rockbox/firmware/common/dircache.c

1316 lines
33 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2005 by Miika Pekkarinen
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
/* TODO:
- Allow cache live updating while transparent rebuild is running.
*/
#include "config.h"
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <stdbool.h>
#include <stdlib.h>
#include "debug.h"
#include "system.h"
#include "logf.h"
#include "dircache.h"
#include "thread.h"
#include "kernel.h"
#include "usb.h"
#include "file.h"
#include "buffer.h"
#include "dir.h"
#if CONFIG_RTC
#include "time.h"
#include "timefuncs.h"
#endif
/* Queue commands. */
#define DIRCACHE_BUILD 1
#define DIRCACHE_STOP 2
#if ((defined(MEMORYSIZE) && (MEMORYSIZE > 8)) || MEM > 8)
#define MAX_OPEN_DIRS 12
#else
#define MAX_OPEN_DIRS 8
#endif
static DIR_CACHED opendirs[MAX_OPEN_DIRS];
static struct dircache_entry *fd_bindings[MAX_OPEN_FILES];
static struct dircache_entry *dircache_root;
#ifdef HAVE_MULTIVOLUME
static struct dircache_entry *append_position;
#endif
static bool dircache_initialized = false;
static bool dircache_initializing = false;
static bool thread_enabled = false;
static unsigned long allocated_size = DIRCACHE_LIMIT;
static unsigned long dircache_size = 0;
static unsigned long entry_count = 0;
static unsigned long reserve_used = 0;
static unsigned int cache_build_ticks = 0;
static unsigned long appflags = 0;
static char dircache_cur_path[MAX_PATH*2];
static struct event_queue dircache_queue;
static long dircache_stack[(DEFAULT_STACK_SIZE + 0x900)/sizeof(long)];
static const char dircache_thread_name[] = "dircache";
static struct fdbind_queue fdbind_cache[MAX_PENDING_BINDINGS];
static int fdbind_idx = 0;
/* --- Internal cache structure control functions --- */
/**
* Internal function to allocate a new dircache_entry from memory.
*/
static struct dircache_entry* allocate_entry(void)
{
struct dircache_entry *next_entry;
if (dircache_size > allocated_size - MAX_PATH*2)
{
logf("size limit reached");
return NULL;
}
next_entry = (struct dircache_entry *)((char *)dircache_root+dircache_size);
#ifdef ROCKBOX_STRICT_ALIGN
/* Make sure the entry is long aligned. */
if ((long)next_entry & 0x03)
{
dircache_size += 4 - ((long)next_entry & 0x03);
next_entry = (struct dircache_entry *)(((long)next_entry & ~0x03) + 0x04);
}
#endif
next_entry->name_len = 0;
next_entry->d_name = NULL;
next_entry->up = NULL;
next_entry->down = NULL;
next_entry->next = NULL;
dircache_size += sizeof(struct dircache_entry);
return next_entry;
}
/**
* Internal function to allocate a dircache_entry and set
* ->next entry pointers.
*/
static struct dircache_entry* dircache_gen_next(struct dircache_entry *ce)
{
struct dircache_entry *next_entry;
if ( (next_entry = allocate_entry()) == NULL)
return NULL;
next_entry->up = ce->up;
ce->next = next_entry;
return next_entry;
}
/*
* Internal function to allocate a dircache_entry and set
* ->down entry pointers.
*/
static struct dircache_entry* dircache_gen_down(struct dircache_entry *ce)
{
struct dircache_entry *next_entry;
if ( (next_entry = allocate_entry()) == NULL)
return NULL;
next_entry->up = ce;
ce->down = next_entry;
return next_entry;
}
/* This will eat ~30 KiB of memory!
* We should probably use that as additional reserve buffer in future. */
#define MAX_SCAN_DEPTH 16
static struct travel_data dir_recursion[MAX_SCAN_DEPTH];
/**
* Returns true if there is an event waiting in the queue
* that requires the current operation to be aborted.
*/
static bool check_event_queue(void)
{
struct queue_event ev;
queue_wait_w_tmo(&dircache_queue, &ev, 0);
switch (ev.id)
{
case DIRCACHE_STOP:
case SYS_USB_CONNECTED:
#ifdef HAVE_HOTSWAP
case SYS_FS_CHANGED:
#endif
/* Put the event back into the queue. */
queue_post(&dircache_queue, ev.id, ev.data);
return true;
}
return false;
}
/**
* Internal function to iterate a path.
*/
static int dircache_scan(IF_MV2(int volume,) struct travel_data *td)
{
#ifdef SIMULATOR
#ifdef HAVE_MULTIVOLUME
(void)volume;
#endif
while ( ( td->entry = readdir_uncached(td->dir) ) )
#else
while ( (fat_getnext(td->dir, &td->entry) >= 0) && (td->entry.name[0]))
#endif
{
#ifdef SIMULATOR
if (!strcmp(".", td->entry->d_name) ||
!strcmp("..", td->entry->d_name))
{
continue;
}
td->ce->attribute = td->entry->attribute;
td->ce->name_len = strlen(td->entry->d_name) + 1;
td->ce->d_name = ((char *)dircache_root+dircache_size);
td->ce->size = td->entry->size;
td->ce->wrtdate = td->entry->wrtdate;
td->ce->wrttime = td->entry->wrttime;
memcpy(td->ce->d_name, td->entry->d_name, td->ce->name_len);
#else
if (!strcmp(".", td->entry.name) ||
!strcmp("..", td->entry.name))
{
continue;
}
td->ce->attribute = td->entry.attr;
td->ce->name_len = strlen(td->entry.name) + 1;
td->ce->d_name = ((char *)dircache_root+dircache_size);
td->ce->startcluster = td->entry.firstcluster;
td->ce->size = td->entry.filesize;
td->ce->wrtdate = td->entry.wrtdate;
td->ce->wrttime = td->entry.wrttime;
memcpy(td->ce->d_name, td->entry.name, td->ce->name_len);
#endif
dircache_size += td->ce->name_len;
entry_count++;
#ifdef SIMULATOR
if (td->entry->attribute & ATTR_DIRECTORY)
#else
if (td->entry.attr & FAT_ATTR_DIRECTORY)
#endif
{
td->down_entry = dircache_gen_down(td->ce);
if (td->down_entry == NULL)
return -2;
td->pathpos = strlen(dircache_cur_path);
strlcpy(&dircache_cur_path[td->pathpos], "/",
sizeof(dircache_cur_path) - td->pathpos);
#ifdef SIMULATOR
strlcpy(&dircache_cur_path[td->pathpos+1], td->entry->d_name,
sizeof(dircache_cur_path) - td->pathpos - 1);
td->newdir = opendir_uncached(dircache_cur_path);
if (td->newdir == NULL)
{
logf("Failed to opendir_uncached(): %s", dircache_cur_path);
return -3;
}
#else
strlcpy(&dircache_cur_path[td->pathpos+1], td->entry.name,
sizeof(dircache_cur_path) - td->pathpos - 1);
td->newdir = *td->dir;
if (fat_opendir(IF_MV2(volume,) &td->newdir,
td->entry.firstcluster, td->dir) < 0 )
{
return -3;
}
#endif
td->ce = dircache_gen_next(td->ce);
if (td->ce == NULL)
return -4;
return 1;
}
td->ce->down = NULL;
td->ce = dircache_gen_next(td->ce);
if (td->ce == NULL)
return -5;
/* When simulator is used, it's only safe to yield here. */
if (thread_enabled)
{
/* Stop if we got an external signal. */
if (check_event_queue())
return -6;
yield();
}
}
return 0;
}
/**
* Recursively scan the hard disk and build the cache.
*/
#ifdef SIMULATOR
static int dircache_travel(IF_MV2(int volume,) DIR_UNCACHED *dir, struct dircache_entry *ce)
#else
static int dircache_travel(IF_MV2(int volume,) struct fat_dir *dir, struct dircache_entry *ce)
#endif
{
int depth = 0;
int result;
memset(ce, 0, sizeof(struct dircache_entry));
#if defined(HAVE_MULTIVOLUME) && !defined(SIMULATOR)
if (volume > 0)
{
ce->d_name = ((char *)dircache_root+dircache_size);
snprintf(ce->d_name, VOL_ENUM_POS + 3, VOL_NAMES, volume);
ce->name_len = VOL_ENUM_POS + 3;
dircache_size += ce->name_len;
ce->attribute = FAT_ATTR_DIRECTORY | FAT_ATTR_VOLUME;
ce->size = 0;
append_position = dircache_gen_next(ce);
ce = dircache_gen_down(ce);
}
#endif
dir_recursion[0].dir = dir;
dir_recursion[0].ce = ce;
dir_recursion[0].first = ce;
do {
//logf("=> %s", dircache_cur_path);
result = dircache_scan(IF_MV2(volume,) &dir_recursion[depth]);
switch (result) {
case 0: /* Leaving the current directory. */
/* Add the standard . and .. entries. */
ce = dir_recursion[depth].ce;
ce->d_name = ".";
ce->name_len = 2;
#ifdef SIMULATOR
closedir_uncached(dir_recursion[depth].dir);
ce->attribute = ATTR_DIRECTORY;
#else
ce->attribute = FAT_ATTR_DIRECTORY;
ce->startcluster = dir_recursion[depth].dir->file.firstcluster;
#endif
ce->size = 0;
ce->down = dir_recursion[depth].first;
depth--;
if (depth < 0)
break ;
dircache_cur_path[dir_recursion[depth].pathpos] = '\0';
ce = dircache_gen_next(ce);
if (ce == NULL)
{
logf("memory allocation error");
return -3;
}
#ifdef SIMULATOR
ce->attribute = ATTR_DIRECTORY;
#else
ce->attribute = FAT_ATTR_DIRECTORY;
ce->startcluster = dir_recursion[depth].dir->file.firstcluster;
#endif
ce->d_name = "..";
ce->name_len = 3;
ce->size = 0;
ce->down = dir_recursion[depth].first;
break ;
case 1: /* Going down in the directory tree. */
depth++;
if (depth >= MAX_SCAN_DEPTH)
{
logf("Too deep directory structure");
return -2;
}
#ifdef SIMULATOR
dir_recursion[depth].dir = dir_recursion[depth-1].newdir;
#else
dir_recursion[depth].dir = &dir_recursion[depth-1].newdir;
#endif
dir_recursion[depth].first = dir_recursion[depth-1].down_entry;
dir_recursion[depth].ce = dir_recursion[depth-1].down_entry;
break ;
default:
logf("Scan failed");
logf("-> %s", dircache_cur_path);
return -1;
}
} while (depth >= 0) ;
return 0;
}
/**
* Internal function to get a pointer to dircache_entry for a given filename.
* path: Absolute path to a file or directory.
* get_before: Returns the cache pointer before the last valid entry found.
* only_directories: Match only filenames which are a directory type.
*/
static struct dircache_entry* dircache_get_entry(const char *path,
bool get_before, bool only_directories)
{
struct dircache_entry *cache_entry, *before;
char namecopy[MAX_PATH*2];
char* part;
char* end;
strlcpy(namecopy, path, sizeof(namecopy));
cache_entry = dircache_root;
before = NULL;
for ( part = strtok_r(namecopy, "/", &end); part;
part = strtok_r(NULL, "/", &end)) {
/* scan dir for name */
while (1)
{
if (cache_entry == NULL)
{
return NULL;
}
else if (cache_entry->name_len == 0)
{
cache_entry = cache_entry->next;
continue ;
}
if (!strcasecmp(part, cache_entry->d_name))
{
before = cache_entry;
if (cache_entry->down || only_directories)
cache_entry = cache_entry->down;
break ;
}
cache_entry = cache_entry->next;
}
}
if (get_before)
cache_entry = before;
return cache_entry;
}
#ifdef HAVE_EEPROM_SETTINGS
/**
* Function to load the internal cache structure from disk to initialize
* the dircache really fast and little disk access.
*/
int dircache_load(void)
{
struct dircache_maindata maindata;
int bytes_read;
int fd;
if (dircache_initialized)
return -1;
logf("Loading directory cache");
dircache_size = 0;
fd = open(DIRCACHE_FILE, O_RDONLY);
if (fd < 0)
return -2;
bytes_read = read(fd, &maindata, sizeof(struct dircache_maindata));
if (bytes_read != sizeof(struct dircache_maindata)
|| maindata.size <= 0)
{
logf("Dircache file header error");
close(fd);
remove(DIRCACHE_FILE);
return -3;
}
dircache_root = buffer_alloc(0);
if ((long)maindata.root_entry != (long)dircache_root)
{
logf("Position missmatch");
close(fd);
remove(DIRCACHE_FILE);
return -4;
}
dircache_root = buffer_alloc(maindata.size + DIRCACHE_RESERVE);
entry_count = maindata.entry_count;
appflags = maindata.appflags;
bytes_read = read(fd, dircache_root, MIN(DIRCACHE_LIMIT, maindata.size));
close(fd);
remove(DIRCACHE_FILE);
if (bytes_read != maindata.size)
{
logf("Dircache read failed");
return -6;
}
/* Cache successfully loaded. */
dircache_size = maindata.size;
allocated_size = dircache_size + DIRCACHE_RESERVE;
reserve_used = 0;
logf("Done, %ld KiB used", dircache_size / 1024);
dircache_initialized = true;
memset(fd_bindings, 0, sizeof(fd_bindings));
return 0;
}
/**
* Function to save the internal cache stucture to disk for fast loading
* on boot.
*/
int dircache_save(void)
{
struct dircache_maindata maindata;
int fd;
unsigned long bytes_written;
remove(DIRCACHE_FILE);
if (!dircache_initialized)
return -1;
logf("Saving directory cache");
fd = open(DIRCACHE_FILE, O_WRONLY | O_CREAT | O_TRUNC);
maindata.magic = DIRCACHE_MAGIC;
maindata.size = dircache_size;
maindata.root_entry = dircache_root;
maindata.entry_count = entry_count;
maindata.appflags = appflags;
/* Save the info structure */
bytes_written = write(fd, &maindata, sizeof(struct dircache_maindata));
if (bytes_written != sizeof(struct dircache_maindata))
{
close(fd);
logf("dircache: write failed #1");
return -2;
}
/* Dump whole directory cache to disk */
bytes_written = write(fd, dircache_root, dircache_size);
close(fd);
if (bytes_written != dircache_size)
{
logf("dircache: write failed #2");
return -3;
}
return 0;
}
#endif /* #if 0 */
/**
* Internal function which scans the disk and creates the dircache structure.
*/
static int dircache_do_rebuild(void)
{
#ifdef SIMULATOR
DIR_UNCACHED *pdir;
#else
struct fat_dir dir, *pdir;
#endif
unsigned int start_tick;
int i;
/* Measure how long it takes build the cache. */
start_tick = current_tick;
dircache_initializing = true;
appflags = 0;
entry_count = 0;
memset(dircache_cur_path, 0, sizeof(dircache_cur_path));
dircache_size = sizeof(struct dircache_entry);
#ifdef HAVE_MULTIVOLUME
append_position = dircache_root;
for (i = NUM_VOLUMES; i >= 0; i--)
{
if (fat_ismounted(i))
{
#endif
#ifdef SIMULATOR
pdir = opendir_uncached("/");
if (pdir == NULL)
{
logf("Failed to open rootdir");
dircache_initializing = false;
return -3;
}
#else
#ifdef HAVE_MULTIVOLUME
if ( fat_opendir(IF_MV2(i,) &dir, 0, NULL) < 0 ) {
#else
if ( fat_opendir(IF_MV2(0,) &dir, 0, NULL) < 0 ) {
#endif /* HAVE_MULTIVOLUME */
logf("Failed opening root dir");
dircache_initializing = false;
return -3;
}
pdir = &dir;
#endif
cpu_boost(true);
#ifdef HAVE_MULTIVOLUME
if (dircache_travel(IF_MV2(i,) pdir, append_position) < 0)
#else
if (dircache_travel(IF_MV2(0,) pdir, dircache_root) < 0)
#endif /* HAVE_MULTIVOLUME */
{
logf("dircache_travel failed");
cpu_boost(false);
dircache_size = 0;
dircache_initializing = false;
return -2;
}
cpu_boost(false);
#ifdef HAVE_MULTIVOLUME
}
}
#endif
logf("Done, %ld KiB used", dircache_size / 1024);
dircache_initialized = true;
dircache_initializing = false;
cache_build_ticks = current_tick - start_tick;
/* Initialized fd bindings. */
memset(fd_bindings, 0, sizeof(fd_bindings));
for (i = 0; i < fdbind_idx; i++)
dircache_bind(fdbind_cache[i].fd, fdbind_cache[i].path);
fdbind_idx = 0;
if (thread_enabled)
{
if (allocated_size - dircache_size < DIRCACHE_RESERVE)
reserve_used = DIRCACHE_RESERVE - (allocated_size - dircache_size);
}
else
{
/* We have to long align the audiobuf to keep the buffer access fast. */
audiobuf += (long)((dircache_size & ~0x03) + 0x04);
audiobuf += DIRCACHE_RESERVE;
allocated_size = dircache_size + DIRCACHE_RESERVE;
reserve_used = 0;
}
return 1;
}
/**
* Internal thread that controls transparent cache building.
*/
static void dircache_thread(void)
{
struct queue_event ev;
while (1)
{
queue_wait(&dircache_queue, &ev);
switch (ev.id)
{
#ifdef HAVE_HOTSWAP
case SYS_FS_CHANGED:
if (!dircache_initialized)
break;
dircache_initialized = false;
#endif
case DIRCACHE_BUILD:
thread_enabled = true;
dircache_do_rebuild();
thread_enabled = false;
break ;
case DIRCACHE_STOP:
logf("Stopped the rebuilding.");
dircache_initialized = false;
break ;
#ifndef SIMULATOR
case SYS_USB_CONNECTED:
usb_acknowledge(SYS_USB_CONNECTED_ACK);
usb_wait_for_disconnect(&dircache_queue);
break ;
#endif
}
}
}
/**
* Start scanning the disk to build the dircache.
* Either transparent or non-transparent build method is used.
*/
int dircache_build(int last_size)
{
if (dircache_initialized || thread_enabled)
return -3;
logf("Building directory cache");
remove(DIRCACHE_FILE);
/* Background build, dircache has been previously allocated */
if (dircache_size > 0)
{
thread_enabled = true;
dircache_initializing = true;
queue_post(&dircache_queue, DIRCACHE_BUILD, 0);
return 2;
}
if (last_size > DIRCACHE_RESERVE && last_size < DIRCACHE_LIMIT )
{
allocated_size = last_size + DIRCACHE_RESERVE;
dircache_root = buffer_alloc(allocated_size);
thread_enabled = true;
/* Start a transparent rebuild. */
queue_post(&dircache_queue, DIRCACHE_BUILD, 0);
return 3;
}
dircache_root = (struct dircache_entry *)(((long)audiobuf & ~0x03) + 0x04);
/* Start a non-transparent rebuild. */
return dircache_do_rebuild();
}
/**
* Steal the allocated dircache buffer and disable dircache.
*/
void* dircache_steal_buffer(long *size)
{
dircache_disable();
if (dircache_size == 0)
{
*size = 0;
return NULL;
}
*size = dircache_size + (DIRCACHE_RESERVE-reserve_used);
return dircache_root;
}
/**
* Main initialization function that must be called before any other
* operations within the dircache.
*/
void dircache_init(void)
{
int i;
dircache_initialized = false;
dircache_initializing = false;
memset(opendirs, 0, sizeof(opendirs));
for (i = 0; i < MAX_OPEN_DIRS; i++)
{
opendirs[i].secondary_entry.d_name = buffer_alloc(MAX_PATH);
}
queue_init(&dircache_queue, true);
create_thread(dircache_thread, dircache_stack,
sizeof(dircache_stack), 0, dircache_thread_name
IF_PRIO(, PRIORITY_BACKGROUND)
IF_COP(, CPU));
}
/**
* Returns true if dircache has been initialized and is ready to be used.
*/
bool dircache_is_enabled(void)
{
return dircache_initialized;
}
/**
* Returns true if dircache is being initialized.
*/
bool dircache_is_initializing(void)
{
return dircache_initializing || thread_enabled;
}
/**
* Set application flags used to determine if dircache is still intact.
*/
void dircache_set_appflag(long mask)
{
appflags |= mask;
}
/**
* Get application flags used to determine if dircache is still intact.
*/
bool dircache_get_appflag(long mask)
{
return dircache_is_enabled() && (appflags & mask);
}
/**
* Returns the current number of entries (directories and files) in the cache.
*/
int dircache_get_entry_count(void)
{
return entry_count;
}
/**
* Returns the allocated space for dircache (without reserve space).
*/
int dircache_get_cache_size(void)
{
return dircache_is_enabled() ? dircache_size : 0;
}
/**
* Returns how many bytes of the reserve allocation for live cache
* updates have been used.
*/
int dircache_get_reserve_used(void)
{
return dircache_is_enabled() ? reserve_used : 0;
}
/**
* Returns the time in kernel ticks that took to build the cache.
*/
int dircache_get_build_ticks(void)
{
return dircache_is_enabled() ? cache_build_ticks : 0;
}
/**
* Disables the dircache. Usually called on shutdown or when
* accepting a usb connection.
*/
void dircache_disable(void)
{
int i;
bool cache_in_use;
if (thread_enabled)
queue_post(&dircache_queue, DIRCACHE_STOP, 0);
while (thread_enabled)
sleep(1);
dircache_initialized = false;
logf("Waiting for cached dirs to release");
do {
cache_in_use = false;
for (i = 0; i < MAX_OPEN_DIRS; i++) {
if (!opendirs[i].regulardir && opendirs[i].busy)
{
cache_in_use = true;
sleep(1);
break ;
}
}
} while (cache_in_use) ;
logf("Cache released");
entry_count = 0;
}
/**
* Usermode function to return dircache_entry pointer to the given path.
*/
const struct dircache_entry *dircache_get_entry_ptr(const char *filename)
{
if (!dircache_initialized || filename == NULL)
return NULL;
return dircache_get_entry(filename, false, false);
}
/**
* Function to copy the full absolute path from dircache to the given buffer
* using the given dircache_entry pointer.
*/
void dircache_copy_path(const struct dircache_entry *entry, char *buf, int size)
{
const struct dircache_entry *down[MAX_SCAN_DEPTH];
int depth = 0;
if (size <= 0)
return ;
buf[0] = '\0';
if (entry == NULL)
return ;
do {
down[depth] = entry;
entry = entry->up;
depth++;
} while (entry != NULL && depth < MAX_SCAN_DEPTH);
while (--depth >= 0)
{
snprintf(buf, size, "/%s", down[depth]->d_name);
buf += down[depth]->name_len; /* '/' + d_name */
size -= down[depth]->name_len;
if (size <= 0)
break ;
}
}
/* --- Directory cache live updating functions --- */
static int block_until_ready(void)
{
/* Block until dircache has been built. */
while (!dircache_initialized && dircache_is_initializing())
sleep(1);
if (!dircache_initialized)
return -1;
return 0;
}
static struct dircache_entry* dircache_new_entry(const char *path, int attribute)
{
struct dircache_entry *entry;
char basedir[MAX_PATH*2];
char *new;
long last_cache_size = dircache_size;
strlcpy(basedir, path, sizeof(basedir));
new = strrchr(basedir, '/');
if (new == NULL)
{
logf("error occurred");
dircache_initialized = false;
return NULL;
}
*new = '\0';
new++;
entry = dircache_get_entry(basedir, false, true);
if (entry == NULL)
{
logf("basedir not found!");
logf("%s", basedir);
dircache_initialized = false;
return NULL;
}
if (reserve_used + 2*sizeof(struct dircache_entry) + strlen(new)+1
>= DIRCACHE_RESERVE)
{
logf("not enough space");
dircache_initialized = false;
return NULL;
}
while (entry->next != NULL)
entry = entry->next;
if (entry->name_len > 0)
entry = dircache_gen_next(entry);
if (entry == NULL)
{
dircache_initialized = false;
return NULL;
}
entry->attribute = attribute;
entry->name_len = MIN(254, strlen(new)) + 1;
entry->d_name = ((char *)dircache_root+dircache_size);
entry->startcluster = 0;
entry->wrtdate = 0;
entry->wrttime = 0;
entry->size = 0;
memcpy(entry->d_name, new, entry->name_len);
dircache_size += entry->name_len;
if (attribute & ATTR_DIRECTORY)
{
logf("gen_down");
dircache_gen_down(entry);
}
reserve_used += dircache_size - last_cache_size;
return entry;
}
void dircache_bind(int fd, const char *path)
{
struct dircache_entry *entry;
/* Queue requests until dircache has been built. */
if (!dircache_initialized && dircache_is_initializing())
{
if (fdbind_idx >= MAX_PENDING_BINDINGS)
return ;
strlcpy(fdbind_cache[fdbind_idx].path, path,
sizeof(fdbind_cache[fdbind_idx].path));
fdbind_cache[fdbind_idx].fd = fd;
fdbind_idx++;
return ;
}
if (!dircache_initialized)
return ;
logf("bind: %d/%s", fd, path);
entry = dircache_get_entry(path, false, false);
if (entry == NULL)
{
logf("not found!");
dircache_initialized = false;
return ;
}
fd_bindings[fd] = entry;
}
void dircache_update_filesize(int fd, long newsize, long startcluster)
{
if (!dircache_initialized || fd < 0)
return ;
if (fd_bindings[fd] == NULL)
{
logf("dircache fd access error");
dircache_initialized = false;
return ;
}
fd_bindings[fd]->size = newsize;
fd_bindings[fd]->startcluster = startcluster;
}
void dircache_update_filetime(int fd)
{
#if CONFIG_RTC == 0
(void)fd;
#else
short year;
struct tm *now = get_time();
if (!dircache_initialized || fd < 0)
return ;
if (fd_bindings[fd] == NULL)
{
logf("dircache fd access error");
dircache_initialized = false;
return ;
}
year = now->tm_year+1900-1980;
fd_bindings[fd]->wrtdate = (((year)&0x7f)<<9) |
(((now->tm_mon+1)&0xf)<<5) |
(((now->tm_mday)&0x1f));
fd_bindings[fd]->wrttime = (((now->tm_hour)&0x1f)<<11) |
(((now->tm_min)&0x3f)<<5) |
(((now->tm_sec/2)&0x1f));
#endif
}
void dircache_mkdir(const char *path)
{ /* Test ok. */
if (block_until_ready())
return ;
logf("mkdir: %s", path);
dircache_new_entry(path, ATTR_DIRECTORY);
}
void dircache_rmdir(const char *path)
{ /* Test ok. */
struct dircache_entry *entry;
if (block_until_ready())
return ;
logf("rmdir: %s", path);
entry = dircache_get_entry(path, true, true);
if (entry == NULL)
{
logf("not found!");
dircache_initialized = false;
return ;
}
entry->down = NULL;
entry->name_len = 0;
}
/* Remove a file from cache */
void dircache_remove(const char *name)
{ /* Test ok. */
struct dircache_entry *entry;
if (block_until_ready())
return ;
logf("remove: %s", name);
entry = dircache_get_entry(name, false, false);
if (entry == NULL)
{
logf("not found!");
dircache_initialized = false;
return ;
}
entry->name_len = 0;
}
void dircache_rename(const char *oldpath, const char *newpath)
{ /* Test ok. */
struct dircache_entry *entry, *newentry;
struct dircache_entry oldentry;
char absolute_path[MAX_PATH*2];
char *p;
if (block_until_ready())
return ;
logf("rename: %s->%s", oldpath, newpath);
entry = dircache_get_entry(oldpath, true, false);
if (entry == NULL)
{
logf("not found!");
dircache_initialized = false;
return ;
}
/* Delete the old entry. */
entry->name_len = 0;
/** If we rename the same filename twice in a row, we need to
* save the data, because the entry will be re-used. */
oldentry = *entry;
/* Generate the absolute path for destination if necessary. */
if (newpath[0] != '/')
{
strlcpy(absolute_path, oldpath, sizeof(absolute_path));
p = strrchr(absolute_path, '/');
if (!p)
{
logf("Invalid path");
dircache_initialized = false;
return ;
}
*p = '\0';
strlcpy(p, absolute_path, sizeof(absolute_path)-strlen(p));
newpath = absolute_path;
}
newentry = dircache_new_entry(newpath, entry->attribute);
if (newentry == NULL)
{
dircache_initialized = false;
return ;
}
newentry->down = oldentry.down;
newentry->size = oldentry.size;
newentry->startcluster = oldentry.startcluster;
newentry->wrttime = oldentry.wrttime;
newentry->wrtdate = oldentry.wrtdate;
}
void dircache_add_file(const char *path, long startcluster)
{
struct dircache_entry *entry;
if (block_until_ready())
return ;
logf("add file: %s", path);
entry = dircache_new_entry(path, 0);
if (entry == NULL)
return ;
entry->startcluster = startcluster;
}
DIR_CACHED* opendir_cached(const char* name)
{
struct dircache_entry *cache_entry;
int dd;
DIR_CACHED* pdir = opendirs;
if ( name[0] != '/' )
{
DEBUGF("Only absolute paths supported right now\n");
return NULL;
}
/* find a free dir descriptor */
for ( dd=0; dd<MAX_OPEN_DIRS; dd++, pdir++)
if ( !pdir->busy )
break;
if ( dd == MAX_OPEN_DIRS )
{
DEBUGF("Too many dirs open\n");
errno = EMFILE;
return NULL;
}
if (!dircache_initialized)
{
pdir->regulardir = opendir_uncached(name);
if (!pdir->regulardir)
return NULL;
pdir->busy = true;
return pdir;
}
pdir->busy = true;
pdir->regulardir = NULL;
cache_entry = dircache_get_entry(name, false, true);
pdir->entry = cache_entry;
if (cache_entry == NULL)
{
pdir->busy = false;
return NULL;
}
return pdir;
}
struct dircache_entry* readdir_cached(DIR_CACHED* dir)
{
struct dirent_uncached *regentry;
struct dircache_entry *ce;
if (!dir->busy)
return NULL;
if (dir->regulardir != NULL)
{
regentry = readdir_uncached(dir->regulardir);
if (regentry == NULL)
return NULL;
strlcpy(dir->secondary_entry.d_name, regentry->d_name, MAX_PATH);
dir->secondary_entry.size = regentry->size;
dir->secondary_entry.startcluster = regentry->startcluster;
dir->secondary_entry.attribute = regentry->attribute;
dir->secondary_entry.wrttime = regentry->wrttime;
dir->secondary_entry.wrtdate = regentry->wrtdate;
dir->secondary_entry.next = NULL;
return &dir->secondary_entry;
}
do {
if (dir->entry == NULL)
return NULL;
ce = dir->entry;
if (ce->name_len == 0)
dir->entry = ce->next;
} while (ce->name_len == 0) ;
dir->entry = ce->next;
strlcpy(dir->secondary_entry.d_name, ce->d_name, MAX_PATH);
/* Can't do `dir->secondary_entry = *ce`
because that modifies the d_name pointer. */
dir->secondary_entry.size = ce->size;
dir->secondary_entry.startcluster = ce->startcluster;
dir->secondary_entry.attribute = ce->attribute;
dir->secondary_entry.wrttime = ce->wrttime;
dir->secondary_entry.wrtdate = ce->wrtdate;
dir->secondary_entry.next = NULL;
dir->internal_entry = ce;
//logf("-> %s", ce->name);
return &dir->secondary_entry;
}
int closedir_cached(DIR_CACHED* dir)
{
if (!dir->busy)
return -1;
dir->busy=false;
if (dir->regulardir != NULL)
return closedir_uncached(dir->regulardir);
return 0;
}
int mkdir_cached(const char *name)
{
int rc=mkdir_uncached(name);
if (rc >= 0)
dircache_mkdir(name);
return(rc);
}
int rmdir_cached(const char* name)
{
int rc=rmdir_uncached(name);
if(rc>=0)
dircache_rmdir(name);
return(rc);
}