rockbox/firmware/export/storage.h

312 lines
11 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2002 by Alan Korr
* Copyright (C) 2008 by Frank Gevaerts
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#ifndef __STORAGE_H__
#define __STORAGE_H__
#include <stdbool.h>
#include "config.h" /* for HAVE_MULTIDRIVE or not */
#include "mv.h"
Unify storage threads into one * Editing a bunch of drivers' thread routines in order to implement a new feature is tedious. * No matter the number of storage drivers, they share one thread. No extra threads needed for CONFIG_STORAGE_MULTI. * Each has an event callback called by the storage thread. * A default callback is provided to fake sleeping in order to trigger idle callbacks. It could also do other default processing. Changes to it will be part of driver code without editing each one. * Drivers may sleep and wake as they please as long as they give a low pulse on their storage bit to ask to go into sleep mode. Idle callback is called on its behalf and driver immediately put into sleep mode. * Drivers may indicate they are to continue receiving events in USB mode, otherwise they receve nothing until disconnect (they do receive SYS_USB_DISCONNECTED no matter what). * Rework a few things to keep the callback implementation sane and maintainable. ata.c was dreadful with all those bools; make it a state machine and easier to follow. Remove last_user_activity; it has no purpose that isn't served by keeping the disk active through last_disk_activity instead. * Even-out stack sizes partly because of a lack of a decent place to define them by driver or SoC or whatever; it doesn't seem too critical to do that anyway. Many are simply too large while at least one isn't really adequate. They may be individually overridden if necessary (figure out where). The thread uses the greatest size demanded. Newer file code is much more frugal with stack space. I barely see use crack 50% after idle callbacks (usually mid-40s). Card insert/eject doesn't demand much. * No forcing of idle callbacks. If it isn't necessary for one or more non-disk storage types, it really isn't any more necessary for disk storage. Besides, it makes the whole thing easier to implement. Change-Id: Id30c284d82a8af66e47f2cfe104c52cbd8aa7215
2017-03-15 05:51:54 +00:00
#include <kernel.h>
#if (CONFIG_STORAGE & STORAGE_HOSTFS) || defined(SIMULATOR)
#define HAVE_HOSTFS
#endif
#if (CONFIG_STORAGE & STORAGE_SD)
#include "sd.h"
#endif
#if (CONFIG_STORAGE & STORAGE_MMC)
#include "mmc.h"
#endif
#if (CONFIG_STORAGE & STORAGE_ATA)
#include "ata.h"
#endif
#if (CONFIG_STORAGE & STORAGE_NAND)
#include "nand.h"
#endif
#if (CONFIG_STORAGE & STORAGE_RAMDISK)
#include "ramdisk.h"
#endif
Unify storage threads into one * Editing a bunch of drivers' thread routines in order to implement a new feature is tedious. * No matter the number of storage drivers, they share one thread. No extra threads needed for CONFIG_STORAGE_MULTI. * Each has an event callback called by the storage thread. * A default callback is provided to fake sleeping in order to trigger idle callbacks. It could also do other default processing. Changes to it will be part of driver code without editing each one. * Drivers may sleep and wake as they please as long as they give a low pulse on their storage bit to ask to go into sleep mode. Idle callback is called on its behalf and driver immediately put into sleep mode. * Drivers may indicate they are to continue receiving events in USB mode, otherwise they receve nothing until disconnect (they do receive SYS_USB_DISCONNECTED no matter what). * Rework a few things to keep the callback implementation sane and maintainable. ata.c was dreadful with all those bools; make it a state machine and easier to follow. Remove last_user_activity; it has no purpose that isn't served by keeping the disk active through last_disk_activity instead. * Even-out stack sizes partly because of a lack of a decent place to define them by driver or SoC or whatever; it doesn't seem too critical to do that anyway. Many are simply too large while at least one isn't really adequate. They may be individually overridden if necessary (figure out where). The thread uses the greatest size demanded. Newer file code is much more frugal with stack space. I barely see use crack 50% after idle callbacks (usually mid-40s). Card insert/eject doesn't demand much. * No forcing of idle callbacks. If it isn't necessary for one or more non-disk storage types, it really isn't any more necessary for disk storage. Besides, it makes the whole thing easier to implement. Change-Id: Id30c284d82a8af66e47f2cfe104c52cbd8aa7215
2017-03-15 05:51:54 +00:00
enum
{
Q_STORAGE_TICK = 1,
Q_STORAGE_SLEEP,
Q_STORAGE_SLEEPNOW,
#ifdef STORAGE_CLOSE
Q_STORAGE_CLOSE,
#endif
};
#define STG_EVENT_ASSERT_ACTIVE(type) \
({ intptr_t __data = (data); \
*((unsigned int *)(__data)) |= (type); })
static FORCE_INLINE int storage_event_default_handler(long id,
intptr_t data,
long last_activity,
unsigned int type)
{
/* fake sleep in order to trigger storage idle sequence */
static long slept_at = -1;
if (id == Q_STORAGE_TICK) {
if (last_activity == slept_at ||
TIME_BEFORE(current_tick, last_activity + 3*HZ)) {
STG_EVENT_ASSERT_ACTIVE(type);
}
}
else if (id == Q_STORAGE_SLEEPNOW) {
slept_at = last_activity;
}
return 0;
}
#if (CONFIG_STORAGE & STORAGE_SD)
int sd_event(long id, intptr_t data);
#endif
#if (CONFIG_STORAGE & STORAGE_MMC)
int mmc_event(long id, intptr_t data);
#endif
#if (CONFIG_STORAGE & STORAGE_ATA)
int ata_event(long id, intptr_t data);
#endif
#if (CONFIG_STORAGE & STORAGE_NAND)
int nand_event(long id, intptr_t data);
#endif
#if (CONFIG_STORAGE & STORAGE_RAMDISK)
int ramdisk_event(long id, intptr_t data);
#endif
struct storage_info
{
unsigned int sector_size;
unsigned int num_sectors;
char *vendor;
char *product;
char *revision;
};
Unify storage threads into one * Editing a bunch of drivers' thread routines in order to implement a new feature is tedious. * No matter the number of storage drivers, they share one thread. No extra threads needed for CONFIG_STORAGE_MULTI. * Each has an event callback called by the storage thread. * A default callback is provided to fake sleeping in order to trigger idle callbacks. It could also do other default processing. Changes to it will be part of driver code without editing each one. * Drivers may sleep and wake as they please as long as they give a low pulse on their storage bit to ask to go into sleep mode. Idle callback is called on its behalf and driver immediately put into sleep mode. * Drivers may indicate they are to continue receiving events in USB mode, otherwise they receve nothing until disconnect (they do receive SYS_USB_DISCONNECTED no matter what). * Rework a few things to keep the callback implementation sane and maintainable. ata.c was dreadful with all those bools; make it a state machine and easier to follow. Remove last_user_activity; it has no purpose that isn't served by keeping the disk active through last_disk_activity instead. * Even-out stack sizes partly because of a lack of a decent place to define them by driver or SoC or whatever; it doesn't seem too critical to do that anyway. Many are simply too large while at least one isn't really adequate. They may be individually overridden if necessary (figure out where). The thread uses the greatest size demanded. Newer file code is much more frugal with stack space. I barely see use crack 50% after idle callbacks (usually mid-40s). Card insert/eject doesn't demand much. * No forcing of idle callbacks. If it isn't necessary for one or more non-disk storage types, it really isn't any more necessary for disk storage. Besides, it makes the whole thing easier to implement. Change-Id: Id30c284d82a8af66e47f2cfe104c52cbd8aa7215
2017-03-15 05:51:54 +00:00
int storage_init(void) STORAGE_INIT_ATTR;
void storage_close(void);
#ifdef HAVE_HOSTFS
#include "hostfs.h"
/* stubs for the plugin api */
static inline void stub_storage_sleep(void) {}
static inline void stub_storage_spin(void) {}
static inline void stub_storage_spindown(int timeout) { (void)timeout; }
Unify storage threads into one * Editing a bunch of drivers' thread routines in order to implement a new feature is tedious. * No matter the number of storage drivers, they share one thread. No extra threads needed for CONFIG_STORAGE_MULTI. * Each has an event callback called by the storage thread. * A default callback is provided to fake sleeping in order to trigger idle callbacks. It could also do other default processing. Changes to it will be part of driver code without editing each one. * Drivers may sleep and wake as they please as long as they give a low pulse on their storage bit to ask to go into sleep mode. Idle callback is called on its behalf and driver immediately put into sleep mode. * Drivers may indicate they are to continue receiving events in USB mode, otherwise they receve nothing until disconnect (they do receive SYS_USB_DISCONNECTED no matter what). * Rework a few things to keep the callback implementation sane and maintainable. ata.c was dreadful with all those bools; make it a state machine and easier to follow. Remove last_user_activity; it has no purpose that isn't served by keeping the disk active through last_disk_activity instead. * Even-out stack sizes partly because of a lack of a decent place to define them by driver or SoC or whatever; it doesn't seem too critical to do that anyway. Many are simply too large while at least one isn't really adequate. They may be individually overridden if necessary (figure out where). The thread uses the greatest size demanded. Newer file code is much more frugal with stack space. I barely see use crack 50% after idle callbacks (usually mid-40s). Card insert/eject doesn't demand much. * No forcing of idle callbacks. If it isn't necessary for one or more non-disk storage types, it really isn't any more necessary for disk storage. Besides, it makes the whole thing easier to implement. Change-Id: Id30c284d82a8af66e47f2cfe104c52cbd8aa7215
2017-03-15 05:51:54 +00:00
static inline int stub_storage_event(long id, intptr_t data)
{ return 0; (void)id; (void)data; }
#else /* ndef HAVE_HOSTFS */
#if (CONFIG_STORAGE & STORAGE_ATA)
void storage_sleep(void);
#else
static inline void storage_sleep(void) {}
#endif
Unify storage threads into one * Editing a bunch of drivers' thread routines in order to implement a new feature is tedious. * No matter the number of storage drivers, they share one thread. No extra threads needed for CONFIG_STORAGE_MULTI. * Each has an event callback called by the storage thread. * A default callback is provided to fake sleeping in order to trigger idle callbacks. It could also do other default processing. Changes to it will be part of driver code without editing each one. * Drivers may sleep and wake as they please as long as they give a low pulse on their storage bit to ask to go into sleep mode. Idle callback is called on its behalf and driver immediately put into sleep mode. * Drivers may indicate they are to continue receiving events in USB mode, otherwise they receve nothing until disconnect (they do receive SYS_USB_DISCONNECTED no matter what). * Rework a few things to keep the callback implementation sane and maintainable. ata.c was dreadful with all those bools; make it a state machine and easier to follow. Remove last_user_activity; it has no purpose that isn't served by keeping the disk active through last_disk_activity instead. * Even-out stack sizes partly because of a lack of a decent place to define them by driver or SoC or whatever; it doesn't seem too critical to do that anyway. Many are simply too large while at least one isn't really adequate. They may be individually overridden if necessary (figure out where). The thread uses the greatest size demanded. Newer file code is much more frugal with stack space. I barely see use crack 50% after idle callbacks (usually mid-40s). Card insert/eject doesn't demand much. * No forcing of idle callbacks. If it isn't necessary for one or more non-disk storage types, it really isn't any more necessary for disk storage. Besides, it makes the whole thing easier to implement. Change-Id: Id30c284d82a8af66e47f2cfe104c52cbd8aa7215
2017-03-15 05:51:54 +00:00
#endif /* HAVE_HOSTFS */
#if !defined(CONFIG_STORAGE_MULTI) || defined(HAVE_HOSTFS)
/* storage_spindown, storage_sleep and storage_spin are passed as
* pointers, which doesn't work with argument-macros.
*/
#define storage_num_drives() NUM_DRIVES
#if defined(HAVE_HOSTFS)
#define STORAGE_FUNCTION(NAME) (stub_## NAME)
Unify storage threads into one * Editing a bunch of drivers' thread routines in order to implement a new feature is tedious. * No matter the number of storage drivers, they share one thread. No extra threads needed for CONFIG_STORAGE_MULTI. * Each has an event callback called by the storage thread. * A default callback is provided to fake sleeping in order to trigger idle callbacks. It could also do other default processing. Changes to it will be part of driver code without editing each one. * Drivers may sleep and wake as they please as long as they give a low pulse on their storage bit to ask to go into sleep mode. Idle callback is called on its behalf and driver immediately put into sleep mode. * Drivers may indicate they are to continue receiving events in USB mode, otherwise they receve nothing until disconnect (they do receive SYS_USB_DISCONNECTED no matter what). * Rework a few things to keep the callback implementation sane and maintainable. ata.c was dreadful with all those bools; make it a state machine and easier to follow. Remove last_user_activity; it has no purpose that isn't served by keeping the disk active through last_disk_activity instead. * Even-out stack sizes partly because of a lack of a decent place to define them by driver or SoC or whatever; it doesn't seem too critical to do that anyway. Many are simply too large while at least one isn't really adequate. They may be individually overridden if necessary (figure out where). The thread uses the greatest size demanded. Newer file code is much more frugal with stack space. I barely see use crack 50% after idle callbacks (usually mid-40s). Card insert/eject doesn't demand much. * No forcing of idle callbacks. If it isn't necessary for one or more non-disk storage types, it really isn't any more necessary for disk storage. Besides, it makes the whole thing easier to implement. Change-Id: Id30c284d82a8af66e47f2cfe104c52cbd8aa7215
2017-03-15 05:51:54 +00:00
#define storage_event stub_storage_event
#define storage_spindown stub_storage_spindown
#define storage_sleep stub_storage_sleep
#define storage_spin stub_storage_spin
#define storage_enable(on)
#define storage_sleepnow()
#define storage_disk_is_active() 0
#define storage_soft_reset()
#define storage_init() hostfs_init()
#ifdef HAVE_STORAGE_FLUSH
#define storage_flush() hostfs_flush()
#endif
#define storage_last_disk_activity() (-1)
#define storage_spinup_time() 0
#define storage_get_identify() (NULL) /* not actually called anywher */
#ifdef STORAGE_GET_INFO
#error storage_get_info not implemented
#endif
#ifdef HAVE_HOTSWAP
#define storage_removable(drive) hostfs_removable(IF_MD(drive))
#define storage_present(drive) hostfs_present(IF_MD(drive))
#endif
Rewrite filesystem code (WIP) This patch redoes the filesystem code from the FAT driver up to the clipboard code in onplay.c. Not every aspect of this is finished therefore it is still "WIP". I don't wish to do too much at once (haha!). What is left to do is get dircache back in the sim and find an implementation for the dircache indicies in the tagcache and playlist code or do something else that has the same benefit. Leaving these out for now does not make anything unusable. All the basics are done. Phone app code should probably get vetted (and app path handling just plain rewritten as environment expansions); the SDL app and Android run well. Main things addressed: 1) Thread safety: There is none right now in the trunk code. Most of what currently works is luck when multiple threads are involved or multiple descriptors to the same file are open. 2) POSIX compliance: Many of the functions behave nothing like their counterparts on a host system. This leads to inconsistent code or very different behavior from native to hosted. One huge offender was rename(). Going point by point would fill a book. 3) Actual running RAM usage: Many targets will use less RAM and less stack space (some more RAM because I upped the number of cache buffers for large memory). There's very little memory lying fallow in rarely-used areas (see 'Key core changes' below). Also, all targets may open the same number of directory streams whereas before those with less than 8MB RAM were limited to 8, not 12 implying those targets will save slightly less. 4) Performance: The test_disk plugin shows markedly improved performance, particularly in the area of (uncached) directory scanning, due partly to more optimal directory reading and to a better sector cache algorithm. Uncached times tend to be better while there is a bit of a slowdown in dircache due to it being a bit heavier of an implementation. It's not noticeable by a human as far as I can say. Key core changes: 1) Files and directories share core code and data structures. 2) The filesystem code knows which descriptors refer to same file. This ensures that changes from one stream are appropriately reflected in every open descriptor for that file (fileobj_mgr.c). 3) File and directory cache buffers are borrowed from the main sector cache. This means that when they are not in use by a file, they are not wasted, but used for the cache. Most of the time, only a few of them are needed. It also means that adding more file and directory handles is less expensive. All one must do in ensure a large enough cache to borrow from. 4) Relative path components are supported and the namespace is unified. It does not support full relative paths to an implied current directory; what is does support is use of "." and "..". Adding the former would not be very difficult. The namespace is unified in the sense that volumes may be specified several times along with relative parts, e.g.: "/<0>/foo/../../<1>/bar" :<=> "/<1>/bar". 5) Stack usage is down due to sharing of data, static allocation and less duplication of strings on the stack. This requires more serialization than I would like but since the number of threads is limited to a low number, the tradoff in favor of the stack seems reasonable. 6) Separates and heirarchicalizes (sic) the SIM and APP filesystem code. SIM path and volume handling is just like the target. Some aspects of the APP file code get more straightforward (e.g. no path hashing is needed). Dircache: Deserves its own section. Dircache is new but pays homage to the old. The old one was not compatible and so it, since it got redone, does all the stuff it always should have done such as: 1) It may be update and used at any time during the build process. No longer has one to wait for it to finish building to do basic file management (create, remove, rename, etc.). 2) It does not need to be either fully scanned or completely disabled; it can be incomplete (i.e. overfilled, missing paths), still be of benefit and be correct. 3) Handles mounting and dismounting of individual volumes which means a full rebuild is not needed just because you pop a new SD card in the slot. Now, because it reuses its freed entry data, may rebuild only that volume. 4) Much more fundamental to the file code. When it is built, it is the keeper of the master file list whether enabled or not ("disabled" is just a state of the cache). Its must always to ready to be started and bind all streams opened prior to being enabled. 5) Maintains any short filenames in OEM format which means that it does not need to be rebuilt when changing the default codepage. Miscellaneous Compatibility: 1) Update any other code that would otherwise not work such as the hotswap mounting code in various card drivers. 2) File management: Clipboard needed updating because of the behavioral changes. Still needs a little more work on some finer points. 3) Remove now-obsolete functionality such as the mutex's "no preempt" flag (which was only for the prior FAT driver). 4) struct dirinfo uses time_t rather than raw FAT directory entry time fields. I plan to follow up on genericizing everything there (i.e. no FAT attributes). 5) unicode.c needed some redoing so that the file code does not try try to load codepages during a scan, which is actually a problem with the current code. The default codepage, if any is required, is now kept in RAM separarately (bufalloced) from codepages specified to iso_decode() (which must not be bufalloced because the conversion may be done by playback threads). Brings with it some additional reusable core code: 1) Revised file functions: Reusable code that does things such as safe path concatenation and parsing without buffer limitations or data duplication. Variants that copy or alter the input path may be based off these. To do: 1) Put dircache functionality back in the sim. Treating it internally as a different kind of file system seems the best approach at this time. 2) Restore use of dircache indexes in the playlist and database or something effectively the same. Since the cache doesn't have to be complete in order to be used, not getting a hit on the cache doesn't unambiguously say if the path exists or not. Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8 Reviewed-on: http://gerrit.rockbox.org/566 Reviewed-by: Michael Sevakis <jethead71@rockbox.org> Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
#define storage_driver_type(drive) hostfs_driver_type(IF_MV(drive))
#elif (CONFIG_STORAGE & STORAGE_ATA)
#define STORAGE_FUNCTION(NAME) (ata_## NAME)
#define storage_spindown ata_spindown
#define storage_spin ata_spin
#define storage_enable(on) ata_enable(on)
#define storage_sleepnow() ata_sleepnow()
#define storage_disk_is_active() ata_disk_is_active()
#define storage_soft_reset() ata_soft_reset()
#ifdef HAVE_STORAGE_FLUSH
#define storage_flush() (void)0
#endif
#define storage_last_disk_activity() ata_last_disk_activity()
#define storage_spinup_time() ata_spinup_time()
#define storage_get_identify() ata_get_identify()
#ifdef STORAGE_GET_INFO
#define storage_get_info(drive, info) ata_get_info(IF_MD(drive,) info)
#endif
#ifdef HAVE_HOTSWAP
#define storage_removable(drive) ata_removable(IF_MD(drive))
#define storage_present(drive) ata_present(IF_MD(drive))
#endif
Rewrite filesystem code (WIP) This patch redoes the filesystem code from the FAT driver up to the clipboard code in onplay.c. Not every aspect of this is finished therefore it is still "WIP". I don't wish to do too much at once (haha!). What is left to do is get dircache back in the sim and find an implementation for the dircache indicies in the tagcache and playlist code or do something else that has the same benefit. Leaving these out for now does not make anything unusable. All the basics are done. Phone app code should probably get vetted (and app path handling just plain rewritten as environment expansions); the SDL app and Android run well. Main things addressed: 1) Thread safety: There is none right now in the trunk code. Most of what currently works is luck when multiple threads are involved or multiple descriptors to the same file are open. 2) POSIX compliance: Many of the functions behave nothing like their counterparts on a host system. This leads to inconsistent code or very different behavior from native to hosted. One huge offender was rename(). Going point by point would fill a book. 3) Actual running RAM usage: Many targets will use less RAM and less stack space (some more RAM because I upped the number of cache buffers for large memory). There's very little memory lying fallow in rarely-used areas (see 'Key core changes' below). Also, all targets may open the same number of directory streams whereas before those with less than 8MB RAM were limited to 8, not 12 implying those targets will save slightly less. 4) Performance: The test_disk plugin shows markedly improved performance, particularly in the area of (uncached) directory scanning, due partly to more optimal directory reading and to a better sector cache algorithm. Uncached times tend to be better while there is a bit of a slowdown in dircache due to it being a bit heavier of an implementation. It's not noticeable by a human as far as I can say. Key core changes: 1) Files and directories share core code and data structures. 2) The filesystem code knows which descriptors refer to same file. This ensures that changes from one stream are appropriately reflected in every open descriptor for that file (fileobj_mgr.c). 3) File and directory cache buffers are borrowed from the main sector cache. This means that when they are not in use by a file, they are not wasted, but used for the cache. Most of the time, only a few of them are needed. It also means that adding more file and directory handles is less expensive. All one must do in ensure a large enough cache to borrow from. 4) Relative path components are supported and the namespace is unified. It does not support full relative paths to an implied current directory; what is does support is use of "." and "..". Adding the former would not be very difficult. The namespace is unified in the sense that volumes may be specified several times along with relative parts, e.g.: "/<0>/foo/../../<1>/bar" :<=> "/<1>/bar". 5) Stack usage is down due to sharing of data, static allocation and less duplication of strings on the stack. This requires more serialization than I would like but since the number of threads is limited to a low number, the tradoff in favor of the stack seems reasonable. 6) Separates and heirarchicalizes (sic) the SIM and APP filesystem code. SIM path and volume handling is just like the target. Some aspects of the APP file code get more straightforward (e.g. no path hashing is needed). Dircache: Deserves its own section. Dircache is new but pays homage to the old. The old one was not compatible and so it, since it got redone, does all the stuff it always should have done such as: 1) It may be update and used at any time during the build process. No longer has one to wait for it to finish building to do basic file management (create, remove, rename, etc.). 2) It does not need to be either fully scanned or completely disabled; it can be incomplete (i.e. overfilled, missing paths), still be of benefit and be correct. 3) Handles mounting and dismounting of individual volumes which means a full rebuild is not needed just because you pop a new SD card in the slot. Now, because it reuses its freed entry data, may rebuild only that volume. 4) Much more fundamental to the file code. When it is built, it is the keeper of the master file list whether enabled or not ("disabled" is just a state of the cache). Its must always to ready to be started and bind all streams opened prior to being enabled. 5) Maintains any short filenames in OEM format which means that it does not need to be rebuilt when changing the default codepage. Miscellaneous Compatibility: 1) Update any other code that would otherwise not work such as the hotswap mounting code in various card drivers. 2) File management: Clipboard needed updating because of the behavioral changes. Still needs a little more work on some finer points. 3) Remove now-obsolete functionality such as the mutex's "no preempt" flag (which was only for the prior FAT driver). 4) struct dirinfo uses time_t rather than raw FAT directory entry time fields. I plan to follow up on genericizing everything there (i.e. no FAT attributes). 5) unicode.c needed some redoing so that the file code does not try try to load codepages during a scan, which is actually a problem with the current code. The default codepage, if any is required, is now kept in RAM separarately (bufalloced) from codepages specified to iso_decode() (which must not be bufalloced because the conversion may be done by playback threads). Brings with it some additional reusable core code: 1) Revised file functions: Reusable code that does things such as safe path concatenation and parsing without buffer limitations or data duplication. Variants that copy or alter the input path may be based off these. To do: 1) Put dircache functionality back in the sim. Treating it internally as a different kind of file system seems the best approach at this time. 2) Restore use of dircache indexes in the playlist and database or something effectively the same. Since the cache doesn't have to be complete in order to be used, not getting a hit on the cache doesn't unambiguously say if the path exists or not. Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8 Reviewed-on: http://gerrit.rockbox.org/566 Reviewed-by: Michael Sevakis <jethead71@rockbox.org> Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
#define storage_driver_type(drive) (STORAGE_ATA_NUM)
#elif (CONFIG_STORAGE & STORAGE_SD)
#define STORAGE_FUNCTION(NAME) (sd_## NAME)
#define storage_spindown sd_spindown
#define storage_spin sd_spin
#define storage_enable(on) sd_enable(on)
#define storage_sleepnow() do {} while (0)
#define storage_disk_is_active() 0
#define storage_soft_reset() (void)0
#ifdef HAVE_STORAGE_FLUSH
#define storage_flush() (void)0
#endif
#define storage_last_disk_activity() sd_last_disk_activity()
#define storage_spinup_time() 0
#define storage_get_identify() sd_get_identify()
#ifdef STORAGE_GET_INFO
#define storage_get_info(drive, info) sd_get_info(IF_MD(drive,) info)
#endif
#ifdef HAVE_HOTSWAP
#define storage_removable(drive) sd_removable(IF_MD(drive))
#define storage_present(drive) sd_present(IF_MD(drive))
#endif
Rewrite filesystem code (WIP) This patch redoes the filesystem code from the FAT driver up to the clipboard code in onplay.c. Not every aspect of this is finished therefore it is still "WIP". I don't wish to do too much at once (haha!). What is left to do is get dircache back in the sim and find an implementation for the dircache indicies in the tagcache and playlist code or do something else that has the same benefit. Leaving these out for now does not make anything unusable. All the basics are done. Phone app code should probably get vetted (and app path handling just plain rewritten as environment expansions); the SDL app and Android run well. Main things addressed: 1) Thread safety: There is none right now in the trunk code. Most of what currently works is luck when multiple threads are involved or multiple descriptors to the same file are open. 2) POSIX compliance: Many of the functions behave nothing like their counterparts on a host system. This leads to inconsistent code or very different behavior from native to hosted. One huge offender was rename(). Going point by point would fill a book. 3) Actual running RAM usage: Many targets will use less RAM and less stack space (some more RAM because I upped the number of cache buffers for large memory). There's very little memory lying fallow in rarely-used areas (see 'Key core changes' below). Also, all targets may open the same number of directory streams whereas before those with less than 8MB RAM were limited to 8, not 12 implying those targets will save slightly less. 4) Performance: The test_disk plugin shows markedly improved performance, particularly in the area of (uncached) directory scanning, due partly to more optimal directory reading and to a better sector cache algorithm. Uncached times tend to be better while there is a bit of a slowdown in dircache due to it being a bit heavier of an implementation. It's not noticeable by a human as far as I can say. Key core changes: 1) Files and directories share core code and data structures. 2) The filesystem code knows which descriptors refer to same file. This ensures that changes from one stream are appropriately reflected in every open descriptor for that file (fileobj_mgr.c). 3) File and directory cache buffers are borrowed from the main sector cache. This means that when they are not in use by a file, they are not wasted, but used for the cache. Most of the time, only a few of them are needed. It also means that adding more file and directory handles is less expensive. All one must do in ensure a large enough cache to borrow from. 4) Relative path components are supported and the namespace is unified. It does not support full relative paths to an implied current directory; what is does support is use of "." and "..". Adding the former would not be very difficult. The namespace is unified in the sense that volumes may be specified several times along with relative parts, e.g.: "/<0>/foo/../../<1>/bar" :<=> "/<1>/bar". 5) Stack usage is down due to sharing of data, static allocation and less duplication of strings on the stack. This requires more serialization than I would like but since the number of threads is limited to a low number, the tradoff in favor of the stack seems reasonable. 6) Separates and heirarchicalizes (sic) the SIM and APP filesystem code. SIM path and volume handling is just like the target. Some aspects of the APP file code get more straightforward (e.g. no path hashing is needed). Dircache: Deserves its own section. Dircache is new but pays homage to the old. The old one was not compatible and so it, since it got redone, does all the stuff it always should have done such as: 1) It may be update and used at any time during the build process. No longer has one to wait for it to finish building to do basic file management (create, remove, rename, etc.). 2) It does not need to be either fully scanned or completely disabled; it can be incomplete (i.e. overfilled, missing paths), still be of benefit and be correct. 3) Handles mounting and dismounting of individual volumes which means a full rebuild is not needed just because you pop a new SD card in the slot. Now, because it reuses its freed entry data, may rebuild only that volume. 4) Much more fundamental to the file code. When it is built, it is the keeper of the master file list whether enabled or not ("disabled" is just a state of the cache). Its must always to ready to be started and bind all streams opened prior to being enabled. 5) Maintains any short filenames in OEM format which means that it does not need to be rebuilt when changing the default codepage. Miscellaneous Compatibility: 1) Update any other code that would otherwise not work such as the hotswap mounting code in various card drivers. 2) File management: Clipboard needed updating because of the behavioral changes. Still needs a little more work on some finer points. 3) Remove now-obsolete functionality such as the mutex's "no preempt" flag (which was only for the prior FAT driver). 4) struct dirinfo uses time_t rather than raw FAT directory entry time fields. I plan to follow up on genericizing everything there (i.e. no FAT attributes). 5) unicode.c needed some redoing so that the file code does not try try to load codepages during a scan, which is actually a problem with the current code. The default codepage, if any is required, is now kept in RAM separarately (bufalloced) from codepages specified to iso_decode() (which must not be bufalloced because the conversion may be done by playback threads). Brings with it some additional reusable core code: 1) Revised file functions: Reusable code that does things such as safe path concatenation and parsing without buffer limitations or data duplication. Variants that copy or alter the input path may be based off these. To do: 1) Put dircache functionality back in the sim. Treating it internally as a different kind of file system seems the best approach at this time. 2) Restore use of dircache indexes in the playlist and database or something effectively the same. Since the cache doesn't have to be complete in order to be used, not getting a hit on the cache doesn't unambiguously say if the path exists or not. Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8 Reviewed-on: http://gerrit.rockbox.org/566 Reviewed-by: Michael Sevakis <jethead71@rockbox.org> Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
#define storage_driver_type(drive) (STORAGE_SD_NUM)
#elif (CONFIG_STORAGE & STORAGE_MMC)
#define STORAGE_FUNCTION(NAME) (mmc_## NAME)
#define storage_spindown mmc_spindown
#define storage_spin mmc_spin
#define storage_enable(on) mmc_enable(on)
#define storage_sleepnow() mmc_sleepnow()
#define storage_disk_is_active() mmc_disk_is_active()
#define storage_soft_reset() (void)0
#ifdef HAVE_STORAGE_FLUSH
#define storage_flush() (void)0
#endif
#define storage_last_disk_activity() mmc_last_disk_activity()
#define storage_spinup_time() 0
#define storage_get_identify() mmc_get_identify()
#ifdef STORAGE_GET_INFO
#define storage_get_info(drive, info) mmc_get_info(IF_MD(drive,) info)
#endif
#ifdef HAVE_HOTSWAP
#define storage_removable(drive) mmc_removable(IF_MD(drive))
#define storage_present(drive) mmc_present(IF_MD(drive))
#endif
Rewrite filesystem code (WIP) This patch redoes the filesystem code from the FAT driver up to the clipboard code in onplay.c. Not every aspect of this is finished therefore it is still "WIP". I don't wish to do too much at once (haha!). What is left to do is get dircache back in the sim and find an implementation for the dircache indicies in the tagcache and playlist code or do something else that has the same benefit. Leaving these out for now does not make anything unusable. All the basics are done. Phone app code should probably get vetted (and app path handling just plain rewritten as environment expansions); the SDL app and Android run well. Main things addressed: 1) Thread safety: There is none right now in the trunk code. Most of what currently works is luck when multiple threads are involved or multiple descriptors to the same file are open. 2) POSIX compliance: Many of the functions behave nothing like their counterparts on a host system. This leads to inconsistent code or very different behavior from native to hosted. One huge offender was rename(). Going point by point would fill a book. 3) Actual running RAM usage: Many targets will use less RAM and less stack space (some more RAM because I upped the number of cache buffers for large memory). There's very little memory lying fallow in rarely-used areas (see 'Key core changes' below). Also, all targets may open the same number of directory streams whereas before those with less than 8MB RAM were limited to 8, not 12 implying those targets will save slightly less. 4) Performance: The test_disk plugin shows markedly improved performance, particularly in the area of (uncached) directory scanning, due partly to more optimal directory reading and to a better sector cache algorithm. Uncached times tend to be better while there is a bit of a slowdown in dircache due to it being a bit heavier of an implementation. It's not noticeable by a human as far as I can say. Key core changes: 1) Files and directories share core code and data structures. 2) The filesystem code knows which descriptors refer to same file. This ensures that changes from one stream are appropriately reflected in every open descriptor for that file (fileobj_mgr.c). 3) File and directory cache buffers are borrowed from the main sector cache. This means that when they are not in use by a file, they are not wasted, but used for the cache. Most of the time, only a few of them are needed. It also means that adding more file and directory handles is less expensive. All one must do in ensure a large enough cache to borrow from. 4) Relative path components are supported and the namespace is unified. It does not support full relative paths to an implied current directory; what is does support is use of "." and "..". Adding the former would not be very difficult. The namespace is unified in the sense that volumes may be specified several times along with relative parts, e.g.: "/<0>/foo/../../<1>/bar" :<=> "/<1>/bar". 5) Stack usage is down due to sharing of data, static allocation and less duplication of strings on the stack. This requires more serialization than I would like but since the number of threads is limited to a low number, the tradoff in favor of the stack seems reasonable. 6) Separates and heirarchicalizes (sic) the SIM and APP filesystem code. SIM path and volume handling is just like the target. Some aspects of the APP file code get more straightforward (e.g. no path hashing is needed). Dircache: Deserves its own section. Dircache is new but pays homage to the old. The old one was not compatible and so it, since it got redone, does all the stuff it always should have done such as: 1) It may be update and used at any time during the build process. No longer has one to wait for it to finish building to do basic file management (create, remove, rename, etc.). 2) It does not need to be either fully scanned or completely disabled; it can be incomplete (i.e. overfilled, missing paths), still be of benefit and be correct. 3) Handles mounting and dismounting of individual volumes which means a full rebuild is not needed just because you pop a new SD card in the slot. Now, because it reuses its freed entry data, may rebuild only that volume. 4) Much more fundamental to the file code. When it is built, it is the keeper of the master file list whether enabled or not ("disabled" is just a state of the cache). Its must always to ready to be started and bind all streams opened prior to being enabled. 5) Maintains any short filenames in OEM format which means that it does not need to be rebuilt when changing the default codepage. Miscellaneous Compatibility: 1) Update any other code that would otherwise not work such as the hotswap mounting code in various card drivers. 2) File management: Clipboard needed updating because of the behavioral changes. Still needs a little more work on some finer points. 3) Remove now-obsolete functionality such as the mutex's "no preempt" flag (which was only for the prior FAT driver). 4) struct dirinfo uses time_t rather than raw FAT directory entry time fields. I plan to follow up on genericizing everything there (i.e. no FAT attributes). 5) unicode.c needed some redoing so that the file code does not try try to load codepages during a scan, which is actually a problem with the current code. The default codepage, if any is required, is now kept in RAM separarately (bufalloced) from codepages specified to iso_decode() (which must not be bufalloced because the conversion may be done by playback threads). Brings with it some additional reusable core code: 1) Revised file functions: Reusable code that does things such as safe path concatenation and parsing without buffer limitations or data duplication. Variants that copy or alter the input path may be based off these. To do: 1) Put dircache functionality back in the sim. Treating it internally as a different kind of file system seems the best approach at this time. 2) Restore use of dircache indexes in the playlist and database or something effectively the same. Since the cache doesn't have to be complete in order to be used, not getting a hit on the cache doesn't unambiguously say if the path exists or not. Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8 Reviewed-on: http://gerrit.rockbox.org/566 Reviewed-by: Michael Sevakis <jethead71@rockbox.org> Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
#define storage_driver_type(drive) (STORAGE_MMC_NUM)
#elif (CONFIG_STORAGE & STORAGE_NAND)
#define STORAGE_FUNCTION(NAME) (nand_## NAME)
#define storage_spindown nand_spindown
#define storage_spin nand_spin
#define storage_enable(on) (void)0
#define storage_sleepnow() nand_sleepnow()
#define storage_disk_is_active() 0
#define storage_soft_reset() (void)0
#ifdef HAVE_STORAGE_FLUSH
#define storage_flush() nand_flush()
#endif
#define storage_last_disk_activity() nand_last_disk_activity()
#define storage_spinup_time() 0
#define storage_get_identify() nand_get_identify()
#ifdef STORAGE_GET_INFO
#define storage_get_info(drive, info) nand_get_info(IF_MD(drive,) info)
#endif
#ifdef HAVE_HOTSWAP
#define storage_removable(drive) nand_removable(IF_MD(drive))
#define storage_present(drive) nand_present(IF_MD(drive))
#endif
Rewrite filesystem code (WIP) This patch redoes the filesystem code from the FAT driver up to the clipboard code in onplay.c. Not every aspect of this is finished therefore it is still "WIP". I don't wish to do too much at once (haha!). What is left to do is get dircache back in the sim and find an implementation for the dircache indicies in the tagcache and playlist code or do something else that has the same benefit. Leaving these out for now does not make anything unusable. All the basics are done. Phone app code should probably get vetted (and app path handling just plain rewritten as environment expansions); the SDL app and Android run well. Main things addressed: 1) Thread safety: There is none right now in the trunk code. Most of what currently works is luck when multiple threads are involved or multiple descriptors to the same file are open. 2) POSIX compliance: Many of the functions behave nothing like their counterparts on a host system. This leads to inconsistent code or very different behavior from native to hosted. One huge offender was rename(). Going point by point would fill a book. 3) Actual running RAM usage: Many targets will use less RAM and less stack space (some more RAM because I upped the number of cache buffers for large memory). There's very little memory lying fallow in rarely-used areas (see 'Key core changes' below). Also, all targets may open the same number of directory streams whereas before those with less than 8MB RAM were limited to 8, not 12 implying those targets will save slightly less. 4) Performance: The test_disk plugin shows markedly improved performance, particularly in the area of (uncached) directory scanning, due partly to more optimal directory reading and to a better sector cache algorithm. Uncached times tend to be better while there is a bit of a slowdown in dircache due to it being a bit heavier of an implementation. It's not noticeable by a human as far as I can say. Key core changes: 1) Files and directories share core code and data structures. 2) The filesystem code knows which descriptors refer to same file. This ensures that changes from one stream are appropriately reflected in every open descriptor for that file (fileobj_mgr.c). 3) File and directory cache buffers are borrowed from the main sector cache. This means that when they are not in use by a file, they are not wasted, but used for the cache. Most of the time, only a few of them are needed. It also means that adding more file and directory handles is less expensive. All one must do in ensure a large enough cache to borrow from. 4) Relative path components are supported and the namespace is unified. It does not support full relative paths to an implied current directory; what is does support is use of "." and "..". Adding the former would not be very difficult. The namespace is unified in the sense that volumes may be specified several times along with relative parts, e.g.: "/<0>/foo/../../<1>/bar" :<=> "/<1>/bar". 5) Stack usage is down due to sharing of data, static allocation and less duplication of strings on the stack. This requires more serialization than I would like but since the number of threads is limited to a low number, the tradoff in favor of the stack seems reasonable. 6) Separates and heirarchicalizes (sic) the SIM and APP filesystem code. SIM path and volume handling is just like the target. Some aspects of the APP file code get more straightforward (e.g. no path hashing is needed). Dircache: Deserves its own section. Dircache is new but pays homage to the old. The old one was not compatible and so it, since it got redone, does all the stuff it always should have done such as: 1) It may be update and used at any time during the build process. No longer has one to wait for it to finish building to do basic file management (create, remove, rename, etc.). 2) It does not need to be either fully scanned or completely disabled; it can be incomplete (i.e. overfilled, missing paths), still be of benefit and be correct. 3) Handles mounting and dismounting of individual volumes which means a full rebuild is not needed just because you pop a new SD card in the slot. Now, because it reuses its freed entry data, may rebuild only that volume. 4) Much more fundamental to the file code. When it is built, it is the keeper of the master file list whether enabled or not ("disabled" is just a state of the cache). Its must always to ready to be started and bind all streams opened prior to being enabled. 5) Maintains any short filenames in OEM format which means that it does not need to be rebuilt when changing the default codepage. Miscellaneous Compatibility: 1) Update any other code that would otherwise not work such as the hotswap mounting code in various card drivers. 2) File management: Clipboard needed updating because of the behavioral changes. Still needs a little more work on some finer points. 3) Remove now-obsolete functionality such as the mutex's "no preempt" flag (which was only for the prior FAT driver). 4) struct dirinfo uses time_t rather than raw FAT directory entry time fields. I plan to follow up on genericizing everything there (i.e. no FAT attributes). 5) unicode.c needed some redoing so that the file code does not try try to load codepages during a scan, which is actually a problem with the current code. The default codepage, if any is required, is now kept in RAM separarately (bufalloced) from codepages specified to iso_decode() (which must not be bufalloced because the conversion may be done by playback threads). Brings with it some additional reusable core code: 1) Revised file functions: Reusable code that does things such as safe path concatenation and parsing without buffer limitations or data duplication. Variants that copy or alter the input path may be based off these. To do: 1) Put dircache functionality back in the sim. Treating it internally as a different kind of file system seems the best approach at this time. 2) Restore use of dircache indexes in the playlist and database or something effectively the same. Since the cache doesn't have to be complete in order to be used, not getting a hit on the cache doesn't unambiguously say if the path exists or not. Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8 Reviewed-on: http://gerrit.rockbox.org/566 Reviewed-by: Michael Sevakis <jethead71@rockbox.org> Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
#define storage_driver_type(drive) (STORAGE_NAND_NUM)
#elif (CONFIG_STORAGE & STORAGE_RAMDISK)
#define STORAGE_FUNCTION(NAME) (ramdisk_## NAME)
#define storage_spindown ramdisk_spindown
#define storage_spin ramdisk_spin
#define storage_enable(on) (void)0
#define storage_sleepnow() ramdisk_sleepnow()
#define storage_disk_is_active() 0
#define storage_soft_reset() (void)0
#ifdef HAVE_STORAGE_FLUSH
#define storage_flush() (void)0
#endif
#define storage_last_disk_activity() ramdisk_last_disk_activity()
#define storage_spinup_time() 0
#define storage_get_identify() ramdisk_get_identify()
#ifdef STORAGE_GET_INFO
#define storage_get_info(drive, info) ramdisk_get_info(IF_MD(drive,) info)
#endif
#ifdef HAVE_HOTSWAP
#define storage_removable(drive) ramdisk_removable(IF_MD(drive))
#define storage_present(drive) ramdisk_present(IF_MD(drive))
#endif
Rewrite filesystem code (WIP) This patch redoes the filesystem code from the FAT driver up to the clipboard code in onplay.c. Not every aspect of this is finished therefore it is still "WIP". I don't wish to do too much at once (haha!). What is left to do is get dircache back in the sim and find an implementation for the dircache indicies in the tagcache and playlist code or do something else that has the same benefit. Leaving these out for now does not make anything unusable. All the basics are done. Phone app code should probably get vetted (and app path handling just plain rewritten as environment expansions); the SDL app and Android run well. Main things addressed: 1) Thread safety: There is none right now in the trunk code. Most of what currently works is luck when multiple threads are involved or multiple descriptors to the same file are open. 2) POSIX compliance: Many of the functions behave nothing like their counterparts on a host system. This leads to inconsistent code or very different behavior from native to hosted. One huge offender was rename(). Going point by point would fill a book. 3) Actual running RAM usage: Many targets will use less RAM and less stack space (some more RAM because I upped the number of cache buffers for large memory). There's very little memory lying fallow in rarely-used areas (see 'Key core changes' below). Also, all targets may open the same number of directory streams whereas before those with less than 8MB RAM were limited to 8, not 12 implying those targets will save slightly less. 4) Performance: The test_disk plugin shows markedly improved performance, particularly in the area of (uncached) directory scanning, due partly to more optimal directory reading and to a better sector cache algorithm. Uncached times tend to be better while there is a bit of a slowdown in dircache due to it being a bit heavier of an implementation. It's not noticeable by a human as far as I can say. Key core changes: 1) Files and directories share core code and data structures. 2) The filesystem code knows which descriptors refer to same file. This ensures that changes from one stream are appropriately reflected in every open descriptor for that file (fileobj_mgr.c). 3) File and directory cache buffers are borrowed from the main sector cache. This means that when they are not in use by a file, they are not wasted, but used for the cache. Most of the time, only a few of them are needed. It also means that adding more file and directory handles is less expensive. All one must do in ensure a large enough cache to borrow from. 4) Relative path components are supported and the namespace is unified. It does not support full relative paths to an implied current directory; what is does support is use of "." and "..". Adding the former would not be very difficult. The namespace is unified in the sense that volumes may be specified several times along with relative parts, e.g.: "/<0>/foo/../../<1>/bar" :<=> "/<1>/bar". 5) Stack usage is down due to sharing of data, static allocation and less duplication of strings on the stack. This requires more serialization than I would like but since the number of threads is limited to a low number, the tradoff in favor of the stack seems reasonable. 6) Separates and heirarchicalizes (sic) the SIM and APP filesystem code. SIM path and volume handling is just like the target. Some aspects of the APP file code get more straightforward (e.g. no path hashing is needed). Dircache: Deserves its own section. Dircache is new but pays homage to the old. The old one was not compatible and so it, since it got redone, does all the stuff it always should have done such as: 1) It may be update and used at any time during the build process. No longer has one to wait for it to finish building to do basic file management (create, remove, rename, etc.). 2) It does not need to be either fully scanned or completely disabled; it can be incomplete (i.e. overfilled, missing paths), still be of benefit and be correct. 3) Handles mounting and dismounting of individual volumes which means a full rebuild is not needed just because you pop a new SD card in the slot. Now, because it reuses its freed entry data, may rebuild only that volume. 4) Much more fundamental to the file code. When it is built, it is the keeper of the master file list whether enabled or not ("disabled" is just a state of the cache). Its must always to ready to be started and bind all streams opened prior to being enabled. 5) Maintains any short filenames in OEM format which means that it does not need to be rebuilt when changing the default codepage. Miscellaneous Compatibility: 1) Update any other code that would otherwise not work such as the hotswap mounting code in various card drivers. 2) File management: Clipboard needed updating because of the behavioral changes. Still needs a little more work on some finer points. 3) Remove now-obsolete functionality such as the mutex's "no preempt" flag (which was only for the prior FAT driver). 4) struct dirinfo uses time_t rather than raw FAT directory entry time fields. I plan to follow up on genericizing everything there (i.e. no FAT attributes). 5) unicode.c needed some redoing so that the file code does not try try to load codepages during a scan, which is actually a problem with the current code. The default codepage, if any is required, is now kept in RAM separarately (bufalloced) from codepages specified to iso_decode() (which must not be bufalloced because the conversion may be done by playback threads). Brings with it some additional reusable core code: 1) Revised file functions: Reusable code that does things such as safe path concatenation and parsing without buffer limitations or data duplication. Variants that copy or alter the input path may be based off these. To do: 1) Put dircache functionality back in the sim. Treating it internally as a different kind of file system seems the best approach at this time. 2) Restore use of dircache indexes in the playlist and database or something effectively the same. Since the cache doesn't have to be complete in order to be used, not getting a hit on the cache doesn't unambiguously say if the path exists or not. Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8 Reviewed-on: http://gerrit.rockbox.org/566 Reviewed-by: Michael Sevakis <jethead71@rockbox.org> Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
#define storage_driver_type(drive) (STORAGE_RAMDISK_NUM)
#else
//#error No storage driver!
#endif
#else /* CONFIG_STORAGE_MULTI || !HAVE_HOSTFS */
/* Multi-driver use normal functions */
void storage_enable(bool on);
void storage_sleepnow(void);
bool storage_disk_is_active(void);
int storage_soft_reset(void);
int storage_flush(void);
void storage_spin(void);
void storage_spindown(int seconds);
long storage_last_disk_activity(void);
int storage_spinup_time(void);
int storage_num_drives(void);
#ifdef STORAGE_GET_INFO
void storage_get_info(int drive, struct storage_info *info);
#endif
#ifdef HAVE_HOTSWAP
bool storage_removable(int drive);
bool storage_present(int drive);
#endif
Rewrite filesystem code (WIP) This patch redoes the filesystem code from the FAT driver up to the clipboard code in onplay.c. Not every aspect of this is finished therefore it is still "WIP". I don't wish to do too much at once (haha!). What is left to do is get dircache back in the sim and find an implementation for the dircache indicies in the tagcache and playlist code or do something else that has the same benefit. Leaving these out for now does not make anything unusable. All the basics are done. Phone app code should probably get vetted (and app path handling just plain rewritten as environment expansions); the SDL app and Android run well. Main things addressed: 1) Thread safety: There is none right now in the trunk code. Most of what currently works is luck when multiple threads are involved or multiple descriptors to the same file are open. 2) POSIX compliance: Many of the functions behave nothing like their counterparts on a host system. This leads to inconsistent code or very different behavior from native to hosted. One huge offender was rename(). Going point by point would fill a book. 3) Actual running RAM usage: Many targets will use less RAM and less stack space (some more RAM because I upped the number of cache buffers for large memory). There's very little memory lying fallow in rarely-used areas (see 'Key core changes' below). Also, all targets may open the same number of directory streams whereas before those with less than 8MB RAM were limited to 8, not 12 implying those targets will save slightly less. 4) Performance: The test_disk plugin shows markedly improved performance, particularly in the area of (uncached) directory scanning, due partly to more optimal directory reading and to a better sector cache algorithm. Uncached times tend to be better while there is a bit of a slowdown in dircache due to it being a bit heavier of an implementation. It's not noticeable by a human as far as I can say. Key core changes: 1) Files and directories share core code and data structures. 2) The filesystem code knows which descriptors refer to same file. This ensures that changes from one stream are appropriately reflected in every open descriptor for that file (fileobj_mgr.c). 3) File and directory cache buffers are borrowed from the main sector cache. This means that when they are not in use by a file, they are not wasted, but used for the cache. Most of the time, only a few of them are needed. It also means that adding more file and directory handles is less expensive. All one must do in ensure a large enough cache to borrow from. 4) Relative path components are supported and the namespace is unified. It does not support full relative paths to an implied current directory; what is does support is use of "." and "..". Adding the former would not be very difficult. The namespace is unified in the sense that volumes may be specified several times along with relative parts, e.g.: "/<0>/foo/../../<1>/bar" :<=> "/<1>/bar". 5) Stack usage is down due to sharing of data, static allocation and less duplication of strings on the stack. This requires more serialization than I would like but since the number of threads is limited to a low number, the tradoff in favor of the stack seems reasonable. 6) Separates and heirarchicalizes (sic) the SIM and APP filesystem code. SIM path and volume handling is just like the target. Some aspects of the APP file code get more straightforward (e.g. no path hashing is needed). Dircache: Deserves its own section. Dircache is new but pays homage to the old. The old one was not compatible and so it, since it got redone, does all the stuff it always should have done such as: 1) It may be update and used at any time during the build process. No longer has one to wait for it to finish building to do basic file management (create, remove, rename, etc.). 2) It does not need to be either fully scanned or completely disabled; it can be incomplete (i.e. overfilled, missing paths), still be of benefit and be correct. 3) Handles mounting and dismounting of individual volumes which means a full rebuild is not needed just because you pop a new SD card in the slot. Now, because it reuses its freed entry data, may rebuild only that volume. 4) Much more fundamental to the file code. When it is built, it is the keeper of the master file list whether enabled or not ("disabled" is just a state of the cache). Its must always to ready to be started and bind all streams opened prior to being enabled. 5) Maintains any short filenames in OEM format which means that it does not need to be rebuilt when changing the default codepage. Miscellaneous Compatibility: 1) Update any other code that would otherwise not work such as the hotswap mounting code in various card drivers. 2) File management: Clipboard needed updating because of the behavioral changes. Still needs a little more work on some finer points. 3) Remove now-obsolete functionality such as the mutex's "no preempt" flag (which was only for the prior FAT driver). 4) struct dirinfo uses time_t rather than raw FAT directory entry time fields. I plan to follow up on genericizing everything there (i.e. no FAT attributes). 5) unicode.c needed some redoing so that the file code does not try try to load codepages during a scan, which is actually a problem with the current code. The default codepage, if any is required, is now kept in RAM separarately (bufalloced) from codepages specified to iso_decode() (which must not be bufalloced because the conversion may be done by playback threads). Brings with it some additional reusable core code: 1) Revised file functions: Reusable code that does things such as safe path concatenation and parsing without buffer limitations or data duplication. Variants that copy or alter the input path may be based off these. To do: 1) Put dircache functionality back in the sim. Treating it internally as a different kind of file system seems the best approach at this time. 2) Restore use of dircache indexes in the playlist and database or something effectively the same. Since the cache doesn't have to be complete in order to be used, not getting a hit on the cache doesn't unambiguously say if the path exists or not. Change-Id: Ia30f3082a136253e3a0eae0784e3091d138915c8 Reviewed-on: http://gerrit.rockbox.org/566 Reviewed-by: Michael Sevakis <jethead71@rockbox.org> Tested: Michael Sevakis <jethead71@rockbox.org>
2013-08-06 02:02:45 +00:00
int storage_driver_type(int drive);
#endif /* NOT CONFIG_STORAGE_MULTI and NOT SIMULATOR*/
int storage_read_sectors(IF_MD(int drive,) unsigned long start, int count, void* buf);
int storage_write_sectors(IF_MD(int drive,) unsigned long start, int count, const void* buf);
#endif