initial reading before startup */
int r = i2c_reg_read1(AXP_PMU_BUS, AXP_PMU_ADDR, gpio_reg);
int r = axp_read(gpio_reg);
if(r >= 0)
hp_detect_reg = r;

View file

@ -26,7 +26,7 @@
#ifdef HAVE_USB_CHARGING_ENABLE
# include "usb_core.h"
#endif
#include "axp-pmu.h"
#include "axp192.h"
#include "i2c-x1000.h"
const unsigned short battery_level_dangerous[BATTERY_TYPES_COUNT] =
@ -54,27 +54,29 @@ const unsigned short percent_to_volt_charge[11] =
void power_init(void)
{
/* Initialize driver */
i2c_x1000_set_freq(2, I2C_FREQ_400K);
axp_init();
/* Configure I2C bus */
i2c_x1000_set_freq(AXP_PMU_BUS, I2C_FREQ_400K);
/* Set lowest sample rate */
axp_adc_set_rate(AXP_ADC_RATE_25HZ);
/* Set DCDC1 and DCDC2 to fixed PWM mode to match OF settings. */
axp_modify(AXP_REG_DCDCMODE, 0, 0x0c);
/* Ensure battery voltage ADC is enabled */
int bits = axp_adc_get_enabled();
bits |= (1 << ADC_BATTERY_VOLTAGE);
axp_adc_set_enabled(bits);
/* Power on required supplies */
axp_set_enabled_supplies(
(1 << AXP_SUPPLY_DCDC1) | /* not sure (3.3 V) */
(1 << AXP_SUPPLY_DCDC2) | /* not sure (1.4 V) */
(1 << AXP_SUPPLY_DCDC3) | /* for CPU (1.8 V) */
(1 << AXP_SUPPLY_LDO2) | /* LCD controller (3.3 V) */
(1 << AXP_SUPPLY_LDO3)); /* SD bus (3.3 V) */
/* Turn on all power outputs */
i2c_reg_modify1(AXP_PMU_BUS, AXP_PMU_ADDR,
AXP_REG_PWROUTPUTCTRL2, 0, 0x5f, NULL);
i2c_reg_modify1(AXP_PMU_BUS, AXP_PMU_ADDR,
AXP_REG_DCDCWORKINGMODE, 0, 0xc0, NULL);
/* Set the default charging current. This is the same as the
* OF's setting, although it's not strictly within the USB spec. */
axp_set_charge_current(780);
/* Enable required ADCs */
axp_set_enabled_adcs(
(1 << AXP_ADC_BATTERY_VOLTAGE) |
(1 << AXP_ADC_CHARGE_CURRENT) |
(1 << AXP_ADC_DISCHARGE_CURRENT) |
(1 << AXP_ADC_VBUS_VOLTAGE) |
(1 << AXP_ADC_VBUS_CURRENT) |
(1 << AXP_ADC_INTERNAL_TEMP) |
(1 << AXP_ADC_APS_VOLTAGE));
/* Short delay to give power outputs time to stabilize */
mdelay(200);
@ -99,20 +101,25 @@ void power_off(void)
bool charging_state(void)
{
return axp_battery_status() == AXP_BATT_CHARGING;
return axp_is_charging();
}
unsigned int power_input_status(void)
{
return axp_power_input_status();
}
int _battery_voltage(void)
{
return axp_adc_read(ADC_BATTERY_VOLTAGE);
return axp_read_adc(AXP_ADC_BATTERY_VOLTAGE);
}
#if CONFIG_BATTERY_MEASURE & CURRENT_MEASURE
int _battery_current(void)
{
if(charging_state())
return axp_adc_read(ADC_CHARGE_CURRENT);
return axp_read_adc(AXP_ADC_CHARGE_CURRENT);
else
return axp_adc_read(ADC_DISCHARGE_CURRENT);
return axp_read_adc(AXP_ADC_DISCHARGE_CURRENT);
}
#endif

View file

@ -23,7 +23,7 @@
#include "button.h"
#include "touchscreen.h"
#include "ft6x06.h"
#include "axp-pmu.h"
#include "axp192.h"
#include "kernel.h"
#include "backlight.h"
#include "powermgmt.h"
@ -57,7 +57,7 @@ static void hp_detect_init(void)
{
/* TODO: replace this copy paste cruft with an API in axp-pmu */
static struct timeout tmo;
static const uint8_t gpio_reg = AXP192_REG_GPIOSTATE1;
static const uint8_t gpio_reg = AXP_REG_GPIOLEVEL1;
static i2c_descriptor desc = {
.slave_addr = AXP_PMU_ADDR,
.bus_cond = I2C_START | I2C_STOP,
@ -72,10 +72,10 @@ static void hp_detect_init(void)
};
/* Headphone detect is wired to AXP192 GPIO: set it to input state */
i2c_reg_write1(AXP_PMU_BUS, AXP_PMU_ADDR, AXP192_REG_GPIO1FUNCTION, 0x01);
axp_set_gpio_function(1, AXP_GPIO_INPUT);
/* Get an initial reading before startup */
int r = i2c_reg_read1(AXP_PMU_BUS, AXP_PMU_ADDR, gpio_reg);
int r = axp_read(gpio_reg);
if(r >= 0)
hp_detect_reg = r;

View file

@ -22,7 +22,7 @@
#include "power.h"
#include "adc.h"
#include "system.h"
#include "axp-pmu.h"
#include "axp192.h"
#ifdef HAVE_CW2015
# include "cw2015.h"
#endif
@ -73,24 +73,30 @@ const unsigned short percent_to_volt_charge[11] =
void power_init(void)
{
i2c_x1000_set_freq(AXP_PMU_BUS, I2C_FREQ_400K);
axp_init();
#ifdef HAVE_CW2015
cw2015_init();
#endif
/* Change supply voltage from the default of 1250 mV to 1200 mV,
* this matches the original firmware's settings. Didn't observe
* any obviously bad behavior at 1250 mV, but better to be safe. */
axp_supply_set_voltage(AXP_SUPPLY_DCDC2, 1200);
/* Set DCDC2 to 1.2 V to match OF settings. */
axp_set_supply_voltage(AXP_SUPPLY_DCDC2, 1200);
/* For now, just turn everything on... definitely the touchscreen
* is powered by one of the outputs */
i2c_reg_modify1(AXP_PMU_BUS, AXP_PMU_ADDR,
AXP_REG_PWROUTPUTCTRL1, 0, 0x05, NULL);
i2c_reg_modify1(AXP_PMU_BUS, AXP_PMU_ADDR,
AXP_REG_PWROUTPUTCTRL2, 0, 0x0f, NULL);
i2c_reg_modify1(AXP_PMU_BUS, AXP_PMU_ADDR,
AXP_REG_DCDCWORKINGMODE, 0, 0xc0, NULL);
/* Power on required supplies */
axp_set_enabled_supplies(
(1 << AXP_SUPPLY_DCDC1) | /* SD bus (3.3 V) */
(1 << AXP_SUPPLY_DCDC2) | /* LCD (1.2 V) */
(1 << AXP_SUPPLY_DCDC3) | /* CPU (1.8 V) */
(1 << AXP_SUPPLY_LDO2) | /* Touchscreen (3.3 V) */
(1 << AXP_SUPPLY_LDO3)); /* not sure (2.5 V) */
/* Enable required ADCs */
axp_set_enabled_adcs(
(1 << AXP_ADC_BATTERY_VOLTAGE) |
(1 << AXP_ADC_CHARGE_CURRENT) |
(1 << AXP_ADC_DISCHARGE_CURRENT) |
(1 << AXP_ADC_VBUS_VOLTAGE) |
(1 << AXP_ADC_VBUS_CURRENT) |
(1 << AXP_ADC_INTERNAL_TEMP) |
(1 << AXP_ADC_APS_VOLTAGE));
/* Delay to give power output time to stabilize */
mdelay(20);
@ -111,23 +117,28 @@ void power_off(void)
bool charging_state(void)
{
return axp_battery_status() == AXP_BATT_CHARGING;
return axp_is_charging();
}
unsigned int power_input_status(void)
{
return axp_power_input_status();
}
int _battery_voltage(void)
{
/* CW2015 can also read battery voltage, but the AXP consistently
* reads ~20-30 mV higher so I suspect it's the "real" voltage. */
return axp_adc_read(ADC_BATTERY_VOLTAGE);
return axp_read_adc(AXP_ADC_BATTERY_VOLTAGE);
}
#if CONFIG_BATTERY_MEASURE & CURRENT_MEASURE
int _battery_current(void)
{
if(charging_state())
return axp_adc_read(ADC_CHARGE_CURRENT);
return axp_read_adc(AXP_ADC_CHARGE_CURRENT);
else
return axp_adc_read(ADC_DISCHARGE_CURRENT);
return axp_read_adc(AXP_ADC_DISCHARGE_CURRENT);
}
#endif