rockbox/firmware/linuxboot.c

315 lines
8.9 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2022 Aidan MacDonald
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "linuxboot.h"
#include "system.h"
#include "core_alloc.h"
#include "crc32.h"
#include "inflate.h"
#include "file.h"
#include <string.h>
/* compression support options - can be decided per target if needed,
* for now default to enabling everything */
#define HAVE_UIMAGE_COMP_NONE
#define HAVE_UIMAGE_COMP_GZIP
uint32_t uimage_crc(uint32_t crc, const void* data, size_t size)
{
/* is this endian swapping required...? */
return letoh32(crc_32r(data, size, htole32(crc ^ 0xffffffff))) ^ 0xffffffff;
}
uint32_t uimage_calc_hcrc(const struct uimage_header* uh)
{
struct uimage_header h = *uh;
uimage_set_hcrc(&h, 0);
return uimage_crc(0, &h, sizeof(h));
}
static int uimage_check_header(const struct uimage_header* uh)
{
if(uimage_get_magic(uh) != IH_MAGIC)
return -1;
if(uimage_get_hcrc(uh) != uimage_calc_hcrc(uh))
return -2;
return 0;
}
static int uimage_alloc_state(const struct uimage_header* uh)
{
size_t size;
switch(uimage_get_comp(uh)) {
#ifdef HAVE_UIMAGE_COMP_NONE
case IH_COMP_NONE:
return 0;
#endif
#ifdef HAVE_UIMAGE_COMP_GZIP
case IH_COMP_GZIP:
size = inflate_size + inflate_align - 1;
return core_alloc_ex("inflate", size, &buflib_ops_locked);
#endif
default:
return -1;
}
}
#ifdef HAVE_UIMAGE_COMP_GZIP
struct uimage_inflatectx
{
uimage_reader reader;
void* rctx;
uint32_t dcrc;
size_t remain;
};
static uint32_t uimage_inflate_reader(void* block, uint32_t block_size, void* ctx)
{
struct uimage_inflatectx* c = ctx;
ssize_t len = c->reader(block, block_size, c->rctx);
if(len > 0) {
len = MIN(c->remain, (size_t)len);
c->remain -= len;
c->dcrc = uimage_crc(c->dcrc, block, len);
}
return len;
}
static int uimage_decompress_gzip(const struct uimage_header* uh, int state_h,
void* out, size_t* out_size,
uimage_reader reader, void* rctx)
{
size_t hbufsz = inflate_size + inflate_align - 1;
void* hbuf = core_get_data(state_h);
ALIGN_BUFFER(hbuf, hbufsz, inflate_align);
struct uimage_inflatectx r_ctx;
r_ctx.reader = reader;
r_ctx.rctx = rctx;
r_ctx.dcrc = 0;
r_ctx.remain = uimage_get_size(uh);
struct inflate_bufferctx w_ctx;
w_ctx.buf = out;
w_ctx.end = out + *out_size;
int ret = inflate(hbuf, INFLATE_GZIP,
uimage_inflate_reader, &r_ctx,
inflate_buffer_writer, &w_ctx);
if(ret)
return ret;
if(r_ctx.remain > 0)
return -1;
if(r_ctx.dcrc != uimage_get_dcrc(uh))
return -2;
*out_size = w_ctx.end - w_ctx.buf;
return 0;
}
#endif /* HAVE_UIMAGE_COMP_GZIP */
static int uimage_decompress(const struct uimage_header* uh, int state_h,
void* out, size_t* out_size,
uimage_reader reader, void* rctx)
{
size_t in_size = uimage_get_size(uh);
ssize_t len;
switch(uimage_get_comp(uh)) {
#ifdef HAVE_UIMAGE_COMP_NONE
case IH_COMP_NONE:
if(*out_size < in_size)
return -2;
len = reader(out, in_size, rctx);
if(len < 0 || (size_t)len != in_size)
return -3;
if(uimage_crc(0, out, in_size) != uimage_get_dcrc(uh))
return -4;
*out_size = in_size;
break;
#endif
#ifdef HAVE_UIMAGE_COMP_GZIP
case IH_COMP_GZIP:
return uimage_decompress_gzip(uh, state_h, out, out_size, reader, rctx);
#endif
default:
return -1;
}
return 0;
}
int uimage_load(struct uimage_header* uh, size_t* out_size,
uimage_reader reader, void* rctx)
{
if(reader(uh, sizeof(*uh), rctx) != (ssize_t)sizeof(*uh))
return -1; /* read error */
int ret = uimage_check_header(uh);
if(ret)
return ret;
int state_h = uimage_alloc_state(uh);
if(state_h < 0)
return state_h;
*out_size = 0;
int out_h = core_alloc_maximum("uimage", out_size, &buflib_ops_locked);
if(out_h <= 0) {
ret = -1;
goto err;
}
ret = uimage_decompress(uh, state_h, core_get_data(out_h), out_size,
reader, rctx);
if(ret)
goto err;
core_shrink(out_h, core_get_data(out_h), *out_size);
ret = 0;
err:
if(state_h > 0)
core_free(state_h);
if(out_h > 0) {
if(ret == 0)
ret = out_h;
else
core_free(out_h);
}
return ret;
}
ssize_t uimage_fd_reader(void* buf, size_t size, void* ctx)
{
int fd = (intptr_t)ctx;
return read(fd, buf, size);
}
/* Linux's self-extracting kernels are broken on MIPS. The decompressor stub
* doesn't flush caches after extracting the kernel code which can cause the
* boot to fail horribly. This has been true since at least 2009 and at the
* time of writing (2022) it's *still* broken.
*
* The FiiO M3K and Shanling Q1 both have broken kernels of this type, so we
* work around this by replacing the direct call to the kernel entry point with
* a thunk that adds the necessary cache flush.
*/
uint32_t mips_linux_stub_get_entry(void** code_start, size_t code_size)
{
/* The jump to the kernel entry point looks like this:
*
* move a0, s0
* move a1, s1
* move a2, s2
* move a3, s3
* ...
* la k0, KERNEL_ENTRY
* jr k0
* --- or in kernels since 2021: ---
* la t9, KERNEL_ENTRY
* jalr t9
*
* We're trying to identify this code and decode the kernel entry
* point address, and return a suitable address where we can patch
* in a call to our thunk.
*/
/* We should only need to scan within the first 128 bytes
* but do up to 256 just in case. */
uint32_t* start = *code_start;
uint32_t* end = start + (MIN(code_size, 256) + 3) / 4;
/* Scan for the "move aN, sN" sequence */
uint32_t* move_instr = start;
for(move_instr += 4; move_instr < end; ++move_instr) {
if(move_instr[-4] == 0x02002021 && /* move a0, s0 */
move_instr[-3] == 0x02202821 && /* move a1, s1 */
move_instr[-2] == 0x02403021 && /* move a2, s2 */
move_instr[-1] == 0x02603821) /* move a3, s3 */
break;
}
if(move_instr == end)
return 0;
/* Now search forward for the next jr/jalr instruction */
int jreg = 0;
uint32_t* jump_instr = move_instr;
for(; jump_instr != end; ++jump_instr) {
if((jump_instr[0] & 0xfc1ff83f) == 0xf809 ||
(jump_instr[0] & 0xfc00003f) == 0x8) {
/* jalr rN */
jreg = (jump_instr[0] >> 21) & 0x1f;
break;
}
}
/* Need room here for 4 instructions. Assume everything between the
* moves and the jump is safe to overwrite; otherwise, we'll need to
* take a different approach.
*
* Count +1 instruction for the branch delay slot and another +1 because
* "move_instr" points to the instruction following the last move. */
if(jump_instr - move_instr + 2 < 4)
return 0;
if(!jreg)
return 0;
/* Now scan from the end of the move sequence until the jump instruction
* and try to reconstruct the entry address. We check for lui/ori/addiu. */
const uint32_t lui_mask = 0xffff0000;
const uint32_t lui = 0x3c000000 | (jreg << 16);
const uint32_t ori_mask = 0xffff0000;
const uint32_t ori = 0x34000000 | (jreg << 21) | (jreg << 16);
const uint32_t addiu_mask = 0xffff0000;
const uint32_t addiu = 0x24000000 | (jreg << 21) | (jreg << 16);
/* Can use any initial value here */
uint32_t jreg_val = 0xdeadbeef;
for(uint32_t* instr = move_instr; instr != jump_instr; ++instr) {
if((instr[0] & lui_mask) == lui)
jreg_val = (instr[0] & 0xffff) << 16;
else if((instr[0] & ori_mask) == ori)
jreg_val |= instr[0] & 0xffff;
else if((instr[0] & addiu_mask) == addiu)
jreg_val += instr[0] & 0xffff;
}
/* Success! Probably! */
*code_start = move_instr;
return jreg_val;
}