2008-12-04 22:00:12 +00:00
|
|
|
/***************************************************************************
|
|
|
|
* __________ __ ___.
|
|
|
|
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
|
|
|
|
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
|
|
|
|
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
|
|
|
|
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
|
|
|
|
* \/ \/ \/ \/ \/
|
|
|
|
* $Id$
|
|
|
|
*
|
|
|
|
* Copyright (c) 2004,2005 by Marcoen Hirschberg
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License
|
|
|
|
* as published by the Free Software Foundation; either version 2
|
|
|
|
* of the License, or (at your option) any later version.
|
2005-12-06 13:27:15 +00:00
|
|
|
*
|
2008-12-04 22:00:12 +00:00
|
|
|
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
|
|
|
|
* KIND, either express or implied.
|
|
|
|
*
|
|
|
|
****************************************************************************/
|
|
|
|
/* Some conversion functions for handling UTF-8
|
2005-12-06 13:27:15 +00:00
|
|
|
*
|
|
|
|
* I got all the info from:
|
|
|
|
* http://www.cl.cam.ac.uk/~mgk25/unicode.html#utf-8
|
|
|
|
* and
|
|
|
|
* http://en.wikipedia.org/wiki/Unicode
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <stdio.h>
|
2010-08-01 16:15:27 +00:00
|
|
|
#include "config.h"
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
#include "system.h"
|
|
|
|
#include "thread.h"
|
2005-12-06 13:27:15 +00:00
|
|
|
#include "file.h"
|
|
|
|
#include "debug.h"
|
|
|
|
#include "rbunicode.h"
|
2010-08-01 16:15:27 +00:00
|
|
|
#include "rbpaths.h"
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
#include "pathfuncs.h"
|
|
|
|
#include "core_alloc.h"
|
2005-12-06 13:27:15 +00:00
|
|
|
|
|
|
|
#ifndef O_BINARY
|
|
|
|
#define O_BINARY 0
|
|
|
|
#endif
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
#ifndef O_NOISODECODE
|
|
|
|
#define O_NOISODECODE 0
|
|
|
|
#endif
|
2005-12-06 13:27:15 +00:00
|
|
|
|
2014-09-13 22:55:27 +00:00
|
|
|
#define getle16(p) (p[0] | (p[1] << 8))
|
|
|
|
#define getbe16(p) ((p[0] << 8) | p[1])
|
2005-12-06 13:27:15 +00:00
|
|
|
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
#if !defined (__PCTOOL__) && (CONFIG_PLATFORM & PLATFORM_NATIVE)
|
|
|
|
/* Because file scanning uses the default CP table when matching entries,
|
|
|
|
on-demand loading is not feasible; we also must use the filesystem lock */
|
|
|
|
#include "file_internal.h"
|
|
|
|
#else /* APPLICATION */
|
|
|
|
#ifdef __PCTOOL__
|
|
|
|
#define yield()
|
2014-08-30 03:36:11 +00:00
|
|
|
#define DEFAULT_CP_STATIC_ALLOC
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
#endif
|
|
|
|
#define open_noiso_internal open
|
|
|
|
#endif /* !APPLICATION */
|
|
|
|
|
|
|
|
#if 0 /* not needed just now (will probably end up a spinlock) */
|
|
|
|
#include "mutex.h"
|
|
|
|
static struct mutex cp_mutex SHAREDBSS_ATTR;
|
|
|
|
#define cp_lock_init() mutex_init(&cp_mutex)
|
|
|
|
#define cp_lock_enter() mutex_lock(&cp_mutex)
|
|
|
|
#define cp_lock_leave() mutex_unlock(&cp_mutex)
|
|
|
|
#else
|
|
|
|
#define cp_lock_init() do {} while (0)
|
|
|
|
#define cp_lock_enter() asm volatile ("")
|
|
|
|
#define cp_lock_leave() asm volatile ("")
|
|
|
|
#endif
|
2005-12-06 13:27:15 +00:00
|
|
|
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
enum cp_tid
|
2005-12-06 13:27:15 +00:00
|
|
|
{
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
CP_TID_NONE = -1,
|
|
|
|
CP_TID_ISO,
|
|
|
|
CP_TID_932,
|
|
|
|
CP_TID_936,
|
|
|
|
CP_TID_949,
|
|
|
|
CP_TID_950,
|
2005-12-06 13:27:15 +00:00
|
|
|
};
|
2008-12-04 22:00:12 +00:00
|
|
|
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
struct cp_info
|
2005-12-06 13:27:15 +00:00
|
|
|
{
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
int8_t tid;
|
|
|
|
const char *filename;
|
|
|
|
const char *name;
|
2005-12-06 13:27:15 +00:00
|
|
|
};
|
|
|
|
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
#define MAX_CP_TABLE_SIZE 32768
|
2014-02-07 15:53:27 +00:00
|
|
|
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
#define CPF_ISO "iso.cp"
|
|
|
|
#define CPF_932 "932.cp" /* SJIS */
|
|
|
|
#define CPF_936 "936.cp" /* GB2312 */
|
|
|
|
#define CPF_949 "949.cp" /* KSX1001 */
|
|
|
|
#define CPF_950 "950.cp" /* BIG5 */
|
|
|
|
|
|
|
|
static const struct cp_info cp_info[NUM_CODEPAGES+1] =
|
2014-02-07 15:53:27 +00:00
|
|
|
{
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
[0 ... NUM_CODEPAGES] = { CP_TID_NONE, NULL , "unknown" },
|
|
|
|
[ISO_8859_1] = { CP_TID_NONE, NULL , "ISO-8859-1" },
|
|
|
|
[ISO_8859_7] = { CP_TID_ISO , CPF_ISO, "ISO-8859-7" },
|
|
|
|
[ISO_8859_8] = { CP_TID_ISO , CPF_ISO, "ISO-8859-8" },
|
|
|
|
[WIN_1251] = { CP_TID_ISO , CPF_ISO, "CP1251" },
|
|
|
|
[ISO_8859_11] = { CP_TID_ISO , CPF_ISO, "ISO-8859-11" },
|
|
|
|
[WIN_1256] = { CP_TID_ISO , CPF_ISO, "CP1256" },
|
|
|
|
[ISO_8859_9] = { CP_TID_ISO , CPF_ISO, "ISO-8859-9" },
|
|
|
|
[ISO_8859_2] = { CP_TID_ISO , CPF_ISO, "ISO-8859-2" },
|
|
|
|
[WIN_1250] = { CP_TID_ISO , CPF_ISO, "CP1250" },
|
|
|
|
[WIN_1252] = { CP_TID_ISO , CPF_ISO, "CP1252" },
|
|
|
|
[SJIS] = { CP_TID_932 , CPF_932, "SJIS" },
|
|
|
|
[GB_2312] = { CP_TID_936 , CPF_936, "GB-2312" },
|
|
|
|
[KSX_1001] = { CP_TID_949 , CPF_949, "KSX-1001" },
|
|
|
|
[BIG_5] = { CP_TID_950 , CPF_950, "BIG5" },
|
|
|
|
[UTF_8] = { CP_TID_NONE, NULL , "UTF-8" },
|
|
|
|
};
|
2014-02-07 15:53:27 +00:00
|
|
|
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
static int default_cp = INIT_CODEPAGE;
|
|
|
|
static int default_cp_tid = CP_TID_NONE;
|
|
|
|
static int default_cp_handle = 0;
|
|
|
|
static int volatile default_cp_table_ref = 0;
|
|
|
|
|
|
|
|
static int loaded_cp_tid = CP_TID_NONE;
|
|
|
|
static int volatile cp_table_ref = 0;
|
|
|
|
#define CP_LOADING BIT_N(sizeof(int)*8-1) /* guard against multi loaders */
|
|
|
|
|
|
|
|
/* non-default codepage table buffer (cannot be bufalloced! playback itself
|
|
|
|
may be making the load request) */
|
|
|
|
static unsigned short codepage_table[MAX_CP_TABLE_SIZE+1];
|
|
|
|
|
|
|
|
#if defined(APPLICATION) && defined(__linux__)
|
|
|
|
static const char * const name_codepages_linux[NUM_CODEPAGES+1] =
|
2008-12-04 22:00:12 +00:00
|
|
|
{
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
[0 ... NUM_CODEPAGES] = "unknown",
|
|
|
|
[ISO_8859_1] = "iso8859-1",
|
|
|
|
[ISO_8859_7] = "iso8859-7",
|
|
|
|
[ISO_8859_8] = "iso8859-8",
|
|
|
|
[WIN_1251] = "cp1251",
|
|
|
|
[ISO_8859_11] = "iso8859-11",
|
|
|
|
[WIN_1256] = "cp1256",
|
|
|
|
[ISO_8859_9] = "iso8859-9",
|
|
|
|
[ISO_8859_2] = "iso8859-2",
|
|
|
|
[WIN_1250] = "cp1250",
|
|
|
|
/* iso8859-15 is closest, linux doesnt have a codepage named cp1252 */
|
|
|
|
[WIN_1252] = "iso8859-15",
|
|
|
|
[SJIS] = "cp932",
|
|
|
|
[GB_2312] = "cp936",
|
|
|
|
[KSX_1001] = "cp949",
|
|
|
|
[BIG_5] = "cp950",
|
|
|
|
[UTF_8] = "utf8",
|
2008-12-04 22:00:12 +00:00
|
|
|
};
|
|
|
|
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
const char *get_current_codepage_name_linux(void)
|
|
|
|
{
|
|
|
|
int cp = default_cp;
|
|
|
|
if (cp < 0 || cp>= NUM_CODEPAGES)
|
|
|
|
cp = NUM_CODEPAGES;
|
|
|
|
return name_codepages_linux[cp];
|
|
|
|
}
|
|
|
|
#endif /* defined(APPLICATION) && defined(__linux__) */
|
2007-04-01 13:09:22 +00:00
|
|
|
|
2014-08-30 03:36:11 +00:00
|
|
|
#ifdef DEFAULT_CP_STATIC_ALLOC
|
|
|
|
static unsigned short default_cp_table_buf[MAX_CP_TABLE_SIZE+1];
|
|
|
|
#define cp_table_get_data(handle) \
|
|
|
|
default_cp_table_buf
|
|
|
|
#define cp_table_free(handle) \
|
|
|
|
do {} while (0)
|
2022-10-15 22:55:39 +00:00
|
|
|
#define cp_table_alloc(size, opsp) \
|
2014-08-30 03:36:11 +00:00
|
|
|
({ (void)(opsp); 1; })
|
2022-04-03 10:16:39 +00:00
|
|
|
#define cp_table_pin(handle) \
|
|
|
|
do { (void)handle; } while(0)
|
|
|
|
#define cp_table_unpin(handle) \
|
|
|
|
do { (void)handle; } while(0)
|
2014-08-30 03:36:11 +00:00
|
|
|
#else
|
2022-10-15 22:55:39 +00:00
|
|
|
#define cp_table_alloc(size, opsp) \
|
|
|
|
core_alloc_ex((size), (opsp))
|
2014-08-30 03:36:11 +00:00
|
|
|
#define cp_table_free(handle) \
|
|
|
|
core_free(handle)
|
|
|
|
#define cp_table_get_data(handle) \
|
|
|
|
core_get_data(handle)
|
2022-04-03 10:16:39 +00:00
|
|
|
#define cp_table_pin(handle) \
|
|
|
|
core_pin(handle)
|
|
|
|
#define cp_table_unpin(handle) \
|
|
|
|
core_unpin(handle)
|
2014-08-30 03:36:11 +00:00
|
|
|
#endif
|
|
|
|
|
2007-04-01 13:09:22 +00:00
|
|
|
static const unsigned char utf8comp[6] =
|
|
|
|
{
|
|
|
|
0x00, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC
|
|
|
|
};
|
|
|
|
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
static inline void cptable_tohw16(uint16_t *buf, unsigned int count)
|
2005-12-06 13:27:15 +00:00
|
|
|
{
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
#ifdef ROCKBOX_BIG_ENDIAN
|
|
|
|
for (unsigned int i = 0; i < count; i++)
|
|
|
|
buf[i] = letoh16(buf[i]);
|
|
|
|
#endif
|
|
|
|
(void)buf; (void)count;
|
|
|
|
}
|
2005-12-06 13:27:15 +00:00
|
|
|
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
static int alloc_and_load_cp_table(int cp, void *buf)
|
|
|
|
{
|
|
|
|
/* alloc and read only if there is an associated file */
|
|
|
|
const char *filename = cp_info[cp].filename;
|
|
|
|
if (!filename)
|
2005-12-06 13:27:15 +00:00
|
|
|
return 0;
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
|
|
|
|
char path[MAX_PATH];
|
|
|
|
if (path_append(path, CODEPAGE_DIR, filename, sizeof (path))
|
|
|
|
>= sizeof (path)) {
|
|
|
|
return -1;
|
2005-12-06 13:27:15 +00:00
|
|
|
}
|
|
|
|
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
/* must be opened without a chance of reentering from FS code */
|
|
|
|
int fd = open_noiso_internal(path, O_RDONLY);
|
|
|
|
if (fd < 0)
|
|
|
|
return -1;
|
2005-12-06 13:27:15 +00:00
|
|
|
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
off_t size = filesize(fd);
|
2005-12-06 13:27:15 +00:00
|
|
|
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
if (size > 0 && size <= MAX_CP_TABLE_SIZE*2 &&
|
|
|
|
!(size % (off_t)sizeof (uint16_t))) {
|
|
|
|
|
|
|
|
/* if the buffer is provided, use that but don't alloc */
|
2022-10-15 22:55:39 +00:00
|
|
|
int handle = buf ? 0 : cp_table_alloc(size, NULL);
|
2022-04-03 10:16:39 +00:00
|
|
|
if (handle > 0) {
|
|
|
|
cp_table_pin(handle);
|
2014-08-30 03:36:11 +00:00
|
|
|
buf = cp_table_get_data(handle);
|
2022-04-03 10:16:39 +00:00
|
|
|
}
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
|
|
|
|
if (buf && read(fd, buf, size) == size) {
|
|
|
|
close(fd);
|
|
|
|
cptable_tohw16(buf, size / sizeof (uint16_t));
|
2022-04-03 10:16:39 +00:00
|
|
|
if (handle > 0)
|
|
|
|
cp_table_unpin(handle);
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
return handle;
|
2005-12-06 13:27:15 +00:00
|
|
|
}
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
|
|
|
|
if (handle > 0)
|
2014-08-30 03:36:11 +00:00
|
|
|
cp_table_free(handle);
|
2005-12-06 13:27:15 +00:00
|
|
|
}
|
|
|
|
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
close(fd);
|
|
|
|
return -1;
|
2005-12-06 13:27:15 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Encode a UCS value as UTF-8 and return a pointer after this UTF-8 char. */
|
|
|
|
unsigned char* utf8encode(unsigned long ucs, unsigned char *utf8)
|
|
|
|
{
|
|
|
|
int tail = 0;
|
|
|
|
|
|
|
|
if (ucs > 0x7F)
|
2005-12-07 08:37:14 +00:00
|
|
|
while (ucs >> (5*tail + 6))
|
2005-12-06 13:27:15 +00:00
|
|
|
tail++;
|
|
|
|
|
|
|
|
*utf8++ = (ucs >> (6*tail)) | utf8comp[tail];
|
|
|
|
while (tail--)
|
|
|
|
*utf8++ = ((ucs >> (6*tail)) & (MASK ^ 0xFF)) | COMP;
|
|
|
|
|
|
|
|
return utf8;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Recode an iso encoded string to UTF-8 */
|
|
|
|
unsigned char* iso_decode(const unsigned char *iso, unsigned char *utf8,
|
|
|
|
int cp, int count)
|
|
|
|
{
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
uint16_t *table = NULL;
|
|
|
|
|
|
|
|
cp_lock_enter();
|
|
|
|
|
|
|
|
if (cp < 0 || cp >= NUM_CODEPAGES)
|
|
|
|
cp = default_cp;
|
2005-12-06 13:27:15 +00:00
|
|
|
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
int tid = cp_info[cp].tid;
|
2005-12-06 13:27:15 +00:00
|
|
|
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
while (1) {
|
|
|
|
if (tid == default_cp_tid) {
|
|
|
|
/* use default table */
|
|
|
|
if (default_cp_handle > 0) {
|
2014-08-30 03:36:11 +00:00
|
|
|
table = cp_table_get_data(default_cp_handle);
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
default_cp_table_ref++;
|
|
|
|
}
|
|
|
|
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool load = false;
|
|
|
|
|
|
|
|
if (tid == loaded_cp_tid) {
|
|
|
|
/* use loaded table */
|
|
|
|
if (!(cp_table_ref & CP_LOADING)) {
|
|
|
|
if (tid != CP_TID_NONE) {
|
|
|
|
table = codepage_table;
|
|
|
|
cp_table_ref++;
|
|
|
|
}
|
|
|
|
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else if (cp_table_ref == 0) {
|
|
|
|
load = true;
|
|
|
|
cp_table_ref |= CP_LOADING;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* alloc and load must be done outside the lock */
|
|
|
|
cp_lock_leave();
|
|
|
|
|
|
|
|
if (!load) {
|
|
|
|
yield();
|
|
|
|
} else if (alloc_and_load_cp_table(cp, codepage_table) < 0) {
|
|
|
|
cp = INIT_CODEPAGE; /* table may be clobbered now */
|
|
|
|
tid = cp_info[cp].tid;
|
|
|
|
}
|
|
|
|
|
|
|
|
cp_lock_enter();
|
|
|
|
|
|
|
|
if (load) {
|
|
|
|
loaded_cp_tid = tid;
|
|
|
|
cp_table_ref &= ~CP_LOADING;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cp_lock_leave();
|
2005-12-06 13:27:15 +00:00
|
|
|
|
|
|
|
while (count--) {
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
unsigned short ucs, tmp;
|
|
|
|
|
2007-04-01 13:09:22 +00:00
|
|
|
if (*iso < 128 || cp == UTF_8) /* Already UTF-8 */
|
2005-12-06 13:27:15 +00:00
|
|
|
*utf8++ = *iso++;
|
|
|
|
|
|
|
|
else {
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
/* tid tells us which table to use and how */
|
|
|
|
switch (tid) {
|
|
|
|
case CP_TID_ISO: /* Greek */
|
|
|
|
/* Hebrew */
|
|
|
|
/* Cyrillic */
|
|
|
|
/* Thai */
|
|
|
|
/* Arabic */
|
|
|
|
/* Turkish */
|
|
|
|
/* Latin Extended */
|
|
|
|
/* Central European */
|
|
|
|
/* Western European */
|
2005-12-06 13:27:15 +00:00
|
|
|
tmp = ((cp-1)*128) + (*iso++ - 128);
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
ucs = table[tmp];
|
2005-12-06 13:27:15 +00:00
|
|
|
break;
|
|
|
|
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
case CP_TID_932: /* Japanese */
|
2005-12-06 13:27:15 +00:00
|
|
|
if (*iso > 0xA0 && *iso < 0xE0) {
|
2006-03-10 11:13:21 +00:00
|
|
|
tmp = *iso++ | (0xA100 - 0x8000);
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
ucs = table[tmp];
|
2005-12-06 13:27:15 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
case CP_TID_936: /* Simplified Chinese */
|
|
|
|
case CP_TID_949: /* Korean */
|
|
|
|
case CP_TID_950: /* Traditional Chinese */
|
2005-12-06 13:27:15 +00:00
|
|
|
if (count < 1 || !iso[1]) {
|
|
|
|
ucs = *iso++;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* we assume all cjk strings are written
|
|
|
|
in big endian order */
|
|
|
|
tmp = *iso++ << 8;
|
|
|
|
tmp |= *iso++;
|
|
|
|
tmp -= 0x8000;
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
ucs = table[tmp];
|
2005-12-06 13:27:15 +00:00
|
|
|
count--;
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
ucs = *iso++;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2006-03-10 11:13:21 +00:00
|
|
|
if (ucs == 0) /* unknown char, use replacement char */
|
|
|
|
ucs = 0xfffd;
|
2005-12-06 13:27:15 +00:00
|
|
|
utf8 = utf8encode(ucs, utf8);
|
|
|
|
}
|
|
|
|
}
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
|
|
|
|
if (table) {
|
|
|
|
cp_lock_enter();
|
|
|
|
if (table == codepage_table) {
|
|
|
|
cp_table_ref--;
|
|
|
|
} else {
|
|
|
|
default_cp_table_ref--;
|
|
|
|
}
|
|
|
|
cp_lock_leave();
|
|
|
|
}
|
|
|
|
|
2005-12-06 13:27:15 +00:00
|
|
|
return utf8;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Recode a UTF-16 string with little-endian byte ordering to UTF-8 */
|
2005-12-06 15:04:48 +00:00
|
|
|
unsigned char* utf16LEdecode(const unsigned char *utf16, unsigned char *utf8,
|
2006-07-25 18:12:57 +00:00
|
|
|
int count)
|
2005-12-06 13:27:15 +00:00
|
|
|
{
|
|
|
|
unsigned long ucs;
|
|
|
|
|
2006-07-25 18:12:57 +00:00
|
|
|
while (count > 0) {
|
2005-12-06 15:04:48 +00:00
|
|
|
/* Check for a surrogate pair */
|
|
|
|
if (utf16[1] >= 0xD8 && utf16[1] < 0xE0) {
|
|
|
|
ucs = 0x10000 + ((utf16[0] << 10) | ((utf16[1] - 0xD8) << 18)
|
|
|
|
| utf16[2] | ((utf16[3] - 0xDC) << 8));
|
2005-12-06 13:27:15 +00:00
|
|
|
utf16 += 4;
|
|
|
|
count -= 2;
|
|
|
|
} else {
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
ucs = getle16(utf16);
|
2005-12-06 13:27:15 +00:00
|
|
|
utf16 += 2;
|
|
|
|
count -= 1;
|
|
|
|
}
|
|
|
|
utf8 = utf8encode(ucs, utf8);
|
|
|
|
}
|
|
|
|
return utf8;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Recode a UTF-16 string with big-endian byte ordering to UTF-8 */
|
2005-12-06 15:04:48 +00:00
|
|
|
unsigned char* utf16BEdecode(const unsigned char *utf16, unsigned char *utf8,
|
2006-07-25 18:12:57 +00:00
|
|
|
int count)
|
2005-12-06 13:27:15 +00:00
|
|
|
{
|
|
|
|
unsigned long ucs;
|
|
|
|
|
2006-07-25 18:12:57 +00:00
|
|
|
while (count > 0) {
|
2005-12-06 13:27:15 +00:00
|
|
|
if (*utf16 >= 0xD8 && *utf16 < 0xE0) { /* Check for a surrogate pair */
|
2005-12-06 15:04:48 +00:00
|
|
|
ucs = 0x10000 + (((utf16[0] - 0xD8) << 18) | (utf16[1] << 10)
|
|
|
|
| ((utf16[2] - 0xDC) << 8) | utf16[3]);
|
2005-12-06 13:27:15 +00:00
|
|
|
utf16 += 4;
|
|
|
|
count -= 2;
|
|
|
|
} else {
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
ucs = getbe16(utf16);
|
2005-12-06 13:27:15 +00:00
|
|
|
utf16 += 2;
|
|
|
|
count -= 1;
|
|
|
|
}
|
|
|
|
utf8 = utf8encode(ucs, utf8);
|
|
|
|
}
|
|
|
|
return utf8;
|
|
|
|
}
|
|
|
|
|
2007-01-19 15:55:11 +00:00
|
|
|
#if 0 /* currently unused */
|
2005-12-06 13:27:15 +00:00
|
|
|
/* Recode any UTF-16 string to UTF-8 */
|
2005-12-06 15:04:48 +00:00
|
|
|
unsigned char* utf16decode(const unsigned char *utf16, unsigned char *utf8,
|
|
|
|
unsigned int count)
|
2005-12-06 13:27:15 +00:00
|
|
|
{
|
|
|
|
unsigned long ucs;
|
|
|
|
|
|
|
|
ucs = *(utf16++) << 8;
|
|
|
|
ucs |= *(utf16++);
|
|
|
|
|
|
|
|
if (ucs == 0xFEFF) /* Check for BOM */
|
|
|
|
return utf16BEdecode(utf16, utf8, count-1);
|
|
|
|
else if (ucs == 0xFFFE)
|
|
|
|
return utf16LEdecode(utf16, utf8, count-1);
|
|
|
|
else { /* ADDME: Should default be LE or BE? */
|
|
|
|
utf16 -= 2;
|
|
|
|
return utf16BEdecode(utf16, utf8, count);
|
|
|
|
}
|
|
|
|
}
|
2007-01-19 15:55:11 +00:00
|
|
|
#endif
|
2005-12-06 13:27:15 +00:00
|
|
|
|
|
|
|
/* Return the number of UTF-8 chars in a string */
|
|
|
|
unsigned long utf8length(const unsigned char *utf8)
|
|
|
|
{
|
|
|
|
unsigned long l = 0;
|
|
|
|
|
|
|
|
while (*utf8 != 0)
|
|
|
|
if ((*utf8++ & MASK) != COMP)
|
|
|
|
l++;
|
|
|
|
|
|
|
|
return l;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Decode 1 UTF-8 char and return a pointer to the next char. */
|
|
|
|
const unsigned char* utf8decode(const unsigned char *utf8, unsigned short *ucs)
|
|
|
|
{
|
|
|
|
unsigned char c = *utf8++;
|
|
|
|
unsigned long code;
|
|
|
|
int tail = 0;
|
|
|
|
|
|
|
|
if ((c <= 0x7f) || (c >= 0xc2)) {
|
|
|
|
/* Start of new character. */
|
|
|
|
if (c < 0x80) { /* U-00000000 - U-0000007F, 1 byte */
|
|
|
|
code = c;
|
|
|
|
} else if (c < 0xe0) { /* U-00000080 - U-000007FF, 2 bytes */
|
|
|
|
tail = 1;
|
|
|
|
code = c & 0x1f;
|
|
|
|
} else if (c < 0xf0) { /* U-00000800 - U-0000FFFF, 3 bytes */
|
|
|
|
tail = 2;
|
|
|
|
code = c & 0x0f;
|
|
|
|
} else if (c < 0xf5) { /* U-00010000 - U-001FFFFF, 4 bytes */
|
|
|
|
tail = 3;
|
|
|
|
code = c & 0x07;
|
|
|
|
} else {
|
|
|
|
/* Invalid size. */
|
2006-03-10 11:13:21 +00:00
|
|
|
code = 0xfffd;
|
2005-12-06 13:27:15 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
while (tail-- && ((c = *utf8++) != 0)) {
|
|
|
|
if ((c & 0xc0) == 0x80) {
|
|
|
|
/* Valid continuation character. */
|
|
|
|
code = (code << 6) | (c & 0x3f);
|
|
|
|
|
|
|
|
} else {
|
|
|
|
/* Invalid continuation char */
|
2006-03-10 11:13:21 +00:00
|
|
|
code = 0xfffd;
|
2005-12-06 13:27:15 +00:00
|
|
|
utf8--;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* Invalid UTF-8 char */
|
2006-03-10 11:13:21 +00:00
|
|
|
code = 0xfffd;
|
2005-12-06 13:27:15 +00:00
|
|
|
}
|
|
|
|
/* currently we don't support chars above U-FFFF */
|
2006-03-10 11:13:21 +00:00
|
|
|
*ucs = (code < 0x10000) ? code : 0xfffd;
|
2005-12-06 13:27:15 +00:00
|
|
|
return utf8;
|
|
|
|
}
|
|
|
|
|
|
|
|
void set_codepage(int cp)
|
|
|
|
{
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
if (cp < 0 || cp >= NUM_CODEPAGES)
|
|
|
|
cp = NUM_CODEPAGES;
|
|
|
|
|
|
|
|
/* load first then swap if load is successful, else just leave it; if
|
|
|
|
handle is 0 then we just free the current one; this won't happen often
|
|
|
|
thus we don't worry about reusing it and consequently avoid possible
|
|
|
|
clobbering of the existing one */
|
|
|
|
|
|
|
|
int handle = -1;
|
|
|
|
int tid = cp_info[cp].tid;
|
|
|
|
|
|
|
|
while (1) {
|
|
|
|
cp_lock_enter();
|
|
|
|
|
|
|
|
if (default_cp_tid == tid)
|
|
|
|
break;
|
|
|
|
|
|
|
|
if (handle >= 0 && default_cp_table_ref == 0) {
|
|
|
|
int hold = default_cp_handle;
|
|
|
|
default_cp_handle = handle;
|
|
|
|
handle = hold;
|
|
|
|
default_cp_tid = tid;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* alloc and load must be done outside the lock */
|
|
|
|
cp_lock_leave();
|
|
|
|
|
|
|
|
if (handle < 0 && (handle = alloc_and_load_cp_table(cp, NULL)) < 0)
|
|
|
|
return; /* OOM; change nothing */
|
|
|
|
|
|
|
|
yield();
|
|
|
|
}
|
|
|
|
|
|
|
|
default_cp = cp;
|
|
|
|
cp_lock_leave();
|
|
|
|
|
|
|
|
if (handle > 0)
|
2014-08-30 03:36:11 +00:00
|
|
|
cp_table_free(handle);
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int get_codepage(void)
|
|
|
|
{
|
|
|
|
return default_cp;
|
2005-12-06 13:27:15 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* seek to a given char in a utf8 string and
|
|
|
|
return its start position in the string */
|
|
|
|
int utf8seek(const unsigned char* utf8, int offset)
|
|
|
|
{
|
|
|
|
int pos = 0;
|
|
|
|
|
|
|
|
while (offset--) {
|
|
|
|
pos++;
|
|
|
|
while ((utf8[pos] & MASK) == COMP)
|
|
|
|
pos++;
|
|
|
|
}
|
|
|
|
return pos;
|
|
|
|
}
|
2008-12-04 22:00:12 +00:00
|
|
|
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
const char * get_codepage_name(int cp)
|
2008-12-04 22:00:12 +00:00
|
|
|
{
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
if (cp < 0 || cp >= NUM_CODEPAGES)
|
|
|
|
cp = NUM_CODEPAGES;
|
|
|
|
return cp_info[cp].name;
|
2008-12-04 22:00:12 +00:00
|
|
|
}
|
Rewrite filesystem code (WIP)
This patch redoes the filesystem code from the FAT driver up to the
clipboard code in onplay.c.
Not every aspect of this is finished therefore it is still "WIP". I
don't wish to do too much at once (haha!). What is left to do is get
dircache back in the sim and find an implementation for the dircache
indicies in the tagcache and playlist code or do something else that
has the same benefit. Leaving these out for now does not make anything
unusable. All the basics are done.
Phone app code should probably get vetted (and app path handling
just plain rewritten as environment expansions); the SDL app and
Android run well.
Main things addressed:
1) Thread safety: There is none right now in the trunk code. Most of
what currently works is luck when multiple threads are involved or
multiple descriptors to the same file are open.
2) POSIX compliance: Many of the functions behave nothing like their
counterparts on a host system. This leads to inconsistent code or very
different behavior from native to hosted. One huge offender was
rename(). Going point by point would fill a book.
3) Actual running RAM usage: Many targets will use less RAM and less
stack space (some more RAM because I upped the number of cache buffers
for large memory). There's very little memory lying fallow in rarely-used
areas (see 'Key core changes' below). Also, all targets may open the same
number of directory streams whereas before those with less than 8MB RAM
were limited to 8, not 12 implying those targets will save slightly
less.
4) Performance: The test_disk plugin shows markedly improved performance,
particularly in the area of (uncached) directory scanning, due partly to
more optimal directory reading and to a better sector cache algorithm.
Uncached times tend to be better while there is a bit of a slowdown in
dircache due to it being a bit heavier of an implementation. It's not
noticeable by a human as far as I can say.
Key core changes:
1) Files and directories share core code and data structures.
2) The filesystem code knows which descriptors refer to same file.
This ensures that changes from one stream are appropriately reflected
in every open descriptor for that file (fileobj_mgr.c).
3) File and directory cache buffers are borrowed from the main sector
cache. This means that when they are not in use by a file, they are not
wasted, but used for the cache. Most of the time, only a few of them
are needed. It also means that adding more file and directory handles
is less expensive. All one must do in ensure a large enough cache to
borrow from.
4) Relative path components are supported and the namespace is unified.
It does not support full relative paths to an implied current directory;
what is does support is use of "." and "..". Adding the former would
not be very difficult. The namespace is unified in the sense that
volumes may be specified several times along with relative parts, e.g.:
"/<0>/foo/../../<1>/bar" :<=> "/<1>/bar".
5) Stack usage is down due to sharing of data, static allocation and
less duplication of strings on the stack. This requires more
serialization than I would like but since the number of threads is
limited to a low number, the tradoff in favor of the stack seems
reasonable.
6) Separates and heirarchicalizes (sic) the SIM and APP filesystem
code. SIM path and volume handling is just like the target. Some
aspects of the APP file code get more straightforward (e.g. no path
hashing is needed).
Dircache:
Deserves its own section. Dircache is new but pays homage to the old.
The old one was not compatible and so it, since it got redone, does
all the stuff it always should have done such as:
1) It may be update and used at any time during the build process.
No longer has one to wait for it to finish building to do basic file
management (create, remove, rename, etc.).
2) It does not need to be either fully scanned or completely disabled;
it can be incomplete (i.e. overfilled, missing paths), still be
of benefit and be correct.
3) Handles mounting and dismounting of individual volumes which means
a full rebuild is not needed just because you pop a new SD card in the
slot. Now, because it reuses its freed entry data, may rebuild only
that volume.
4) Much more fundamental to the file code. When it is built, it is
the keeper of the master file list whether enabled or not ("disabled"
is just a state of the cache). Its must always to ready to be started
and bind all streams opened prior to being enabled.
5) Maintains any short filenames in OEM format which means that it does
not need to be rebuilt when changing the default codepage.
Miscellaneous Compatibility:
1) Update any other code that would otherwise not work such as the
hotswap mounting code in various card drivers.
2) File management: Clipboard needed updating because of the behavioral
changes. Still needs a little more work on some finer points.
3) Remove now-obsolete functionality such as the mutex's "no preempt"
flag (which was only for the prior FAT driver).
4) struct dirinfo uses time_t rather than raw FAT directory entry
time fields. I plan to follow up on genericizing everything there
(i.e. no FAT attributes).
5) unicode.c needed some redoing so that the file code does not try
try to load codepages during a scan, which is actually a problem with
the current code. The default codepage, if any is required, is now
kept in RAM separarately (bufalloced) from codepages specified to
iso_decode() (which must not be bufalloced because the conversion
may be done by playback threads).
Brings with it some additional reusable core code:
1) Revised file functions: Reusable code that does things such as
safe path concatenation and parsing without buffer limitations or
data duplication. Variants that copy or alter the input path may be
based off these.
To do:
1) Put dircache functionality back in the sim. Treating it internally
as a different kind of file system seems the best approach at this
time.
2) Restore use of dircache indexes in the playlist and database or
something effectively the same. Since the cache doesn't have to be
complete in order to be used, not getting a hit on the cache doesn't
unambiguously say if the path exists or not.
Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8
Reviewed-on: http://gerrit.rockbox.org/566
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
|
|
|
|
|
|
|
#if 0 /* not needed just now */
|
|
|
|
void unicode_init(void)
|
|
|
|
{
|
|
|
|
cp_lock_init();
|
|
|
|
}
|
|
|
|
#endif
|