rockbox/firmware/target/arm/s5l8700/ipodnano2g/lcd-nano2g.c

461 lines
13 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2009 by Dave Chapman
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "hwcompat.h"
#include "kernel.h"
#include "lcd.h"
#include "system.h"
#include "cpu.h"
#include "pmu-target.h"
#include "power.h"
/* The Nano 2G has two different LCD types. What we call "type 0"
appears to be similar to the ILI9320 and "type 1" is similar to the
LDS176.
*/
/* LCD type 0 register defines */
#define R_ENTRY_MODE 0x03
#define R_DISPLAY_CONTROL_1 0x07
#define R_POWER_CONTROL_1 0x10
#define R_POWER_CONTROL_2 0x12
#define R_POWER_CONTROL_3 0x13
#define R_HORIZ_GRAM_ADDR_SET 0x20
#define R_VERT_GRAM_ADDR_SET 0x21
#define R_WRITE_DATA_TO_GRAM 0x22
#define R_HORIZ_ADDR_START_POS 0x50
#define R_HORIZ_ADDR_END_POS 0x51
#define R_VERT_ADDR_START_POS 0x52
#define R_VERT_ADDR_END_POS 0x53
/* LCD type 1 register defines */
#define R_SLEEP_IN 0x10
#define R_DISPLAY_OFF 0x28
#define R_COLUMN_ADDR_SET 0x2a
#define R_ROW_ADDR_SET 0x2b
#define R_MEMORY_WRITE 0x2c
/** globals **/
int lcd_type; /* also needed in debug-s5l8700.c */
static int xoffset; /* needed for flip */
static bool lcd_ispowered;
#ifdef HAVE_LCD_SLEEP
#define SLEEP 0
#define CMD16 1
#define DATA16 2
unsigned short lcd_init_sequence_0[] = {
CMD16, 0x00a4, DATA16, 0x0001,
SLEEP, 0x0000,
CMD16, 0x0001, DATA16, 0x0100,
CMD16, 0x0002, DATA16, 0x0300,
CMD16, 0x0003, DATA16, 0x1230,
CMD16, 0x0008, DATA16, 0x0404,
CMD16, 0x0008, DATA16, 0x0404,
CMD16, 0x000e, DATA16, 0x0010,
CMD16, 0x0070, DATA16, 0x1000,
CMD16, 0x0071, DATA16, 0x0001,
CMD16, 0x0030, DATA16, 0x0002,
CMD16, 0x0031, DATA16, 0x0400,
CMD16, 0x0032, DATA16, 0x0007,
CMD16, 0x0033, DATA16, 0x0500,
CMD16, 0x0034, DATA16, 0x0007,
CMD16, 0x0035, DATA16, 0x0703,
CMD16, 0x0036, DATA16, 0x0507,
CMD16, 0x0037, DATA16, 0x0005,
CMD16, 0x0038, DATA16, 0x0407,
CMD16, 0x0039, DATA16, 0x000e,
CMD16, 0x0040, DATA16, 0x0202,
CMD16, 0x0041, DATA16, 0x0003,
CMD16, 0x0042, DATA16, 0x0000,
CMD16, 0x0043, DATA16, 0x0200,
CMD16, 0x0044, DATA16, 0x0707,
CMD16, 0x0045, DATA16, 0x0407,
CMD16, 0x0046, DATA16, 0x0505,
CMD16, 0x0047, DATA16, 0x0002,
CMD16, 0x0048, DATA16, 0x0004,
CMD16, 0x0049, DATA16, 0x0004,
CMD16, 0x0060, DATA16, 0x0202,
CMD16, 0x0061, DATA16, 0x0003,
CMD16, 0x0062, DATA16, 0x0000,
CMD16, 0x0063, DATA16, 0x0200,
CMD16, 0x0064, DATA16, 0x0707,
CMD16, 0x0065, DATA16, 0x0407,
CMD16, 0x0066, DATA16, 0x0505,
CMD16, 0x0068, DATA16, 0x0004,
CMD16, 0x0069, DATA16, 0x0004,
CMD16, 0x0007, DATA16, 0x0001,
CMD16, 0x0018, DATA16, 0x0001,
CMD16, 0x0010, DATA16, 0x1690,
CMD16, 0x0011, DATA16, 0x0100,
CMD16, 0x0012, DATA16, 0x0117,
CMD16, 0x0013, DATA16, 0x0f80,
CMD16, 0x0012, DATA16, 0x0137,
CMD16, 0x0020, DATA16, 0x0000,
CMD16, 0x0021, DATA16, 0x0000,
CMD16, 0x0050, DATA16, 0x0000,
CMD16, 0x0051, DATA16, 0x00af,
CMD16, 0x0052, DATA16, 0x0000,
CMD16, 0x0053, DATA16, 0x0083,
CMD16, 0x0090, DATA16, 0x0003,
CMD16, 0x0091, DATA16, 0x0000,
CMD16, 0x0092, DATA16, 0x0101,
CMD16, 0x0098, DATA16, 0x0400,
CMD16, 0x0099, DATA16, 0x1302,
CMD16, 0x009a, DATA16, 0x0202,
CMD16, 0x009b, DATA16, 0x0200,
SLEEP, 0x0000,
CMD16, 0x0007, DATA16, 0x0021,
CMD16, 0x0012, DATA16, 0x0137,
SLEEP, 0x0000,
CMD16, 0x0007, DATA16, 0x0021,
CMD16, 0x0012, DATA16, 0x1137,
SLEEP, 0x0000,
CMD16, 0x0007, DATA16, 0x0233,
};
unsigned short lcd_init_sequence_1[] = {
CMD16, 0x0011, DATA16, 0x0000,
CMD16, 0x0029, DATA16, 0x0000,
SLEEP, 0x0000,
};
#endif /* HAVE_LCD_SLEEP */
static inline void s5l_lcd_write_cmd_data(int cmd, int data)
{
while (LCD_STATUS & 0x10);
LCD_WCMD = cmd;
while (LCD_STATUS & 0x10);
LCD_WDATA = data;
}
static inline void s5l_lcd_write_cmd(unsigned short cmd)
{
while (LCD_STATUS & 0x10);
LCD_WCMD = cmd;
}
static inline void s5l_lcd_write_data(unsigned short data)
{
while (LCD_STATUS & 0x10);
LCD_WDATA = data;
}
/*** hardware configuration ***/
int lcd_default_contrast(void)
{
return 0x1f;
}
void lcd_set_contrast(int val)
{
(void)val;
}
void lcd_set_invert_display(bool yesno)
{
(void)yesno;
}
/* turn the display upside down (call lcd_update() afterwards) */
void lcd_set_flip(bool yesno)
{
/* TODO: flip mode isn't working. The commands in the else part of
this function are how the original firmware inits the LCD */
if (yesno)
{
xoffset = 132 - LCD_WIDTH; /* 132 colums minus the 128 we have */
}
else
{
xoffset = 0;
}
}
bool lcd_active(void)
{
return lcd_ispowered;
}
#ifdef HAVE_LCD_SLEEP
void lcd_wakeup(void)
{
unsigned short *lcd_init_sequence;
unsigned int lcd_init_sequence_length;
PWRCONEXT &= ~0x80;
PCON13 &= ~0xf; /* Set pin 0 to input */
PCON14 &= ~0xf0; /* Set pin 1 to input */
pmu_write(0x2b, 1);
if (lcd_type == 0)
{
/* reset the lcd chip */
LCD_RST_TIME = 0x7FFF;
LCD_DRV_RST = 0;
sleep(0);
LCD_DRV_RST = 1;
sleep(HZ / 100);
lcd_init_sequence = lcd_init_sequence_0;
lcd_init_sequence_length = (sizeof(lcd_init_sequence_0) - 1)/sizeof(unsigned short);
}
else
{
lcd_init_sequence = lcd_init_sequence_1;
lcd_init_sequence_length = (sizeof(lcd_init_sequence_1) - 1)/sizeof(unsigned short);
}
for(unsigned int i=0;i<lcd_init_sequence_length;i+=2)
{
switch(lcd_init_sequence[i])
{
case CMD16:
s5l_lcd_write_cmd(lcd_init_sequence[i+1]);
break;
case DATA16:
s5l_lcd_write_data(lcd_init_sequence[i+1]);
break;
case SLEEP:
sleep(lcd_init_sequence[i+1]);
break;
default:
break;
}
}
lcd_ispowered = true;
send_event(LCD_EVENT_ACTIVATION, NULL);
}
void lcd_awake(void)
{
if(!lcd_active()) lcd_wakeup();
}
#endif
void lcd_shutdown(void)
{
pmu_write(0x2b, 0); /* Kill the backlight, instantly. */
pmu_write(0x29, 0);
if (lcd_type == 0)
{
s5l_lcd_write_cmd_data(R_DISPLAY_CONTROL_1, 0x0232);
s5l_lcd_write_cmd_data(R_POWER_CONTROL_3 , 0x1137);
s5l_lcd_write_cmd_data(R_DISPLAY_CONTROL_1, 0x0201);
s5l_lcd_write_cmd_data(R_POWER_CONTROL_3 , 0x0137);
s5l_lcd_write_cmd_data(R_DISPLAY_CONTROL_1, 0x0200);
s5l_lcd_write_cmd_data(R_POWER_CONTROL_1 , 0x0680);
s5l_lcd_write_cmd_data(R_POWER_CONTROL_2 , 0x0160);
s5l_lcd_write_cmd_data(R_POWER_CONTROL_3 , 0x0127);
s5l_lcd_write_cmd_data(R_POWER_CONTROL_1 , 0x0600);
}
else
{
s5l_lcd_write_cmd(R_DISPLAY_OFF);
s5l_lcd_write_data(0);
s5l_lcd_write_data(0);
s5l_lcd_write_cmd(R_SLEEP_IN);
s5l_lcd_write_data(0);
s5l_lcd_write_data(0);
}
PWRCONEXT |= 0x80;
lcd_ispowered = false;
}
void lcd_sleep(void)
{
lcd_shutdown();
}
/* LCD init */
void lcd_init_device(void)
{
/* Detect lcd type */
PCON13 &= ~0xf; /* Set pin 0 to input */
PCON14 &= ~0xf0; /* Set pin 1 to input */
if (((PDAT13 & 1) == 0) && ((PDAT14 & 2) == 2)) {
lcd_type = 0; /* Similar to ILI9320 - aka "type 2" */
LCD_CON |= 0x180; /* use 16 bit bus width, big endian */
} else {
lcd_type = 1; /* Similar to LDS176 - aka "type 7" */
LCD_CON |= 0x100; /* use 16 bit bus width, little endian */
}
LCD_PHTIME = 0x22; /* Set Phase Time reg (relevant for LCD IF speed) */
lcd_ispowered = true;
}
/*** Update functions ***/
static inline void lcd_write_pixel(fb_data pixel)
{
LCD_WDATA = pixel;
}
/* Update the display.
This must be called after all other LCD functions that change the display. */
void lcd_update(void) ICODE_ATTR;
void lcd_update(void)
{
lcd_update_rect(0, 0, LCD_WIDTH, LCD_HEIGHT);
}
/* Line write helper function. */
extern void lcd_write_line(const fb_data *addr,
int pixelcount,
const unsigned int lcd_base_addr);
/* Update a fraction of the display. */
void lcd_update_rect(int, int, int, int) ICODE_ATTR;
void lcd_update_rect(int x, int y, int width, int height)
{
int y0, x0, y1, x1;
fb_data* p;
/* Both x and width need to be preprocessed due to asm optimizations */
x = x & ~1; /* ensure x is even */
width = (width + 3) & ~3; /* ensure width is a multiple of 4 */
x0 = x; /* start horiz */
y0 = y; /* start vert */
x1 = (x + width) - 1; /* max horiz */
y1 = (y + height) - 1; /* max vert */
if (lcd_type==0) {
s5l_lcd_write_cmd_data(R_HORIZ_ADDR_START_POS, x0);
s5l_lcd_write_cmd_data(R_HORIZ_ADDR_END_POS, x1);
s5l_lcd_write_cmd_data(R_VERT_ADDR_START_POS, y0);
s5l_lcd_write_cmd_data(R_VERT_ADDR_END_POS, y1);
s5l_lcd_write_cmd_data(R_HORIZ_GRAM_ADDR_SET, (x1 << 8) | x0);
s5l_lcd_write_cmd_data(R_VERT_GRAM_ADDR_SET, (y1 << 8) | y0);
s5l_lcd_write_cmd(0);
s5l_lcd_write_cmd(R_WRITE_DATA_TO_GRAM);
} else {
s5l_lcd_write_cmd(R_COLUMN_ADDR_SET);
s5l_lcd_write_data(x0); /* Start column */
s5l_lcd_write_data(x1); /* End column */
s5l_lcd_write_cmd(R_ROW_ADDR_SET);
s5l_lcd_write_data(y0); /* Start row */
s5l_lcd_write_data(y1); /* End row */
s5l_lcd_write_cmd(R_MEMORY_WRITE);
}
/* Copy display bitmap to hardware */
p = &lcd_framebuffer[y0][x0];
if (LCD_WIDTH == width) {
/* Write all lines at once */
lcd_write_line(p, height*LCD_WIDTH, LCD_BASE);
} else {
y1 = height;
do {
/* Write a single line */
lcd_write_line(p, width, LCD_BASE);
p += LCD_WIDTH;
} while (--y1 > 0 );
}
}
/* Line write helper function for lcd_yuv_blit. Writes two lines of yuv420. */
extern void lcd_write_yuv420_lines(unsigned char const * const src[3],
const unsigned int lcd_baseadress,
int width,
int stride);
/* Blit a YUV bitmap directly to the LCD */
void lcd_blit_yuv(unsigned char * const src[3],
int src_x, int src_y, int stride,
int x, int y, int width, int height)
{
unsigned int z, y0, x0, y1, x1;;
unsigned char const * yuv_src[3];
width = (width + 1) & ~1; /* ensure width is even */
x0 = x; /* start horiz */
y0 = y; /* start vert */
x1 = (x + width) - 1; /* max horiz */
y1 = (y + height) - 1; /* max vert */
if (lcd_type==0) {
s5l_lcd_write_cmd_data(R_HORIZ_ADDR_START_POS, x0);
s5l_lcd_write_cmd_data(R_HORIZ_ADDR_END_POS, x1);
s5l_lcd_write_cmd_data(R_VERT_ADDR_START_POS, y0);
s5l_lcd_write_cmd_data(R_VERT_ADDR_END_POS, y1);
s5l_lcd_write_cmd_data(R_HORIZ_GRAM_ADDR_SET, (x1 << 8) | x0);
s5l_lcd_write_cmd_data(R_VERT_GRAM_ADDR_SET, (y1 << 8) | y0);
s5l_lcd_write_cmd(0);
s5l_lcd_write_cmd(R_WRITE_DATA_TO_GRAM);
} else {
s5l_lcd_write_cmd(R_COLUMN_ADDR_SET);
s5l_lcd_write_data(x0); /* Start column */
s5l_lcd_write_data(x1); /* End column */
s5l_lcd_write_cmd(R_ROW_ADDR_SET);
s5l_lcd_write_data(y0); /* Start row */
s5l_lcd_write_data(y1); /* End row */
s5l_lcd_write_cmd(R_MEMORY_WRITE);
}
z = stride * src_y;
yuv_src[0] = src[0] + z + src_x;
yuv_src[1] = src[1] + (z >> 2) + (src_x >> 1);
yuv_src[2] = src[2] + (yuv_src[1] - src[1]);
height >>= 1;
do {
lcd_write_yuv420_lines(yuv_src, LCD_BASE, width, stride);
yuv_src[0] += stride << 1;
yuv_src[1] += stride >> 1; /* Skip down one chroma line */
yuv_src[2] += stride >> 1;
} while (--height > 0);
}