rockbox/utils/imxtools/scsitools/stmp_scsi.c

798 lines
25 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2012 Amaury Pouly
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <stdio.h>
#define _BSD_SOURCE
#include "stmp_scsi.h"
#define MIN(a, b) ((a) < (b) ? (a) : (b))
static int g_endian = -1;
struct stmp_device_t
{
rb_scsi_device_t dev;
unsigned flags;
void *user;
stmp_printf_t printf;
};
static inline int little_endian(void)
{
if(g_endian == -1)
{
int i = 1;
g_endian = (int)*((unsigned char *)&i) == 1;
}
return g_endian;
}
uint16_t stmp_fix_endian16be(uint16_t w)
{
return little_endian() ? w << 8 | w >> 8 : w;
}
uint32_t stmp_fix_endian32be(uint32_t w)
{
return !little_endian() ? w :
(uint32_t)stmp_fix_endian16be(w) << 16 | stmp_fix_endian16be(w >> 16);
}
uint64_t stmp_fix_endian64be(uint64_t w)
{
return !little_endian() ? w :
(uint64_t)stmp_fix_endian32be(w) << 32 | stmp_fix_endian32be(w >> 32);
}
static void misc_std_printf(void *user, const char *fmt, ...)
{
(void) user;
va_list args;
va_start(args, fmt);
vprintf(fmt, args);
va_end(args);
}
#define stmp_printf(dev, ...) \
dev->printf(dev->user, __VA_ARGS__)
#define stmp_debugf(dev, ...) \
do{ if(dev->flags & STMP_DEBUG) stmp_printf(dev, __VA_ARGS__); }while(0)
stmp_device_t stmp_open(rb_scsi_device_t rdev, unsigned flags, void *user, stmp_printf_t printf)
{
if(printf == NULL)
printf = misc_std_printf;
stmp_device_t sdev = malloc(sizeof(struct stmp_device_t));
memset(sdev, 0, sizeof(struct stmp_device_t));
sdev->dev = rdev;
sdev->flags = flags;
sdev->user = user;
sdev->printf = printf;
return sdev;
}
void stmp_close(stmp_device_t dev)
{
free(dev);
}
/* returns <0 on error and status otherwise */
int stmp_scsi(stmp_device_t dev, uint8_t *cdb, int cdb_size, unsigned flags,
void *sense, int *sense_size, void *buffer, int *buf_size)
{
struct rb_scsi_raw_cmd_t cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.dir = RB_SCSI_NONE;
if(flags & STMP_READ)
cmd.dir = RB_SCSI_READ;
if(flags & STMP_WRITE)
cmd.dir = RB_SCSI_WRITE;
cmd.cdb = cdb;
cmd.cdb_len = cdb_size;
cmd.sense = sense;
cmd.sense_len = *sense_size;
cmd.buf = buffer;
cmd.buf_len = *buf_size;
cmd.tmo = 1;
int ret = rb_scsi_raw_xfer(dev->dev, &cmd);
*sense_size = cmd.sense_len;
*buf_size = cmd.buf_len;
return ret == RB_SCSI_OK || ret == RB_SCSI_SENSE ? cmd.status : -ret;
}
int stmp_sense_analysis(stmp_device_t dev, int status, uint8_t *sense, int sense_size)
{
if(status != 0 && (dev->flags & STMP_DEBUG))
{
stmp_printf(dev, "Status: %d\n", status);
stmp_printf(dev, "Sense:");
for(int i = 0; i < sense_size; i++)
stmp_printf(dev, " %02x", sense[i]);
stmp_printf(dev, "\n");
rb_scsi_decode_sense(dev->dev, sense, sense_size);
}
return status;
}
static int stmp_scsi_read_cmd(stmp_device_t dev, uint8_t cmd, uint8_t subcmd,
uint8_t subsubcmd, void *buf, int *len)
{
uint8_t cdb[16];
memset(cdb, 0, sizeof(cdb));
cdb[0] = SCSI_STMP_READ;
cdb[1] = cmd;
cdb[2] = subcmd;
cdb[3] = subsubcmd;
uint8_t sense[32];
int sense_size = sizeof(sense);
int ret = stmp_scsi(dev, cdb, sizeof(cdb), STMP_READ, sense, &sense_size, buf, len);
if(ret < 0)
return ret;
ret = stmp_sense_analysis(dev, ret, sense, sense_size);
if(ret)
return ret;
return 0;
}
int stmp_scsi_inquiry(stmp_device_t dev, uint8_t *dev_type, char vendor[9], char product[17])
{
unsigned char buffer[36];
uint8_t cdb[10];
memset(cdb, 0, sizeof(cdb));
cdb[0] = 0x12;
cdb[4] = sizeof(buffer);
uint8_t sense[32];
int sense_size = sizeof(sense);
int buf_sz = sizeof(buffer);
int ret = stmp_scsi(dev, cdb, sizeof(cdb), STMP_READ, sense, &sense_size, buffer, &buf_sz);
if(ret < 0)
return ret;
ret = stmp_sense_analysis(dev, ret, sense, sense_size);
if(ret)
return ret;
if(buf_sz != sizeof(buffer))
return -1;
*dev_type = buffer[0];
memcpy(vendor, buffer + 8, 8);
vendor[8] = 0;
memcpy(product, buffer + 16, 16);
product[16] = 0;
return 0;
}
int stmp_scsi_get_protocol_version(stmp_device_t dev, void *buf, int *len)
{
return stmp_scsi_read_cmd(dev, SCSI_STMP_CMD_GET_PROTOCOL_VERSION, 0, 0, buf, len);
}
int stmp_get_protocol_version(stmp_device_t dev, struct scsi_stmp_protocol_version_t *ver)
{
int len = sizeof(*ver);
int ret = stmp_scsi_get_protocol_version(dev, ver, &len);
if(ret || len != sizeof(*ver))
return -1;
return 0;
}
int stmp_scsi_get_chip_major_rev_id(stmp_device_t dev, void *buf, int *len)
{
return stmp_scsi_read_cmd(dev, SCSI_STMP_CMD_GET_CHIP_MAJOR_REV_ID, 0, 0, buf, len);
}
int stmp_get_chip_major_rev_id(stmp_device_t dev, uint16_t *ver)
{
int len = sizeof(*ver);
int ret = stmp_scsi_get_chip_major_rev_id(dev, ver, &len);
if(ret || len != sizeof(*ver))
return -1;
*ver = stmp_fix_endian16be(*ver);
return 0;
}
int stmp_scsi_get_rom_rev_id(stmp_device_t dev, void *buf, int *len)
{
return stmp_scsi_read_cmd(dev, SCSI_STMP_CMD_GET_ROM_REV_ID, 0, 0, buf, len);
}
int stmp_get_rom_rev_id(stmp_device_t dev, uint16_t *ver)
{
int len = sizeof(*ver);
int ret = stmp_scsi_get_rom_rev_id(dev, ver, &len);
if(ret || len != sizeof(*ver))
return -1;
*ver = stmp_fix_endian16be(*ver);
return 0;
}
int stmp_scsi_get_logical_media_info(stmp_device_t dev, uint8_t info, void *data, int *len)
{
return stmp_scsi_read_cmd(dev, SCSI_STMP_CMD_GET_LOGICAL_MEDIA_INFO, info, 0, data, len);
}
int stmp_scsi_get_logical_table(stmp_device_t dev, int entry_count, void *buf, int *len)
{
return stmp_scsi_read_cmd(dev, SCSI_STMP_CMD_GET_LOGICAL_TABLE, entry_count, 0, buf, len);
}
int stmp_get_logical_media_table(stmp_device_t dev, struct stmp_logical_media_table_t **table)
{
struct scsi_stmp_logical_table_header_t header;
int len = sizeof(header);
int ret = stmp_scsi_get_logical_table(dev, 0, &header, &len);
if(ret || len != sizeof(header))
{
stmp_debugf(dev, "Device returned the wrong size for logical media header: "
"%d bytes but expected %d\n", len, sizeof(header));
return -1;
}
header.count = stmp_fix_endian16be(header.count);
int sz = sizeof(header) + header.count * sizeof(struct scsi_stmp_logical_table_entry_t);
len = sz;
*table = malloc(sz);
ret = stmp_scsi_get_logical_table(dev, header.count, &(*table)->header, &len);
if(ret || len != sz)
{
stmp_debugf(dev, "Device returned the wrong size for logical media table: "
"%d bytes but expected %d (%d entries)\n", len, sz, header.count);
return -1;
}
(*table)->header.count = stmp_fix_endian16be((*table)->header.count);
for(unsigned i = 0; i < (*table)->header.count; i++)
(*table)->entry[i].size = stmp_fix_endian64be((*table)->entry[i].size);
return 0;
}
int stmp_scsi_get_logical_drive_info(stmp_device_t dev, uint8_t drive, uint8_t info, void *data, int *len)
{
return stmp_scsi_read_cmd(dev, SCSI_STMP_CMD_GET_LOGICAL_DRIVE_INFO, drive, info, data, len);
}
int stmp_scsi_get_device_info(stmp_device_t dev, uint8_t info, void *data, int *len)
{
return stmp_scsi_read_cmd(dev, SCSI_STMP_CMD_GET_DEVICE_INFO, info, 0, data, len);
}
int stmp_scsi_get_serial_number(stmp_device_t dev, uint8_t info, void *data, int *len)
{
return stmp_scsi_read_cmd(dev, SCSI_STMP_CMD_GET_CHIP_SERIAL_NUMBER, info, 0, data, len);
}
int stmp_scsi_read_logical_drive_sectors(stmp_device_t dev, uint8_t drive, uint64_t address,
uint32_t count, void *buffer, int *buffer_size)
{
uint8_t cdb[16];
memset(cdb, 0, sizeof(cdb));
cdb[0] = SCSI_STMP_READ;
cdb[1] = SCSI_STMP_CMD_READ_LOGICAL_DRIVE_SECTOR;
cdb[2] = drive;
address = stmp_fix_endian64be(address);
memcpy(&cdb[3], &address, sizeof(address));
count = stmp_fix_endian32be(count);
memcpy(&cdb[11], &count, sizeof(count));
uint8_t sense[32];
int sense_size = sizeof(sense);
int ret = stmp_scsi(dev, cdb, sizeof(cdb), STMP_READ, sense, &sense_size, buffer, buffer_size);
if(ret < 0)
return ret;
return stmp_sense_analysis(dev, ret, sense, sense_size);
}
int stmp_scsi_write_logical_drive_sectors(stmp_device_t dev, uint8_t drive, uint64_t address,
uint32_t count, void *buffer, int *buffer_size)
{
uint8_t cdb[16];
memset(cdb, 0, sizeof(cdb));
cdb[0] = SCSI_STMP_WRITE;
cdb[1] = SCSI_STMP_CMD_WRITE_LOGICAL_DRIVE_SECTOR;
cdb[2] = drive;
address = stmp_fix_endian64be(address);
memcpy(&cdb[3], &address, sizeof(address));
count = stmp_fix_endian32be(count);
memcpy(&cdb[11], &count, sizeof(count));
uint8_t sense[32];
int sense_size = sizeof(sense);
int ret = stmp_scsi(dev, cdb, sizeof(cdb), STMP_WRITE, sense, &sense_size, buffer, buffer_size);
if(ret < 0)
return ret;
return stmp_sense_analysis(dev, ret, sense, sense_size);
}
int stmp_read_logical_drive_sectors(stmp_device_t dev, uint8_t drive, uint64_t address,
uint32_t count, void *buffer, int buffer_size)
{
int len = buffer_size;
int ret = stmp_scsi_read_logical_drive_sectors(dev, drive, address, count, buffer, &len);
if(ret || len != buffer_size)
return -1;
return 0;
}
int stmp_write_logical_drive_sectors(stmp_device_t dev, uint8_t drive, uint64_t address,
uint32_t count, void *buffer, int buffer_size)
{
int len = buffer_size;
int ret = stmp_scsi_write_logical_drive_sectors(dev, drive, address, count, buffer, &len);
if(ret || len != buffer_size)
return -1;
return 0;
}
#define check_len(l) if(len != l) return -1;
#define fixn(n, p) *(uint##n##_t *)(p) = stmp_fix_endian##n##be(*(uint##n##_t *)(p))
#define fix16(p) fixn(16, p)
#define fix32(p) fixn(32, p)
#define fix64(p) fixn(64, p)
int stmp_fix_logical_media_info(uint8_t info, void *data, int len)
{
switch(info)
{
case SCSI_STMP_MEDIA_INFO_NR_DRIVES:
check_len(2);
fix16(data);
return 0;
case SCSI_STMP_MEDIA_INFO_TYPE:
case SCSI_STMP_MEDIA_INFO_SERIAL_NUMBER_SIZE:
case SCSI_STMP_MEDIA_INFO_VENDOR:
case SCSI_STMP_MEDIA_INFO_ALLOC_UNIT_SIZE:
case SCSI_STMP_MEDIA_INFO_PAGE_SIZE:
case SCSI_STMP_MEDIA_INFO_NR_DEVICES:
check_len(4);
fix32(data);
return 0;
case SCSI_STMP_MEDIA_INFO_SIZE:
case SCSI_STMP_MEDIA_INFO_NAND_ID:
check_len(8);
fix64(data);
return 0;
case SCSI_STMP_MEDIA_INFO_IS_INITIALISED:
case SCSI_STMP_MEDIA_INFO_STATE:
case SCSI_STMP_MEDIA_INFO_IS_WRITE_PROTECTED:
case SCSI_STMP_MEDIA_INFO_IS_SYSTEM_MEDIA:
case SCSI_STMP_MEDIA_INFO_IS_MEDIA_PRESENT:
check_len(1);
return 0;
case SCSI_STMP_MEDIA_INFO_SERIAL_NUMBER:
return 0;
default:
return -1;
}
}
static void stmp_fix_version(struct scsi_stmp_logical_drive_info_version_t *w)
{
w->major = stmp_fix_endian16be(w->major);
w->minor = stmp_fix_endian16be(w->minor);
w->revision = stmp_fix_endian16be(w->revision);
}
int stmp_fix_logical_drive_info(uint8_t info, void *data, int len)
{
switch(info)
{
case SCSI_STMP_DRIVE_INFO_SERIAL_NUMBER_SIZE:
check_len(2);
fix16(data);
return 0;
case SCSI_STMP_DRIVE_INFO_SECTOR_SIZE:
case SCSI_STMP_DRIVE_INFO_ERASE_SIZE:
case SCSI_STMP_DRIVE_INFO_SIZE_MEGA:
case SCSI_STMP_DRIVE_INFO_TYPE:
case SCSI_STMP_DRIVE_INFO_SECTOR_ALLOCATION:
check_len(4);
fix32(data);
return 0;
case SCSI_STMP_DRIVE_INFO_SIZE:
case SCSI_STMP_DRIVE_INFO_SECTOR_COUNT:
check_len(8);
fix64(data);
return 0;
case SCSI_STMP_DRIVE_INFO_TAG:
case SCSI_STMP_DRIVE_INFO_IS_WRITE_PROTETED:
case SCSI_STMP_DRIVE_INFO_MEDIA_PRESENT:
case SCSI_STMP_DRIVE_INFO_MEDIA_CHANGE:
check_len(1);
return 0;
case SCSI_STMP_DRIVE_INFO_COMPONENT_VERSION:
case SCSI_STMP_DRIVE_INFO_PROJECT_VERSION:
check_len(6)
stmp_fix_version(data);
return 0;
case SCSI_STMP_DRIVE_INFO_SERIAL_NUMBER:
return 0;
default:
return -1;
}
}
int stmp_fix_device_info(uint8_t info, void *data, int len)
{
switch(info)
{
case 0: case 1:
check_len(4);
fix32(data);
return 0;
default:
return -1;
}
}
#undef fix64
#undef fix32
#undef fix16
#undef fixn
#undef checl_len
const char *stmp_get_logical_media_type_string(uint32_t type)
{
switch(type)
{
case SCSI_STMP_MEDIA_TYPE_NAND: return "NAND";
case SCSI_STMP_MEDIA_TYPE_SDMMC: return "SD/MMC";
case SCSI_STMP_MEDIA_TYPE_HDD: return "HDD";
case SCSI_STMP_MEDIA_TYPE_RAM: return "RAM";
case SCSI_STMP_MEDIA_TYPE_iNAND: return "iNAND";
default: return "?";
}
}
const char *stmp_get_logical_media_vendor_string(uint32_t type)
{
switch(type)
{
case SCSI_STMP_MEDIA_VENDOR_SAMSUNG: return "Samsung";
case SCSI_STMP_MEDIA_VENDOR_STMICRO: return "ST Micro";
case SCSI_STMP_MEDIA_VENDOR_HYNIX: return "Hynix";
case SCSI_STMP_MEDIA_VENDOR_MICRON: return "Micron";
case SCSI_STMP_MEDIA_VENDOR_TOSHIBA: return "Toshiba";
case SCSI_STMP_MEDIA_VENDOR_RENESAS: return "Renesas";
case SCSI_STMP_MEDIA_VENDOR_INTEL: return "Intel";
case SCSI_STMP_MEDIA_VENDOR_SANDISK: return "Sandisk";
default: return "?";
}
}
const char *stmp_get_logical_drive_type_string(uint32_t type)
{
switch(type)
{
case SCSI_STMP_DRIVE_TYPE_DATA: return "Data";
case SCSI_STMP_DRIVE_TYPE_SYSTEM: return "System";
case SCSI_STMP_DRIVE_TYPE_HIDDEN: return "Hidden";
case SCSI_STMP_DRIVE_TYPE_UNKNOWN: return "Unknown";
default: return "?";
}
}
const char *stmp_get_logical_drive_tag_string(uint32_t type)
{
switch(type)
{
case SCSI_STMP_DRIVE_TAG_STMPSYS_S: return "System";
case SCSI_STMP_DRIVE_TAG_HOSTLINK_S: return "Hostlink";
case SCSI_STMP_DRIVE_TAG_RESOURCE_BIN: return "Resource";
case SCSI_STMP_DRIVE_TAG_EXTRA_S: return "Extra";
case SCSI_STMP_DRIVE_TAG_RESOURCE1_BIN: return "Resource1";
case SCSI_STMP_DRIVE_TAG_OTGHOST_S: return "OTG";
case SCSI_STMP_DRIVE_TAG_HOSTRSC_BIN: return "Host Resource";
case SCSI_STMP_DRIVE_TAG_DATA: return "Data";
case SCSI_STMP_DRIVE_TAG_HIDDEN: return "Hidden";
case SCSI_STMP_DRIVE_TAG_BOOTMANAGER_S: return "Boot";
case SCSI_STMP_DRIVE_TAG_UPDATER_S: return "Updater";
default: return "?";
}
}
const char *stmp_get_logical_media_state_string(uint8_t state)
{
switch(state)
{
case SCSI_STMP_MEDIA_STATE_UNKNOWN: return "Unknown";
case SCSI_STMP_MEDIA_STATE_ERASED: return "Erased";
case SCSI_STMP_MEDIA_STATE_ALLOCATED: return "Allocated";
default: return "?";
}
}
int stmp_get_device_serial(stmp_device_t dev, uint8_t **buffer, int *len)
{
*len = 2;
uint16_t len16;
int ret = stmp_scsi_get_serial_number(dev, 0, &len16, len);
if(!ret && *len == 2)
{
len16 = stmp_fix_endian16be(len16);
*len = len16;
*buffer = malloc(*len);
ret = stmp_scsi_get_serial_number(dev, 1, *buffer, len);
}
else
ret = -1;
return ret;
}
#define ARRAYLEN(x) (int)(sizeof(x)/sizeof((x)[0]))
int stmp_get_logical_media_info(stmp_device_t dev, struct stmp_logical_media_info_t *info)
{
memset(info, 0, sizeof(struct stmp_logical_media_info_t));
int len, ret;
#define entry(name, def) \
len = sizeof(info->name); \
ret = stmp_scsi_get_logical_media_info(dev, SCSI_STMP_MEDIA_INFO_##def, &info->name, &len); \
if(!ret) \
ret = stmp_fix_logical_media_info(SCSI_STMP_MEDIA_INFO_##def, &info->name, len); \
if(!ret) \
info->has.name = true;
entry(nr_drives, NR_DRIVES);
entry(size, SIZE);
entry(alloc_size, ALLOC_UNIT_SIZE);
entry(initialised, IS_INITIALISED);
entry(state, STATE);
entry(write_protected, IS_WRITE_PROTECTED);
entry(type, TYPE);
entry(serial_len, SERIAL_NUMBER_SIZE);
entry(system, IS_SYSTEM_MEDIA);
entry(present, IS_MEDIA_PRESENT);
entry(page_size, PAGE_SIZE);
entry(vendor, VENDOR);
entry(nand_id, NAND_ID);
entry(nr_devices, NR_DEVICES);
#undef entry
if(info->has.serial_len)
{
info->serial = malloc(info->serial_len);
int len = info->serial_len;
ret = stmp_scsi_get_logical_media_info(dev, SCSI_STMP_MEDIA_INFO_SERIAL_NUMBER,
info->serial, &len);
if(ret || len != (int)info->serial_len)
free(info->serial);
else
info->has.serial = true;
}
return 0;
}
int stmp_get_logical_drive_info(stmp_device_t dev, uint8_t drive, struct stmp_logical_drive_info_t *info)
{
memset(info, 0, sizeof(struct stmp_logical_drive_info_t));
int len, ret;
#define entry(name, def) \
len = sizeof(info->name); \
ret = stmp_scsi_get_logical_drive_info(dev, drive, SCSI_STMP_DRIVE_INFO_##def, &info->name, &len); \
if(!ret) \
ret = stmp_fix_logical_drive_info(SCSI_STMP_DRIVE_INFO_##def, &info->name, len); \
if(!ret) \
info->has.name = true;
entry(sector_size, SECTOR_SIZE);
entry(erase_size, ERASE_SIZE);
entry(size, SIZE);
entry(sector_count, SECTOR_COUNT);
entry(type, TYPE);
entry(tag, TAG);
entry(component_version, COMPONENT_VERSION);
entry(project_version, PROJECT_VERSION);
entry(write_protected, IS_WRITE_PROTECTED);
entry(serial_len, SERIAL_NUMBER_SIZE);
entry(present, MEDIA_PRESENT);
entry(change, MEDIA_CHANGE);
entry(sector_alloc, SECTOR_ALLOCATION);
#undef entry
if(info->has.serial_len)
{
info->serial = malloc(info->serial_len);
int len = info->serial_len;
ret = stmp_scsi_get_logical_media_info(dev, SCSI_STMP_DRIVE_INFO_SERIAL_NUMBER,
info->serial, &len);
if(ret || len != (int)info->serial_len)
free(info->serial);
else
info->has.serial = true;
}
return 0;
}
int stmp_read_firmware(stmp_device_t dev, void *user, stmp_fw_rw_fn_t fn)
{
/* read logicial table */
uint8_t *sector = NULL;
struct stmp_logical_media_table_t *table = NULL;
int ret = stmp_get_logical_media_table(dev, &table);
if(ret)
{
stmp_printf(dev, "Cannot get logical table: %d\n", ret);
return -1;
}
/* locate firmware partition */
int entry = 0;
while(entry < table->header.count)
if(table->entry[entry].type == SCSI_STMP_DRIVE_TYPE_SYSTEM &&
table->entry[entry].tag == SCSI_STMP_DRIVE_TAG_SYSTEM_BOOT)
break;
else
entry++;
if(entry == table->header.count)
{
stmp_printf(dev, "Cannot find firmware partition\n");
goto Lerr;
}
uint8_t drive_no = table->entry[entry].drive_no;
uint64_t drive_sz = table->entry[entry].size;
stmp_debugf(dev, "Firmware drive: %#x\n", drive_no);
stmp_debugf(dev, "Firmware max size: %#llx\n", (unsigned long long)drive_sz);
/* get drive info */
struct stmp_logical_drive_info_t info;
ret = stmp_get_logical_drive_info(dev, drive_no, &info);
if(ret || !info.has.sector_size)
{
stmp_printf(dev, "Cannot get sector size\n");
goto Lerr;
}
unsigned sector_size = info.sector_size;
stmp_debugf(dev, "Firmware sector size: %lu\n", (unsigned long)sector_size);
/* allocate a buffer for one sector */
sector = malloc(sector_size);
/* read the first sector to check it is correct and get the total size */
ret = stmp_read_logical_drive_sectors(dev, drive_no, 0, 1, sector, sector_size);
if(ret)
{
stmp_printf(dev, "Cannot read first sector: %d\n", ret);
goto Lerr;
}
uint32_t sig = *(uint32_t *)(sector + 0x14);
if(sig != 0x504d5453)
{
stmp_printf(dev, "There is something wrong: the first sector doesn't have the STMP signature.\n");
goto Lerr;
}
uint32_t fw_size = *(uint32_t *)(sector + 0x1c) * 16; /* see SB file format */
stmp_debugf(dev, "Firmware size: %#x\n", fw_size);
/* if fn is NULL, just return the size immediately */
if(fn != NULL)
{
/* read all sectors one by one */
for(int sec = 0; sec * sector_size < fw_size; sec++)
{
ret = stmp_read_logical_drive_sectors(dev, drive_no, sec, 1, sector, sector_size);
if(ret)
{
stmp_printf(dev, "Cannot read sector %d: %d\n", sec, ret);
goto Lerr;
}
int xfer_len = MIN(sector_size, fw_size - sec * sector_size);
ret = fn(user, sector, xfer_len);
if(ret != xfer_len)
{
stmp_printf(dev, "User write failed: %d\n", ret);
goto Lerr;
}
}
}
ret = fw_size;
Lend:
free(table);
if(sector)
free(sector);
return ret;
Lerr:
ret = -1;
goto Lend;
}
int stmp_write_firmware(stmp_device_t dev, void *user, stmp_fw_rw_fn_t fn)
{
/* read logicial table */
struct stmp_logical_media_table_t *table = NULL;
int ret = stmp_get_logical_media_table(dev, &table);
if(ret)
{
stmp_printf(dev, "Cannot get logical table: %d\n", ret);
return -1;
}
/* locate firmware partition */
int entry = 0;
while(entry < table->header.count)
if(table->entry[entry].type == SCSI_STMP_DRIVE_TYPE_SYSTEM &&
table->entry[entry].tag == SCSI_STMP_DRIVE_TAG_SYSTEM_BOOT)
break;
else
entry++;
if(entry == table->header.count)
{
stmp_printf(dev, "Cannot find firmware partition\n");
goto Lerr;
}
uint8_t drive_no = table->entry[entry].drive_no;
uint64_t drive_sz = table->entry[entry].size;
stmp_debugf(dev, "Firmware drive: %#x\n", drive_no);
stmp_debugf(dev, "Firmware max size: %#llx\n", (unsigned long long)drive_sz);
/* get drive info */
struct stmp_logical_drive_info_t info;
ret = stmp_get_logical_drive_info(dev, drive_no, &info);
if(ret || !info.has.sector_size)
{
stmp_printf(dev, "Cannot get sector size\n");
goto Lerr;
}
unsigned sector_size = info.sector_size;
stmp_debugf(dev, "Firmware sector size: %lu\n", (unsigned long)sector_size);
/* allocate a buffer for one sector */
uint8_t *sector = malloc(sector_size);
/* read the first sector to check it is correct and get the total size */
ret = fn(user, sector, sector_size);
/* the whole file could be smaller than one sector, but it must be greater
* then the header size */
if(ret < 0x20)
{
stmp_printf(dev, "User read failed: %d\n", ret);
goto Lerr;
}
uint32_t sig = *(uint32_t *)(sector + 0x14);
if(sig != 0x504d5453)
{
stmp_printf(dev, "There is something wrong: the first sector doesn't have the STMP signature.\n");
goto Lerr;
}
uint32_t fw_size = *(uint32_t *)(sector + 0x1c) * 16; /* see SB file format */
stmp_debugf(dev, "Firmware size: %#x\n", fw_size);
/* write all sectors one by one */
for(int sec = 0; sec * sector_size < fw_size; sec++)
{
int xfer_len = MIN(sector_size, fw_size - sec * sector_size);
/* avoid rereading the first sector */
if(sec != 0)
ret = fn(user, sector, xfer_len);
if(ret != xfer_len)
{
stmp_printf(dev, "User read failed: %d\n", ret);
goto Lerr;
}
if(ret < (int)sector_size)
memset(sector + ret, 0, sector_size - ret);
ret = stmp_write_logical_drive_sectors(dev, drive_no, sec, 1, sector, sector_size);
if(ret)
{
stmp_printf(dev, "Cannot write sector %d: %d\n", sec, ret);
goto Lerr;
}
}
ret = fw_size;
Lend:
free(table);
return ret;
Lerr:
ret = -1;
goto Lend;
}