rockbox/apps/plugins/test_mem.c

265 lines
7.7 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2010 Thomas Martitz, Andree Buschmann
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "plugin.h"
#if PLUGIN_BUFFER_SIZE <= 0x8000
#define BUF_SIZE (1<<12) /* 16 KB = (1<<12)*sizeof(int) */
#else
#define BUF_SIZE (1<<13) /* 32 KB = (1<<13)*sizeof(int) */
#endif
#define LOOP_REPEAT_DRAM 256
static int loop_repeat_dram = LOOP_REPEAT_DRAM;
static volatile int buf_dram[BUF_SIZE] MEM_ALIGN_ATTR;
#if defined(PLUGIN_USE_IRAM)
#define LOOP_REPEAT_IRAM 256
static int loop_repeat_iram = LOOP_REPEAT_DRAM;
static volatile int buf_iram[BUF_SIZE] IBSS_ATTR MEM_ALIGN_ATTR;
#endif
/* (Byte per loop * loops)>>20 * ticks per s * 10 / ticks = dMB per s */
#define dMB_PER_SEC(buf_size, cnt, delta) ((((buf_size*sizeof(int)*cnt)>>20)*HZ*10)/delta)
static void memset_test(volatile int *buf, int buf_size, int loop_cnt)
{
size_t buf_bytes = buf_size*sizeof(buf[0]);
for(int i = 0; i < loop_cnt; i++)
{
memset((void*)buf, 0xff, buf_bytes);
}
}
static void memcpy_test(volatile int *buf, int buf_size, int loop_cnt)
{
/* half-size memcpy since memory regions must not overlap */
void* half_buf = (void*)(&buf[buf_size/2]);
size_t half_buf_bytes = buf_size * sizeof(buf[0]) / 2;
/* double loop count to compensate for half size memcpy */
for(int i = 0; i < loop_cnt*2; i++)
{
memcpy((void*)&buf[0], half_buf, half_buf_bytes);
}
}
static void write_test(volatile int *buf, int buf_size, int loop_cnt)
{
#if defined(CPU_ARM)
asm volatile (
"mov r0, #0 \n"
"mov r1, #1 \n"
"mov r2, #2 \n"
"mov r3, #3 \n"
"mov r6, %[loops] \n"
".outer_loop_read: \n"
"mov r4, %[buf_p] \n"
"mov r5, %[size] \n"
".inner_loop_read: \n"
"stmia r4!, {r0-r3} \n"
"stmia r4!, {r0-r3} \n"
"subs r5, r5, #8 \n"
"bgt .inner_loop_read \n"
"subs r6, r6, #1 \n"
"bgt .outer_loop_read \n"
:
: [loops] "r" (loop_cnt), [size] "r" (buf_size), [buf_p] "r" (buf)
: "r0", "r1", "r2", "r3", "r4", "r5", "r6", "memory", "cc"
);
#else
for(int i = 0; i < loop_cnt; i++)
{
for(int j = 0; j < buf_size; j+=4)
{
buf[j ] = j;
buf[j+1] = j+1;
buf[j+2] = j+2;
buf[j+3] = j+3;
}
}
#endif
}
static void read_test(volatile int *buf, int buf_size, int loop_cnt)
{
#if defined(CPU_ARM)
asm volatile (
"mov r6, %[loops] \n"
".outer_loop_write: \n"
"mov r4, %[buf_p] \n"
"mov r5, %[size] \n"
".inner_loop_write: \n"
"ldmia r4!, {r0-r3} \n"
"subs r5, r5, #8 \n"
"ldmia r4!, {r0-r3} \n"
"bgt .inner_loop_write \n"
"subs r6, r6, #1 \n"
"bgt .outer_loop_write \n"
:
: [loops] "r" (loop_cnt), [size] "r" (buf_size), [buf_p] "r" (buf)
: "r0", "r1", "r2", "r3", "r4", "r5", "r6", "memory", "cc"
);
#else
int x;
for(int i = 0; i < loop_cnt; i++)
{
for(int j = 0; j < buf_size; j+=4)
{
x = buf[j ];
x = buf[j+2];
x = buf[j+3];
x = buf[j+4];
}
}
(void)x;
#endif
}
enum test_type {
READ,
WRITE,
MEMSET,
MEMCPY,
};
static const char tests[][7] = {
[READ] = "read ",
[WRITE] = "write ",
[MEMSET] = "memset",
[MEMCPY] = "memcpy",
};
static int line;
#define TEST_MEM_PRINTF(...) rb->screens[0]->putsf(0, line++, __VA_ARGS__)
static int test(volatile int *buf, int buf_size, int loop_cnt,
enum test_type type)
{
int delta, dMB;
int last_tick = *rb->current_tick;
int ret = 0;
switch(type)
{
case READ: read_test(buf, buf_size, loop_cnt); break;
case WRITE: write_test(buf, buf_size, loop_cnt); break;
case MEMSET: memset_test(buf, buf_size, loop_cnt); break;
case MEMCPY: memcpy_test(buf, buf_size, loop_cnt); break;
}
delta = *rb->current_tick - last_tick;
if (delta <= 20)
{
/* The loop_cnt will be increased for the next measurement set until
* each measurement at least takes 10 ticks. This is to ensure a
* minimum accuracy. */
ret = 1;
}
delta = delta>0 ? delta : delta+1;
dMB = dMB_PER_SEC(buf_size, loop_cnt, delta);
TEST_MEM_PRINTF("%s: %3d.%d MB/s (%3d ms)",
tests[type], dMB/10, dMB%10, delta*10);
return ret;
}
enum plugin_status plugin_start(const void* parameter)
{
(void)parameter;
bool done = false;
#ifdef HAVE_ADJUSTABLE_CPU_FREQ
bool boost = false;
#endif
int count = 0;
#ifdef HAVE_LCD_BITMAP
rb->lcd_setfont(FONT_SYSFIXED);
#endif
rb->screens[0]->clear_display();
TEST_MEM_PRINTF("patience, may take some seconds...");
rb->screens[0]->update();
while (!done)
{
line = 0;
int ret;
rb->screens[0]->clear_display();
#ifdef HAVE_ADJUSTABLE_CPU_FREQ
TEST_MEM_PRINTF("%s", boost?"boosted":"unboosted");
TEST_MEM_PRINTF("clock: %d Hz", *rb->cpu_frequency);
#endif
TEST_MEM_PRINTF("loop#: %d", ++count);
TEST_MEM_PRINTF("DRAM cnt: %d size: %d MB", loop_repeat_dram,
(loop_repeat_dram*BUF_SIZE*sizeof(buf_dram[0]))>>20);
ret = 0;
ret |= test(buf_dram, BUF_SIZE, loop_repeat_dram, READ);
ret |= test(buf_dram, BUF_SIZE, loop_repeat_dram, WRITE);
ret |= test(buf_dram, BUF_SIZE, loop_repeat_dram, MEMSET);
ret |= test(buf_dram, BUF_SIZE, loop_repeat_dram, MEMCPY);
if (ret != 0) loop_repeat_dram *= 2;
#if defined(PLUGIN_USE_IRAM)
TEST_MEM_PRINTF("IRAM cnt: %d size: %d MB", loop_repeat_iram,
(loop_repeat_iram*BUF_SIZE*sizeof(buf_iram[0]))>>20);
ret = 0;
ret |= test(buf_iram, BUF_SIZE, loop_repeat_iram, READ);
ret |= test(buf_iram, BUF_SIZE, loop_repeat_iram, WRITE);
ret |= test(buf_iram, BUF_SIZE, loop_repeat_iram, MEMSET);
ret |= test(buf_iram, BUF_SIZE, loop_repeat_iram, MEMCPY);
if (ret != 0) loop_repeat_iram *= 2;
#endif
rb->screens[0]->update();
switch (rb->get_action(CONTEXT_STD, HZ/5))
{
#ifdef HAVE_ADJUSTABLE_CPU_FREQ
case ACTION_STD_PREV:
if (!boost)
{
rb->cpu_boost(true);
boost = true;
}
break;
case ACTION_STD_NEXT:
if (boost)
{
rb->cpu_boost(false);
boost = false;
}
break;
#endif
case ACTION_STD_CANCEL:
done = true;
break;
}
}
return PLUGIN_OK;
}