rockbox/utils/hwstub/lib/hwstub.cpp

677 lines
18 KiB
C++
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2015 by Amaury Pouly
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "hwstub.hpp"
#include <algorithm>
#include <cstring>
namespace hwstub {
std::ostream cnull(0);
std::wostream wcnull(0);
std::string error_string(error err)
{
switch(err)
{
case error::SUCCESS: return "success";
case error::ERROR: return "unspecified error";
case error::DISCONNECTED: return "device was disconnected";
case error::PROBE_FAILURE: return "probing failed";
case error::NO_CONTEXT: return "context was destroyed";
case error::USB_ERROR: return "unspecified USB error";
case error::DUMMY: return "operation on dummy device";
case error::NO_SERVER: return "server could not be reached";
case error::SERVER_DISCONNECTED: return "server disconnected";
case error::SERVER_MISMATCH: return "incompatible server";
case error::NET_ERROR: return "network error";
case error::PROTOCOL_ERROR: return "network protocol error";
case error::TIMEOUT: return "timeout";
case error::OVERFLW: return "overflow";
case error::UNIMPLEMENTED: return "operation is not implemented";
case error::UNSUPPORTED: return "operation unsupported";
default: return "unknown error";
}
}
/**
* Context
*/
context::context()
:m_next_cb_ref(0)
{
clear_debug();
}
context::~context()
{
}
void context::set_debug(std::ostream& os)
{
m_debug = &os;
}
std::ostream& context::debug()
{
return *m_debug;
}
error context::get_device_list(std::vector<std::shared_ptr<device>>& list)
{
std::unique_lock<std::recursive_mutex> lock(m_mutex);
error err = update_list();
if(err != error::SUCCESS)
return err;
list.resize(m_devlist.size());
for(size_t i = 0; i < m_devlist.size(); i++)
list[i] = m_devlist[i];
return error::SUCCESS;
}
error context::get_dummy_device(std::shared_ptr<device>& dev)
{
// NOTE: can't use make_shared() because of the protected ctor */
dev.reset(new dummy_device(shared_from_this()));
return error::SUCCESS;
}
void context::notify_device(bool arrived, std::shared_ptr<device> dev)
{
for(auto cb : m_callbacks)
cb.callback(shared_from_this(), arrived, dev);
}
void context::change_device(bool arrived, std::shared_ptr<device> dev)
{
std::unique_lock<std::recursive_mutex> lock(m_mutex);
if(arrived)
{
/* add to the list (assumed it's not already there) */
m_devlist.push_back(dev);
/* notify */
notify_device(arrived, dev);
}
else
{
dev->disconnect();
/* notify first */
notify_device(arrived, dev);
auto it = std::find(m_devlist.begin(), m_devlist.end(), dev);
if(it != m_devlist.end())
m_devlist.erase(it);
}
}
error context::update_list()
{
std::unique_lock<std::recursive_mutex> lock(m_mutex);
/* fetch new list */
std::vector<ctx_dev_t> new_list;
void* ptr;
error err = fetch_device_list(new_list, ptr);
if(err != error::SUCCESS)
return err;
/* determine devices that have left */
std::vector<std::shared_ptr<device>> to_del;
for(auto dev : m_devlist)
{
bool still_there = false;
for(auto new_dev : new_list)
if(match_device(new_dev, dev))
still_there = true;
if(!still_there)
to_del.push_back(dev);
}
for(auto dev : to_del)
change_device(false, dev);
/* determine new devices */
std::vector<ctx_dev_t> to_add;
for(auto new_dev : new_list)
{
bool exists = false;
for(auto dev : m_devlist)
if(match_device(new_dev, dev))
exists = true;
if(!exists)
to_add.push_back(new_dev);
}
/* create new devices */
for(auto dev : to_add)
{
std::shared_ptr<device> new_dev;
err = create_device(dev, new_dev);
if(err == error::SUCCESS)
change_device(true, new_dev);
}
/* destroy list */
destroy_device_list(ptr);
return error::SUCCESS;
}
context::callback_ref_t context::register_callback(const notification_callback_t& fn)
{
std::unique_lock<std::recursive_mutex> lock(m_mutex);
struct callback_t cb;
cb.callback = fn;
cb.ref = m_next_cb_ref++;
m_callbacks.push_back(cb);
return cb.ref;
}
void context::unregister_callback(callback_ref_t ref)
{
std::unique_lock<std::recursive_mutex> lock(m_mutex);
for(auto it = m_callbacks.begin(); it != m_callbacks.end(); ++it)
{
if((*it).ref == ref)
{
m_callbacks.erase(it);
return;
}
}
}
void context::start_polling(std::chrono::milliseconds interval)
{
std::unique_lock<std::recursive_mutex> lock(m_mutex);
/* create poller on demand */
if(!m_poller)
m_poller.reset(new context_poller(shared_from_this(), interval));
else
m_poller->set_interval(interval);
m_poller->start();
}
void context::stop_polling()
{
std::unique_lock<std::recursive_mutex> lock(m_mutex);
m_poller->stop();
}
/**
* Context Poller
*/
context_poller::context_poller(std::weak_ptr<context> ctx, std::chrono::milliseconds interval)
:m_ctx(ctx), m_running(false), m_exit(false), m_interval(interval)
{
m_thread = std::thread(context_poller::thread, this);
}
context_poller::~context_poller()
{
/* set exit flag, wakeup thread, wait for exit */
m_mutex.lock();
m_exit = true;
m_mutex.unlock();
m_cond.notify_one();
m_thread.join();
}
void context_poller::set_interval(std::chrono::milliseconds interval)
{
std::unique_lock<std::mutex> lock(m_mutex);
/* change interval, wakeup thread to take new interval into account */
m_interval = interval;
m_cond.notify_one();
}
void context_poller::start()
{
std::unique_lock<std::mutex> lock(m_mutex);
/* change running flag, wakeup thread to start polling */
m_running = true;
m_cond.notify_one();
}
void context_poller::stop()
{
std::unique_lock<std::mutex> lock(m_mutex);
/* change running flag, wakeup thread to stop polling */
m_running = false;
m_cond.notify_one();
}
void context_poller::poll()
{
std::unique_lock<std::mutex> lock(m_mutex);
while(true)
{
/* if asked, exit */
if(m_exit)
break;
/* if running, poll and then sleep for some time */
if(m_running)
{
std::shared_ptr<context> ctx = m_ctx.lock();
if(ctx)
ctx->update_list();
ctx.reset();
m_cond.wait_for(lock, m_interval);
}
/* if not, sleep until awaken */
else
m_cond.wait(lock);
}
}
void context_poller::thread(context_poller *poller)
{
poller->poll();
}
/**
* Device
*/
device::device(std::shared_ptr<context> ctx)
:m_ctx(ctx), m_connected(true)
{
}
device::~device()
{
}
error device::open(std::shared_ptr<handle>& handle)
{
std::unique_lock<std::recursive_mutex> lock(m_mutex);
/* get a pointer so that it's not destroyed during the runtime of the function,
* the pointer will be released at the end of the function */
std::shared_ptr<context> ctx = get_context();
if(!ctx)
return error::NO_CONTEXT;
/* do not even try if device is disconnected */
if(!connected())
return error::DISCONNECTED;
/* NOTE at the moment handle is state-less which means that we can
* safely give the same handle each time open() is called without callers
* interfering with each other. If handle eventually get a state,
* one will need to create a proxy class to encapsulate the state */
handle = m_handle.lock();
if(has_multiple_open() || !handle)
{
error err = open_dev(handle);
m_handle = handle;
return err;
}
else
return error::SUCCESS;
}
void device::disconnect()
{
std::unique_lock<std::recursive_mutex> lock(m_mutex);
m_connected = false;
}
bool device::connected()
{
return m_connected;
}
std::shared_ptr<context> device::get_context()
{
return m_ctx.lock();
}
/**
* Handle
*/
handle::handle(std::shared_ptr<device > dev)
:m_dev(dev)
{
}
handle::~handle()
{
}
std::shared_ptr<device> handle::get_device()
{
return m_dev;
}
error handle::get_desc(uint16_t desc, void *buf, size_t& buf_sz)
{
std::unique_lock<std::recursive_mutex> lock(m_mutex);
/* get a pointer so that it's not destroyed during the runtime of the function,
* the pointer will be released at the end of the function */
std::shared_ptr<context> ctx = m_dev->get_context();
if(!ctx)
return error::NO_CONTEXT;
/* ensure valid status */
error err = status();
if(err != error::SUCCESS)
return err;
return get_dev_desc(desc, buf, buf_sz);
}
error handle::get_log(void *buf, size_t& buf_sz)
{
std::unique_lock<std::recursive_mutex> lock(m_mutex);
/* get a pointer so that it's not destroyed during the runtime of the function,
* the pointer will be released at the end of the function */
std::shared_ptr<context> ctx = m_dev->get_context();
if(!ctx)
return error::NO_CONTEXT;
/* ensure valid status */
error err = status();
if(err != error::SUCCESS)
return err;
return get_dev_log(buf, buf_sz);
}
error handle::exec(uint32_t addr, uint16_t flags)
{
std::unique_lock<std::recursive_mutex> lock(m_mutex);
/* get a pointer so that it's not destroyed during the runtime of the function,
* the pointer will be released at the end of the function */
std::shared_ptr<context> ctx = m_dev->get_context();
if(!ctx)
return error::NO_CONTEXT;
/* ensure valid status */
error err = status();
if(err != error::SUCCESS)
return err;
return exec_dev(addr, flags);
}
error handle::read(uint32_t addr, void *buf, size_t& sz, bool atomic)
{
std::unique_lock<std::recursive_mutex> lock(m_mutex);
/* get a pointer so that it's not destroyed during the runtime of the function,
* the pointer will be released at the end of the function */
std::shared_ptr<context> ctx = m_dev->get_context();
if(!ctx)
return error::NO_CONTEXT;
/* ensure valid status */
error err = status();
if(err != error::SUCCESS)
return err;
/* split transfer as needed */
size_t cnt = 0;
uint8_t *bufp = (uint8_t *)buf;
while(sz > 0)
{
size_t xfer = std::min(sz, get_buffer_size());
err = read_dev(addr, bufp, xfer, atomic);
if(err != error::SUCCESS)
return err;
sz -= xfer;
bufp += xfer;
addr += xfer;
cnt += xfer;
}
sz = cnt;
return error::SUCCESS;
}
error handle::write(uint32_t addr, const void *buf, size_t& sz, bool atomic)
{
std::unique_lock<std::recursive_mutex> lock(m_mutex);
/* get a pointer so that it's not destroyed during the runtime of the function,
* the pointer will be released at the end of the function */
std::shared_ptr<context> ctx = m_dev->get_context();
if(!ctx)
return error::NO_CONTEXT;
/* ensure valid status */
error err = status();
if(err != error::SUCCESS)
return err;
/* split transfer as needed */
size_t cnt = 0;
const uint8_t *bufp = (uint8_t *)buf;
while(sz > 0)
{
size_t xfer = std::min(sz, get_buffer_size());
err = write_dev(addr, bufp, xfer, atomic);
if(err != error::SUCCESS)
{
sz = cnt;
return err;
}
sz -= xfer;
bufp += xfer;
addr += xfer;
cnt += xfer;
}
sz = cnt;
return error::SUCCESS;
}
error handle::cop_op(uint8_t op, uint8_t args[HWSTUB_COP_ARGS], const void *out_data,
size_t out_size, void *in_data, size_t *in_size)
{
std::unique_lock<std::recursive_mutex> lock(m_mutex);
/* get a pointer so that it's not destroyed during the runtime of the function,
* the pointer will be released at the end of the function */
std::shared_ptr<context> ctx = m_dev->get_context();
if(!ctx)
return error::NO_CONTEXT;
/* ensure valid status */
error err = status();
if(err != error::SUCCESS)
return err;
return cop_dev(op, args, out_data, out_size, in_data, in_size);
}
error handle::read32_cop(uint8_t args[HWSTUB_COP_ARGS], uint32_t& value)
{
size_t sz = sizeof(value);
error err = cop_op(HWSTUB_COP_READ, args, nullptr, 0, &value, &sz);
if(err != error::SUCCESS)
return err;
if(sz != sizeof(value))
return error::ERROR;
return error::SUCCESS;
}
error handle::write32_cop(uint8_t args[HWSTUB_COP_ARGS], uint32_t value)
{
return cop_op(HWSTUB_COP_WRITE, args, &value, sizeof(value), nullptr, nullptr);
}
error handle::status() const
{
/* check context */
if(!m_dev->get_context())
return error::NO_CONTEXT;
if(!m_dev->connected())
return error::DISCONNECTED;
else
return error::SUCCESS;
}
namespace
{
template<typename T>
error helper_get_desc(handle *h, uint8_t type, T& desc)
{
size_t sz = sizeof(desc);
error ret = h->get_desc(type, &desc, sz);
if(ret != error::SUCCESS)
return ret;
if(sz != sizeof(desc) || desc.bDescriptorType != type ||
desc.bLength != sizeof(desc))
return error::ERROR;
else
return error::SUCCESS;
}
}
error handle::get_version_desc(hwstub_version_desc_t& desc)
{
return helper_get_desc(this, HWSTUB_DT_VERSION, desc);
}
error handle::get_layout_desc(hwstub_layout_desc_t& desc)
{
return helper_get_desc(this, HWSTUB_DT_LAYOUT, desc);
}
error handle::get_stmp_desc(hwstub_stmp_desc_t& desc)
{
return helper_get_desc(this, HWSTUB_DT_STMP, desc);
}
error handle::get_pp_desc(hwstub_pp_desc_t& desc)
{
return helper_get_desc(this, HWSTUB_DT_PP, desc);
}
error handle::get_jz_desc(hwstub_jz_desc_t& desc)
{
return helper_get_desc(this, HWSTUB_DT_JZ, desc);
}
error handle::get_target_desc(hwstub_target_desc_t& desc)
{
return helper_get_desc(this, HWSTUB_DT_TARGET, desc);
}
/** Dummy device */
dummy_device::dummy_device(std::shared_ptr<context> ctx)
:device(ctx)
{
}
dummy_device::~dummy_device()
{
}
error dummy_device::open_dev(std::shared_ptr<handle>& handle)
{
handle.reset(new dummy_handle(shared_from_this()));
return error::SUCCESS;
}
bool dummy_device::has_multiple_open() const
{
return true;
}
/** Dummy handle */
dummy_handle::dummy_handle(std::shared_ptr<device> dev)
:handle(dev)
{
m_desc_version.bLength = sizeof(m_desc_version);
m_desc_version.bDescriptorType = HWSTUB_DT_VERSION;
m_desc_version.bMajor = HWSTUB_VERSION_MAJOR;
m_desc_version.bMinor = HWSTUB_VERSION_MINOR;
m_desc_version.bRevision = 0;
m_desc_layout.bLength = sizeof(m_desc_layout);
m_desc_layout.bDescriptorType = HWSTUB_DT_LAYOUT;
m_desc_layout.dCodeStart = 0;
m_desc_layout.dCodeSize = 0;
m_desc_layout.dStackStart = 0;
m_desc_layout.dStackSize = 0;
m_desc_layout.dBufferStart = 0;
m_desc_layout.dBufferSize = 1;
m_desc_target.bLength = sizeof(m_desc_target);
m_desc_target.bDescriptorType = HWSTUB_DT_TARGET;
m_desc_target.dID = HWSTUB_TARGET_UNK;
strcpy(m_desc_target.bName, "Dummy target");
}
dummy_handle::~dummy_handle()
{
}
error dummy_handle::read_dev(uint32_t addr, void *buf, size_t& sz, bool atomic)
{
(void) addr;
(void) buf;
(void) sz;
(void) atomic;
return error::DUMMY;
}
error dummy_handle::write_dev(uint32_t addr, const void *buf, size_t& sz, bool atomic)
{
(void) addr;
(void) buf;
(void) sz;
(void) atomic;
return error::DUMMY;
}
error dummy_handle::get_dev_desc(uint16_t desc, void *buf, size_t& buf_sz)
{
void *p = nullptr;
switch(desc)
{
case HWSTUB_DT_VERSION: p = &m_desc_version; break;
case HWSTUB_DT_LAYOUT: p = &m_desc_layout; break;
case HWSTUB_DT_TARGET: p = &m_desc_target; break;
default: break;
}
if(p == nullptr)
return error::ERROR;
/* size is in the bLength field of the descriptor */
size_t desc_sz = *(uint8_t *)p;
buf_sz = std::min(buf_sz, desc_sz);
memcpy(buf, p, buf_sz);
return error::SUCCESS;
}
error dummy_handle::get_dev_log(void *buf, size_t& buf_sz)
{
(void) buf;
(void) buf_sz;
return error::DUMMY;
}
error dummy_handle::exec_dev(uint32_t addr, uint16_t flags)
{
(void) addr;
(void) flags;
return error::DUMMY;
}
error dummy_handle::cop_dev(uint8_t op, uint8_t args[HWSTUB_COP_ARGS],
const void *out_data, size_t out_size, void *in_data, size_t *in_size)
{
(void) op;
(void) args;
(void) out_data;
(void) out_size;
(void) in_data;
(void) in_size;
return error::DUMMY;
}
error dummy_handle::status() const
{
error err = handle::status();
return err == error::SUCCESS ? error::DUMMY : err;
}
size_t dummy_handle::get_buffer_size()
{
return 1;
}
} // namespace hwstub