rockbox/firmware/target/arm/tms320dm320/creative-zvm/ata-creativezvm.c

525 lines
14 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2008 by Maurus Cuelenaere
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "cpu.h"
#include "kernel.h"
#include "thread.h"
#include "system.h"
#include "power.h"
#include "panic.h"
#include "ata-target.h"
#include "dm320.h"
#include "ata.h"
#include "string.h"
#include "buffer.h"
#include "logf.h"
#undef ata_read_sectors
#undef ata_write_sectors
static void sleep_ms(int ms)
{
sleep(ms*HZ/1000);
}
void ide_power_enable(bool on)
{
/* Disabled until figured out what's wrong */
#if 0
int old_level = disable_irq_save();
if(on)
{
IO_GIO_BITSET0 = (1 << 14);
ata_reset();
}
else
IO_GIO_BITCLR0 = (1 << 14);
restore_irq(old_level);
#else
(void)on;
#endif
}
inline bool ide_powered()
{
#if 0
return (IO_GIO_BITSET0 & (1 << 14));
#else
return true;
#endif
}
void ata_reset(void)
{
int old_level = disable_irq_save();
if(!ide_powered())
{
ide_power_enable(true);
sleep_ms(150);
}
else
{
IO_GIO_BITSET0 = (1 << 5);
IO_GIO_BITCLR0 = (1 << 3);
sleep_ms(1);
}
IO_GIO_BITCLR0 = (1 << 5);
sleep_ms(10);
IO_GIO_BITSET0 = (1 << 3);
while(!(ATA_COMMAND & STATUS_RDY))
sleep_ms(10);
restore_irq(old_level);
}
void ata_enable(bool on)
{
(void)on;
return;
}
bool ata_is_coldstart(void)
{
return true;
}
void ata_device_init(void)
{
IO_INTC_EINT1 |= INTR_EINT1_EXT2; /* enable GIO2 interrupt */
/* TODO: mimic OF inits... */
return;
}
void GIO2(void)
{
#ifdef DEBUG
logf("GIO2 interrupt...");
#endif
IO_INTC_IRQ1 = INTR_IRQ1_EXT2; /* Mask GIO2 interrupt */
return;
}
/*
---------------------------------------------------------------------------
CreativeFileSystem parsing/handling code
---------------------------------------------------------------------------
*/
#define VFAT_SECTOR_SIZE(x) ( (x)/0x8000 ) /* 1GB array requires 80kB of RAM */
extern int ata_read_sectors(IF_MD2(int drive,) unsigned long start, int count, void* buf);
extern int ata_write_sectors(IF_MD2(int drive,) unsigned long start, int count, const void* buf);
struct main_header
{
char mblk[4];
unsigned int sector_size;
long long disk_size;
struct partition_header
{
unsigned long end;
unsigned long start;
char name[8];
} partitions[31];
};
struct cfs_header
{
unsigned int unk;
unsigned int unk2;
unsigned int sector_size;
unsigned int unk4;
unsigned int unk5;
char identifier[4];
unsigned int first_inode;
unsigned int unk8;
unsigned int unk9;
unsigned int unk10;
unsigned int unk11;
};
struct cfs_inode
{
unsigned char magic[4];
unsigned int number;
unsigned int parent;
unsigned int unk;
unsigned int type;
unsigned int created_time;
unsigned int lastmodified_time;
unsigned int unk2;
unsigned int first_class_chain[12];
unsigned int unk3;
unsigned int unk4;
unsigned int second_class_chain_first_cluster;
unsigned int unk9;
unsigned int unk10;
unsigned int second_class_chain_second_cluster;
unsigned int unk11;
unsigned int unk12;
unsigned int unk13;
unsigned int filesize;
unsigned int serial_number;
unsigned int number_of_metadata_records;
};
struct cfs_direntry
{
unsigned char identifier[4];
unsigned int unk;
unsigned int items;
unsigned int unk2;
unsigned char maxlen[2];
unsigned char padding[202];
/* struct cfs_direntry_item _items[items]; */
};
struct cfs_direntry_item
{
unsigned int inode_number;
unsigned short strlen;
unsigned short bytesperchar;
char string[32];
};
static bool cfs_inited = false;
static unsigned long cfs_start;
static unsigned long *sectors;
#define CFS_START ( ((hdr->partitions[1].start*hdr->sector_size) & ~0xFFFF) + 0x10000 )
#define CFS_CLUSTER2CLUSTER(x) ( (CFS_START/512)+((x)-1)*64 )
/* Limited version of UCS -> ASCII */
static char* ucs2letostring(unsigned char* s)
{
static char res[256];
int i;
for(i=0; (s[i] == 0 && s[i+1] == 0 && i<256); i++)
res[i] = s[i*2];
return (char*)&res;
}
static void cfs_init(void)
{
struct main_header *hdr;
struct cfs_header *cfs;
struct cfs_inode *root_inode, *vfat_inode, *inode;
struct cfs_direntry *root_direntry, *vfat_direntry;
struct cfs_direntry_item *root_direntry_items, *vfat_direntry_items;
unsigned int i, j, k, vfat_inode_nr=0, vfat_inodes_nr[10], vfat_sector_count;
unsigned char sector[512];
static unsigned int vfat_data[2][0x8000];
static unsigned char sector2[0x8000];
if(cfs_inited)
return;
/* Read MBLK */
_ata_read_sectors(0, 1, &sector);
hdr = (struct main_header*)&sector;
logf("CFS is at 0x%x [0x%x]", CFS_START, CFS_START/512);
/* Read CFS header */
_ata_read_sectors(CFS_START/512, 64, &sector2);
cfs = (struct cfs_header*)&sector2;
logf("First inode = 0x%x", cfs->first_inode);
/* Read root inode */
_ata_read_sectors(CFS_CLUSTER2CLUSTER(cfs->first_inode), 64, &sector2);
root_inode = (struct cfs_inode*)&sector2;
logf("Root inode = 0x%x", root_inode);
logf("0x%x 0x%x", CFS_CLUSTER2CLUSTER(root_inode->first_class_chain[0]), root_inode->first_class_chain[0]);
/* Read root inode's first sector */
_ata_read_sectors(CFS_CLUSTER2CLUSTER(root_inode->first_class_chain[0]), 64, &sector2);
root_direntry = (struct cfs_direntry*)&sector2;
root_direntry_items = (struct cfs_direntry_item*)(&sector2+sizeof(struct cfs_direntry));
logf("0x%x", root_direntry->identifier);
logf("%d", root_direntry->items);
/* Search VFAT inode */
for(i=0; i < root_direntry->items; i++)
{
if(root_direntry_items[i].inode_number != 0)
{
//logf(" * [%s] at 0x%x", ucs2letostring(&root_direntry_items[i].string[0]), root_direntry_items[i].inode_number);
if(strcmp(ucs2letostring(&root_direntry_items[i].string[0]), "VFAT") == 0)
vfat_inode_nr = root_direntry_items[i].inode_number;
}
}
logf("VFAT inode = 0x%x", vfat_inode_nr);
if(vfat_inode_nr != 0)
{
/* Read VFAT inode */
_ata_read_sectors(CFS_CLUSTER2CLUSTER(vfat_inode_nr), 64, &sector2);
vfat_inode = (struct cfs_inode*)&sector2;
/* Read VFAT inode's first sector */
_ata_read_sectors(CFS_CLUSTER2CLUSTER(vfat_inode->first_class_chain[0]), 64, &sector2);
vfat_direntry = (struct cfs_direntry*)&sector2;
vfat_direntry_items = (struct cfs_direntry_item*)(&sector2+sizeof(struct cfs_direntry));
/* Search for VFAT's subinodes */
for(i=0; i < vfat_direntry->items; i++)
{
logf(" * [%s] at 0x%x\n", ucs2letostring(&vfat_direntry_items[i].string[0]), vfat_direntry_items[i].inode_number);
if(i > 0)
vfat_inodes_nr[i-1] = vfat_direntry_items[i].inode_number;
}
/* Determine size of VFAT file */
_ata_read_sectors(CFS_CLUSTER2CLUSTER(vfat_inodes_nr[1]), 1, &sector);
inode = (struct cfs_inode*)&sector;
#ifndef BOOTLOADER
sectors = (unsigned long*)buffer_alloc(VFAT_SECTOR_SIZE(inode->filesize));
#else
static unsigned long _sector[VFAT_SECTOR_SIZE(1024*1024*1024)]; /* 1GB guess */
sectors = _sector;
#endif
logf("VFAT file size: 0x%x", inode->filesize);
/* Clear data sectors */
memset(&sectors, 0, VFAT_SECTOR_SIZE(inode->filesize)*sizeof(unsigned long));
/* Read all data sectors' addresses in memory */
vfat_sector_count = 0;
for(i=0; vfat_inodes_nr[i] != 0; i++)
{
_ata_read_sectors(CFS_CLUSTER2CLUSTER(vfat_inodes_nr[i]), 1, &sector);
inode = (struct cfs_inode*)&sector;
/* Read second & third class chain */
_ata_read_sectors(CFS_CLUSTER2CLUSTER(inode->second_class_chain_first_cluster), 64, &vfat_data[0]);
_ata_read_sectors(CFS_CLUSTER2CLUSTER(inode->second_class_chain_second_cluster), 64, &vfat_data[1]);
/* First class chain */
for(j=0; j<12; j++)
{
if( (inode->first_class_chain[j] & 0xFFFF) != 0xFFFF &&
inode->first_class_chain[j] != 0
)
sectors[vfat_sector_count++] = inode->first_class_chain[j];
}
/* Second class chain */
for(j=0; j<0x8000/4; j++)
{
if( (vfat_data[0][j] & 0xFFFF) != 0xFFFF &&
vfat_data[0][j] != 0
)
sectors[vfat_sector_count++] = vfat_data[0][j];
}
/* Third class chain */
for(j=0; j<0x8000/4; j++)
{
if( (vfat_data[1][j] & 0xFFFF) != 0xFFFF &&
vfat_data[1][j] != 0
)
{
memset(&vfat_data[0], 0, 0x8000*sizeof(unsigned int));
/* Read third class subchain(s) */
_ata_read_sectors(CFS_CLUSTER2CLUSTER(vfat_data[1][j]), 64, &vfat_data[0]);
for(k=0; k<0x8000/4; k++)
{
if( (vfat_data[0][k] & 0xFFFF) != 0xFFFF &&
vfat_data[0][k] != 0
)
sectors[vfat_sector_count++] = vfat_data[0][k];
}
}
}
}
logf("Sector count: %d 0x%x", vfat_sector_count, vfat_sector_count);
}
else
panicf("Cannot find virtual FAT filesystem!");
cfs_inited = true;
}
static inline unsigned long map_sector(unsigned long sector)
{
/*
* Sector mapping: start of CFS + FAT_SECTOR2CFS_SECTOR(sector) + missing part
* FAT works with sectors of 0x200 bytes, CFS with sectors of 0x8000 bytes.
*/
return cfs_start+sectors[sector/64]*64+sector%64;
}
int ata_read_sectors(IF_MD2(int drive,) unsigned long start, int count, void* buf)
{
if(!cfs_inited)
cfs_init();
/* Check if count is lesser than or equal to 1 native CFS sector */
if(count <= 64)
return _ata_read_sectors(IF_MD2(drive,) map_sector(start), count, buf);
else
{
int i, ret;
unsigned char* dest = (unsigned char*)buf;
/* Read sectors in parts of 0x8000 */
for(i=0; i<count; i+=64)
{
ret = _ata_read_sectors(IF_MD2(drive,) map_sector(start+i), (count-i >= 64 ? 64 : count-i), (void*)dest);
if(ret != 0)
return ret;
dest += (count-i >= 64 ? 0x8000 : (count-i)*512);
}
return ret;
}
}
int ata_write_sectors(IF_MD2(int drive,) unsigned long start, int count, const void* buf)
{
if(!cfs_inited)
cfs_init();
#if 0 /* Disabled for now */
/* Check if count is lesser than or equal to 1 native CFS sector */
if(count <= 64)
return _ata_write_sectors(IF_MD2(drive,) map_sector(start), count, buf);
else
{
int i, ret;
unsigned char* dest = (unsigned char*)buf;
/* Read sectors in parts of 0x8000 */
for(i=0; i<count; i+=64)
{
ret = _ata_write_sectors(IF_MD2(drive,) map_sector(start+i), (count-i >= 64 ? 64 : count-i), (const void*)dest);
if(ret != 0)
return ret;
dest += (count-i >= 64 ? 0x8000 : (count-i)*512);
}
return ret;
}
#else
(void)start;
(void)count;
(void)buf;
return 0;
#endif
}
#ifdef BOOTLOADER
/*
---------------------------------------------------------------------------
MiniFileSystem parsing code
---------------------------------------------------------------------------
*/
struct minifs_file
{
char name[0x10];
unsigned int unk;
unsigned long size;
unsigned int chain1;
unsigned int chain2;
};
struct minifs_chain
{
unsigned int unknown;
unsigned short chain[0x27FE];
unsigned int unknown2;
unsigned long length;
};
#define DIR_BITMAP_START 0x0143
#define DIR_START 0x0144
#define DATASPACE_BITMAP_START 0x0145
#define DATASPACE_START 0x0146
#define CLUSTER_CHAIN_SIZE 0x5008
#define CLUSTER_CHAIN_HEAD 0x0000
#define CLUSTER_CHAIN_BITMAP 0x0001
#define CLUSTER_CHAIN_CHAIN 0x0002
int load_minifs_file(char* filename, unsigned char* location)
{
struct main_header *hdr;
static struct minifs_file files[128];
struct minifs_chain *chain;
unsigned int i;
int found = -1;
unsigned char sector[512];
static unsigned char chain_data[42*512]; /* stack overflow if not static */
/* Read MBLK */
_ata_read_sectors(0, 1, &sector);
hdr = (struct main_header*)&sector;
/* Read directory listing */
#define CLUSTER2SECTOR(x) ( (hdr->partitions[0].start + (x)*8) )
_ata_read_sectors(CLUSTER2SECTOR(DIR_START), 8, &files);
for(i=0; i<127; i++)
{
if(strcmp(files[i].name, filename) == 0)
found = i;
}
if(found == -1)
return -1;
#define GET_CHAIN(x) ( CLUSTER2SECTOR(CLUSTER_CHAIN_CHAIN)*512 + (x)*CLUSTER_CHAIN_SIZE )
#define FILE2SECTOR(x) ( CLUSTER2SECTOR(DATASPACE_START + (x)) )
/* Read chain list */
_ata_read_sectors(GET_CHAIN(files[found].chain1)/512, 41, &chain_data[0]);
chain = (struct minifs_chain*)&chain_data[GET_CHAIN(files[found].chain1)%512];
/* Copy data */
for(i=0; i<chain->length; i++)
{
_ata_read_sectors(FILE2SECTOR(chain->chain[i]), 8, location);
location += 0x1000;
}
return files[found].size;
}
#endif