rockbox/apps/debug_menu.c

1251 lines
33 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2002 Heikki Hannikainen
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#ifndef SIMULATOR
#include <stdio.h>
#include <stdbool.h>
#include "lcd.h"
#include "menu.h"
#include "debug_menu.h"
#include "kernel.h"
#include "sprintf.h"
#include "button.h"
#include "adc.h"
#include "mas.h"
#include "power.h"
#include "rtc.h"
#include "debug.h"
#include "thread.h"
#include "powermgmt.h"
#include "system.h"
#include "font.h"
#include "disk.h"
#include "mpeg.h"
#include "settings.h"
#include "ata.h"
#include "fat.h"
#ifdef HAVE_LCD_BITMAP
#include "widgets.h"
#include "peakmeter.h"
#endif
/*---------------------------------------------------*/
/* SPECIAL DEBUG STUFF */
/*---------------------------------------------------*/
extern int ata_device;
extern int ata_io_address;
extern int num_threads;
extern char *thread_name[];
#ifdef HAVE_LCD_BITMAP
/* Test code!!! */
bool dbg_os(void)
{
char buf[32];
int button;
int i;
int usage;
#ifdef HAVE_LCD_BITMAP
lcd_setmargins(0, 0);
#endif
lcd_clear_display();
while(1)
{
lcd_puts(0, 0, "Stack usage:");
for(i = 0; i < num_threads;i++)
{
usage = thread_stack_usage(i);
snprintf(buf, 32, "%s: %d%%", thread_name[i], usage);
lcd_puts(0, 1+i, buf);
}
lcd_update();
button = button_get_w_tmo(HZ/10);
switch(button)
{
case BUTTON_OFF:
case BUTTON_LEFT:
return false;
}
}
return false;
}
#else
bool dbg_os(void)
{
char buf[32];
int button;
int usage;
int currval = 0;
#ifdef HAVE_LCD_BITMAP
lcd_setmargins(0, 0);
#endif
lcd_clear_display();
while(1)
{
lcd_puts(0, 0, "Stack usage");
usage = thread_stack_usage(currval);
snprintf(buf, 32, "%d: %d%% ", currval, usage);
lcd_puts(0, 1, buf);
button = button_get_w_tmo(HZ/10);
switch(button)
{
case BUTTON_STOP:
return false;
case BUTTON_LEFT:
currval--;
if(currval < 0)
currval = num_threads-1;
break;
case BUTTON_RIGHT:
currval++;
if(currval > num_threads-1)
currval = 0;
break;
}
}
return false;
}
#endif
#ifdef HAVE_LCD_BITMAP
bool dbg_mpeg_thread(void)
{
char buf[32];
int button;
int percent;
struct mpeg_debug d;
lcd_setmargins(0, 0);
while(1)
{
button = button_get_w_tmo(HZ/5);
switch(button)
{
case BUTTON_OFF | BUTTON_REL:
return false;
}
mpeg_get_debugdata(&d);
lcd_clear_display();
snprintf(buf, sizeof(buf), "read: %x", d.mp3buf_read);
lcd_puts(0, 0, buf);
snprintf(buf, sizeof(buf), "write: %x", d.mp3buf_write);
lcd_puts(0, 1, buf);
snprintf(buf, sizeof(buf), "swap: %x", d.mp3buf_swapwrite);
lcd_puts(0, 2, buf);
snprintf(buf, sizeof(buf), "playing: %d", d.playing);
lcd_puts(0, 3, buf);
snprintf(buf, sizeof(buf), "playable: %x", d.playable_space);
lcd_puts(0, 4, buf);
snprintf(buf, sizeof(buf), "unswapped: %x", d.unswapped_space);
lcd_puts(0, 5, buf);
percent = d.playable_space * 100 / d.mp3buflen;
progressbar(0, 6*8, 112, 4, percent, Grow_Right);
percent = d.low_watermark_level * 100 / d.mp3buflen;
progressbar(0, 6*8+4, 112, 4, percent, Grow_Right);
snprintf(buf, sizeof(buf), "wm: %x - %x",
d.low_watermark_level, d.lowest_watermark_level);
lcd_puts(0, 7, buf);
lcd_update();
}
return false;
}
#endif
#ifdef HAVE_LCD_BITMAP
bool dbg_hw_info(void)
{
char buf[32];
int button;
int usb_polarity;
int pr_polarity;
int bitmask = *(unsigned short*)0x20000fc;
int rom_version = *(unsigned short*)0x20000fe;
unsigned char sec, sec2;
unsigned long tick;
bool is_12mhz;
if(PADR & 0x400)
usb_polarity = 0; /* Negative */
else
usb_polarity = 1; /* Positive */
if(PADR & 0x800)
pr_polarity = 0; /* Negative */
else
pr_polarity = 1; /* Positive */
sec = rtc_read(0x01);
do {
sec2 = rtc_read(0x01);
} while(sec == sec2);
tick = current_tick;
do {
sec = rtc_read(0x01);
} while(sec2 == sec);
is_12mhz = (current_tick - tick > HZ);
lcd_setmargins(0, 0);
lcd_setfont(FONT_SYSFIXED);
lcd_clear_display();
lcd_puts(0, 0, "[Hardware info]");
snprintf(buf, 32, "ROM: %d.%02d", rom_version/100, rom_version%100);
lcd_puts(0, 1, buf);
snprintf(buf, 32, "Mask: 0x%04x", bitmask);
lcd_puts(0, 2, buf);
snprintf(buf, 32, "USB: %s", usb_polarity?"positive":"negative");
lcd_puts(0, 3, buf);
snprintf(buf, 32, "ATA: 0x%x", ata_io_address);
lcd_puts(0, 4, buf);
snprintf(buf, 32, "PR: %s", pr_polarity?"positive":"negative");
lcd_puts(0, 5, buf);
snprintf(buf, 32, "Freq: %s", is_12mhz?"12MHz":"11.0592MHz");
lcd_puts(0, 6, buf);
lcd_update();
while(1)
{
button = button_get(true);
if(button == (BUTTON_OFF | BUTTON_REL))
return false;
}
return false;
}
#else
bool dbg_hw_info(void)
{
char buf[32];
int button;
int currval = 0;
int usb_polarity;
int bitmask = *(unsigned short*)0x20000fc;
int rom_version = *(unsigned short*)0x20000fe;
if(PADR & 0x400)
usb_polarity = 0; /* Negative */
else
usb_polarity = 1; /* Positive */
lcd_clear_display();
lcd_puts(0, 0, "[HW Info]");
while(1)
{
switch(currval)
{
case 0:
snprintf(buf, 32, "ROM: %d.%02d",
rom_version/100, rom_version%100);
break;
case 1:
snprintf(buf, 32, "USB: %s",
usb_polarity?"pos":"neg");
break;
case 2:
snprintf(buf, 32, "ATA: 0x%x", ata_io_address);
break;
case 3:
snprintf(buf, 32, "Mask: %04x", bitmask);
break;
}
lcd_puts(0, 1, buf);
lcd_update();
button = button_get(true);
switch(button)
{
case BUTTON_STOP:
return false;
case BUTTON_LEFT:
currval--;
if(currval < 0)
currval = 3;
break;
case BUTTON_RIGHT:
currval++;
if(currval > 3)
currval = 0;
break;
}
}
return false;
}
#endif
bool dbg_partitions(void)
{
int partition=0;
lcd_clear_display();
lcd_puts(0, 0, "Partition");
lcd_puts(0, 1, "list");
lcd_update();
sleep(HZ/2);
while(1)
{
char buf[32];
int button;
struct partinfo* p = disk_partinfo(partition);
lcd_clear_display();
snprintf(buf, sizeof buf, "P%d: S:%x", partition, p->start);
lcd_puts(0, 0, buf);
snprintf(buf, sizeof buf, "T:%x %d MB", p->type, p->size / 2048);
lcd_puts(0, 1, buf);
lcd_update();
button = button_get(true);
switch(button)
{
#ifdef HAVE_RECORDER_KEYPAD
case BUTTON_OFF:
#else
case BUTTON_STOP:
#endif
return false;
#ifdef HAVE_RECORDER_KEYPAD
case BUTTON_UP:
#endif
case BUTTON_LEFT:
partition--;
if (partition < 0)
partition = 3;
break;
#ifdef HAVE_RECORDER_KEYPAD
case BUTTON_DOWN:
#endif
case BUTTON_RIGHT:
partition++;
if (partition > 3)
partition = 0;
break;
}
}
return false;
}
#ifdef HAVE_LCD_BITMAP
/* Test code!!! */
bool dbg_ports(void)
{
unsigned short porta;
unsigned short portb;
unsigned char portc;
char buf[32];
int button;
int battery_voltage;
int batt_int, batt_frac;
#ifdef HAVE_LCD_BITMAP
lcd_setmargins(0, 0);
#endif
lcd_clear_display();
while(1)
{
porta = PADR;
portb = PBDR;
portc = PCDR;
snprintf(buf, 32, "PADR: %04x", porta);
lcd_puts(0, 0, buf);
snprintf(buf, 32, "PBDR: %04x", portb);
lcd_puts(0, 1, buf);
snprintf(buf, 32, "AN0: %03x AN4: %03x", adc_read(0), adc_read(4));
lcd_puts(0, 2, buf);
snprintf(buf, 32, "AN1: %03x AN5: %03x", adc_read(1), adc_read(5));
lcd_puts(0, 3, buf);
snprintf(buf, 32, "AN2: %03x AN6: %03x", adc_read(2), adc_read(6));
lcd_puts(0, 4, buf);
snprintf(buf, 32, "AN3: %03x AN7: %03x", adc_read(3), adc_read(7));
lcd_puts(0, 5, buf);
battery_voltage = (adc_read(ADC_UNREG_POWER) * BATTERY_SCALE_FACTOR) / 10000;
batt_int = battery_voltage / 100;
batt_frac = battery_voltage % 100;
snprintf(buf, 32, "Batt: %d.%02dV %d%% ", batt_int, batt_frac,
battery_level());
lcd_puts(0, 6, buf);
snprintf(buf, 32, "ATA: %s, 0x%x",
ata_device?"slave":"master", ata_io_address);
lcd_puts(0, 7, buf);
lcd_update();
button = button_get(HZ/10);
switch(button)
{
case BUTTON_OFF | BUTTON_REL:
return false;
}
}
return false;
}
#else
bool dbg_ports(void)
{
unsigned short porta;
unsigned short portb;
unsigned char portc;
char buf[32];
int button;
int battery_voltage;
int batt_int, batt_frac;
int currval = 0;
#ifdef HAVE_LCD_BITMAP
lcd_setmargins(0, 0);
#endif
lcd_clear_display();
while(1)
{
porta = PADR;
portb = PBDR;
portc = PCDR;
switch(currval)
{
case 0:
snprintf(buf, 32, "PADR: %04x ", porta);
break;
case 1:
snprintf(buf, 32, "PBDR: %04x ", portb);
break;
case 2:
snprintf(buf, 32, "AN0: %03x ", adc_read(0));
break;
case 3:
snprintf(buf, 32, "AN1: %03x ", adc_read(1));
break;
case 4:
snprintf(buf, 32, "AN2: %03x ", adc_read(2));
break;
case 5:
snprintf(buf, 32, "AN3: %03x ", adc_read(3));
break;
case 6:
snprintf(buf, 32, "AN4: %03x ", adc_read(4));
break;
case 7:
snprintf(buf, 32, "AN5: %03x ", adc_read(5));
break;
case 8:
snprintf(buf, 32, "AN6: %03x ", adc_read(6));
break;
case 9:
snprintf(buf, 32, "AN7: %03x ", adc_read(7));
break;
case 10:
snprintf(buf, 32, "%s, 0x%x ",
ata_device?"slv":"mst", ata_io_address);
break;
}
lcd_puts(0, 0, buf);
battery_voltage = (adc_read(ADC_UNREG_POWER) *
BATTERY_SCALE_FACTOR) / 10000;
batt_int = battery_voltage / 100;
batt_frac = battery_voltage % 100;
snprintf(buf, 32, "Batt: %d.%02dV", batt_int, batt_frac);
lcd_puts(0, 1, buf);
button = button_get_w_tmo(HZ/5);
switch(button)
{
case BUTTON_STOP | BUTTON_REL:
return false;
case BUTTON_LEFT:
currval--;
if(currval < 0)
currval = 10;
break;
case BUTTON_RIGHT:
currval++;
if(currval > 10)
currval = 0;
break;
}
}
return false;
}
#endif
#ifdef HAVE_RTC
/* Read RTC RAM contents and display them */
bool dbg_rtc(void)
{
char buf[32];
unsigned char addr = 0, r, c;
int i;
int button;
#ifdef HAVE_LCD_BITMAP
lcd_setmargins(0, 0);
#endif
lcd_clear_display();
lcd_puts(0, 0, "RTC read:");
while(1)
{
for (r = 0; r < 4; r++) {
snprintf(buf, 10, "0x%02x: ", addr + r*4);
for (c = 0; c <= 3; c++) {
i = rtc_read(addr + r*4 + c);
snprintf(buf + 6 + c*2, 3, "%02x", i);
}
lcd_puts(1, r+1, buf);
}
lcd_update();
button = button_get_w_tmo(HZ/2);
switch(button)
{
case BUTTON_DOWN:
if (addr < 63-16) { addr += 16; }
break;
case BUTTON_UP:
if (addr) { addr -= 16; }
break;
case BUTTON_F2:
/* clear the user RAM space */
for (c = 0; c <= 43; c++)
rtc_write(0x14 + c, 0);
break;
case BUTTON_OFF | BUTTON_REL:
case BUTTON_LEFT | BUTTON_REL:
return false;
}
}
return false;
}
#else
bool dbg_rtc(void)
{
return false;
}
#endif
#ifdef HAVE_LCD_CHARCELLS
#define NUMROWS 1
#else
#define NUMROWS 4
#endif
/* Read MAS registers and display them */
bool dbg_mas(void)
{
char buf[32];
unsigned int addr = 0, r, i;
#ifdef HAVE_LCD_BITMAP
lcd_setmargins(0, 0);
#endif
lcd_clear_display();
lcd_puts(0, 0, "MAS register read:");
while(1)
{
for (r = 0; r < NUMROWS; r++) {
i = mas_readreg(addr + r);
snprintf(buf, 30, "%02x %08x", addr + r, i);
lcd_puts(0, r+1, buf);
}
lcd_update();
switch(button_get_w_tmo(HZ/16))
{
#ifdef HAVE_RECORDER_KEYPAD
case BUTTON_DOWN:
#else
case BUTTON_RIGHT:
#endif
addr += NUMROWS;
break;
#ifdef HAVE_RECORDER_KEYPAD
case BUTTON_UP:
#else
case BUTTON_LEFT:
#endif
if(addr)
addr -= NUMROWS;
break;
#ifdef HAVE_RECORDER_KEYPAD
case BUTTON_LEFT:
#else
case BUTTON_DOWN:
#endif
return false;
}
}
return false;
}
#ifdef HAVE_MAS3587F
bool dbg_mas_codec(void)
{
char buf[32];
unsigned int addr = 0, r, i;
#ifdef HAVE_LCD_BITMAP
lcd_setmargins(0, 0);
#endif
lcd_clear_display();
lcd_puts(0, 0, "MAS codec reg read:");
while(1)
{
for (r = 0; r < 4; r++) {
i = mas_codec_readreg(addr + r);
snprintf(buf, 30, "0x%02x: %08x", addr + r, i);
lcd_puts(1, r+1, buf);
}
lcd_update();
switch(button_get_w_tmo(HZ/16))
{
case BUTTON_DOWN:
addr += 4;
break;
case BUTTON_UP:
if (addr) { addr -= 4; }
break;
case BUTTON_LEFT | BUTTON_REL:
case BUTTON_OFF | BUTTON_REL:
return false;
}
}
return false;
}
#endif
#ifdef HAVE_LCD_BITMAP
/*
* view_battery() shows a automatically scaled graph of the battery voltage
* over time. Usable for estimating battery life / charging rate.
* The power_history array is updated in power_thread of powermgmt.c.
*/
#define BAT_FIRST_VAL MAX(POWER_HISTORY_LEN - LCD_WIDTH - 1, 0)
#define BAT_YSPACE (LCD_HEIGHT - 20)
bool view_battery(void)
{
int view = 0;
int i, x, y;
int maxv, minv;
char buf[32];
#ifdef HAVE_LCD_BITMAP
lcd_setmargins(0, 0);
#endif
while(1)
{
switch (view) {
case 0: /* voltage history graph */
/* Find maximum and minimum voltage for scaling */
maxv = minv = 0;
for (i = BAT_FIRST_VAL; i < POWER_HISTORY_LEN; i++) {
if (power_history[i] > maxv)
maxv = power_history[i];
if ((minv == 0) || ((power_history[i]) &&
(power_history[i] < minv)) )
{
minv = power_history[i];
}
}
if (minv < 1)
minv = 1;
if (maxv < 2)
maxv = 2;
lcd_clear_display();
lcd_puts(0, 0, "Battery voltage:");
snprintf(buf, 30, "scale %d.%02d-%d.%02d V",
minv / 100, minv % 100, maxv / 100, maxv % 100);
lcd_puts(0, 1, buf);
x = 0;
for (i = BAT_FIRST_VAL+1; i < POWER_HISTORY_LEN; i++) {
y = (power_history[i] - minv) * BAT_YSPACE / (maxv - minv);
lcd_clearline(x, LCD_HEIGHT-1, x, 20);
lcd_drawline(x, LCD_HEIGHT-1, x,
MIN(MAX(LCD_HEIGHT-1 - y, 20), LCD_HEIGHT-1));
x++;
}
break;
case 1: /* status: */
lcd_clear_display();
lcd_puts(0, 0, "Power status:");
y = (adc_read(ADC_UNREG_POWER) * BATTERY_SCALE_FACTOR) / 10000;
snprintf(buf, 30, "Battery: %d.%02d V", y / 100, y % 100);
lcd_puts(0, 1, buf);
y = (adc_read(ADC_EXT_POWER) * EXT_SCALE_FACTOR) / 10000;
snprintf(buf, 30, "External: %d.%02d V", y / 100, y % 100);
lcd_puts(0, 2, buf);
snprintf(buf, 30, "Charger: %s",
charger_inserted() ? "present" : "absent");
lcd_puts(0, 3, buf);
#ifdef HAVE_CHARGE_CTRL
snprintf(buf, 30, "Charging: %s",
charger_enabled ? "yes" : "no");
lcd_puts(0, 4, buf);
#endif
y = ( power_history[POWER_HISTORY_LEN-1] * 100
+ power_history[POWER_HISTORY_LEN-2] * 100
- power_history[POWER_HISTORY_LEN-1-CHARGE_END_NEGD+1] * 100
- power_history[POWER_HISTORY_LEN-1-CHARGE_END_NEGD] * 100 )
/ CHARGE_END_NEGD / 2;
snprintf(buf, 30, "short delta: %d", y);
lcd_puts(0, 5, buf);
y = ( power_history[POWER_HISTORY_LEN-1] * 100
+ power_history[POWER_HISTORY_LEN-2] * 100
- power_history[POWER_HISTORY_LEN-1-CHARGE_END_ZEROD+1] * 100
- power_history[POWER_HISTORY_LEN-1-CHARGE_END_ZEROD] * 100 )
/ CHARGE_END_ZEROD / 2;
snprintf(buf, 30, "long delta: %d", y);
lcd_puts(0, 6, buf);
#ifdef HAVE_CHARGE_CTRL
lcd_puts(0, 7, power_message);
#endif
break;
case 2: /* voltage deltas: */
lcd_clear_display();
lcd_puts(0, 0, "Voltage deltas:");
for (i = 0; i <= 6; i++) {
y = power_history[POWER_HISTORY_LEN-1-i] -
power_history[POWER_HISTORY_LEN-1-i-1];
snprintf(buf, 30, "-%d min: %s%d.%02d V", i,
(y < 0) ? "-" : "", ((y < 0) ? y * -1 : y) / 100,
((y < 0) ? y * -1 : y ) % 100);
lcd_puts(0, i+1, buf);
}
break;
case 3: /* remeining time estimation: */
lcd_clear_display();
#ifdef HAVE_CHARGE_CTRL
snprintf(buf, 30, "charge_state: %d", charge_state);
lcd_puts(0, 0, buf);
snprintf(buf, 30, "Cycle time: %d m", powermgmt_last_cycle_startstop_min);
lcd_puts(0, 1, buf);
snprintf(buf, 30, "Lev.at cycle start: %d%%", powermgmt_last_cycle_level);
lcd_puts(0, 2, buf);
#endif
snprintf(buf, 30, "Last PwrHist val: %d.%02d V",
power_history[POWER_HISTORY_LEN-1] / 100,
power_history[POWER_HISTORY_LEN-1] % 100);
lcd_puts(0, 3, buf);
snprintf(buf, 30, "battery level: %d%%", battery_level());
lcd_puts(0, 5, buf);
snprintf(buf, 30, "Est. remaining: %d m", battery_time());
lcd_puts(0, 6, buf);
#ifdef HAVE_CHARGE_CTRL
snprintf(buf, 30, "Trickle sec: %d/60", trickle_sec);
lcd_puts(0, 7, buf);
#endif
break;
}
lcd_update();
switch(button_get_w_tmo(HZ/2))
{
case BUTTON_UP:
if (view)
view--;
break;
case BUTTON_DOWN:
if (view < 3)
view++;
break;
case BUTTON_LEFT | BUTTON_REL:
case BUTTON_OFF | BUTTON_REL:
return false;
}
}
return false;
}
#endif
#ifdef HAVE_MAS3507D
bool dbg_mas_info(void)
{
int button;
char buf[32];
int currval = 0;
unsigned long val;
unsigned long pll48, pll44, config;
int pll_toggle = 0;
#ifdef HAVE_LCD_BITMAP
lcd_setmargins(0, 0);
#endif
while(1)
{
switch(currval)
{
case 0:
mas_readmem(MAS_BANK_D1, 0xff7, &val, 1);
lcd_puts(0, 0, "Design Code");
snprintf(buf, 32, "%05x ", val);
break;
case 1:
lcd_puts(0, 0, "DC/DC mode ");
snprintf(buf, 32, "8e: %05x ", mas_readreg(0x8e) & 0xfffff);
break;
case 2:
lcd_puts(0, 0, "Mute/Bypass");
snprintf(buf, 32, "aa: %05x ", mas_readreg(0xaa) & 0xfffff);
break;
case 3:
lcd_puts(0, 0, "PIOData ");
snprintf(buf, 32, "ed: %05x ", mas_readreg(0xed) & 0xfffff);
break;
case 4:
lcd_puts(0, 0, "Startup Cfg");
snprintf(buf, 32, "e6: %05x ", mas_readreg(0xe6) & 0xfffff);
break;
case 5:
lcd_puts(0, 0, "KPrescale ");
snprintf(buf, 32, "e7: %05x ", mas_readreg(0xe7) & 0xfffff);
break;
case 6:
lcd_puts(0, 0, "KBass ");
snprintf(buf, 32, "6b: %05x ", mas_readreg(0x6b) & 0xfffff);
break;
case 7:
lcd_puts(0, 0, "KTreble ");
snprintf(buf, 32, "6f: %05x ", mas_readreg(0x6f) & 0xfffff);
break;
case 8:
mas_readmem(MAS_BANK_D0, 0x300, &val, 1);
lcd_puts(0, 0, "Frame Count");
snprintf(buf, 32, "0/300: %04x", val & 0xffff);
break;
case 9:
mas_readmem(MAS_BANK_D0, 0x301, &val, 1);
lcd_puts(0, 0, "Status1 ");
snprintf(buf, 32, "0/301: %04x", val & 0xffff);
break;
case 10:
mas_readmem(MAS_BANK_D0, 0x302, &val, 1);
lcd_puts(0, 0, "Status2 ");
snprintf(buf, 32, "0/302: %04x", val & 0xffff);
break;
case 11:
mas_readmem(MAS_BANK_D0, 0x303, &val, 1);
lcd_puts(0, 0, "CRC Count ");
snprintf(buf, 32, "0/303: %04x", val & 0xffff);
break;
case 12:
mas_readmem(MAS_BANK_D0, 0x36d, &val, 1);
lcd_puts(0, 0, "PLLOffset48");
snprintf(buf, 32, "0/36d %05x", val & 0xfffff);
break;
case 13:
mas_readmem(MAS_BANK_D0, 0x32d, &val, 1);
lcd_puts(0, 0, "PLLOffset48");
snprintf(buf, 32, "0/32d %05x", val & 0xfffff);
break;
case 14:
mas_readmem(MAS_BANK_D0, 0x36e, &val, 1);
lcd_puts(0, 0, "PLLOffset44");
snprintf(buf, 32, "0/36e %05x", val & 0xfffff);
break;
case 15:
mas_readmem(MAS_BANK_D0, 0x32e, &val, 1);
lcd_puts(0, 0, "PLLOffset44");
snprintf(buf, 32, "0/32e %05x", val & 0xfffff);
break;
case 16:
mas_readmem(MAS_BANK_D0, 0x36f, &val, 1);
lcd_puts(0, 0, "OutputConf ");
snprintf(buf, 32, "0/36f %05x", val & 0xfffff);
break;
case 17:
mas_readmem(MAS_BANK_D0, 0x32f, &val, 1);
lcd_puts(0, 0, "OutputConf ");
snprintf(buf, 32, "0/32f %05x", val & 0xfffff);
break;
case 18:
mas_readmem(MAS_BANK_D1, 0x7f8, &val, 1);
lcd_puts(0, 0, "LL Gain ");
snprintf(buf, 32, "1/7f8 %05x", val & 0xfffff);
break;
case 19:
mas_readmem(MAS_BANK_D1, 0x7f9, &val, 1);
lcd_puts(0, 0, "LR Gain ");
snprintf(buf, 32, "1/7f9 %05x", val & 0xfffff);
break;
case 20:
mas_readmem(MAS_BANK_D1, 0x7fa, &val, 1);
lcd_puts(0, 0, "RL Gain ");
snprintf(buf, 32, "1/7fa %05x", val & 0xfffff);
break;
case 21:
mas_readmem(MAS_BANK_D1, 0x7fb, &val, 1);
lcd_puts(0, 0, "RR Gain ");
snprintf(buf, 32, "1/7fb %05x", val & 0xfffff);
break;
case 22:
lcd_puts(0, 0, "L Trailbits");
snprintf(buf, 32, "c5: %05x ", mas_readreg(0xc5) & 0xfffff);
break;
case 23:
lcd_puts(0, 0, "R Trailbits");
snprintf(buf, 32, "c6: %05x ", mas_readreg(0xc6) & 0xfffff);
break;
}
lcd_puts(0, 1, buf);
button = button_get_w_tmo(HZ/5);
switch(button)
{
case BUTTON_STOP:
return false;
case BUTTON_LEFT:
currval--;
if(currval < 0)
currval = 23;
break;
case BUTTON_RIGHT:
currval++;
if(currval > 23)
currval = 0;
break;
case BUTTON_PLAY:
pll_toggle = !pll_toggle;
if(pll_toggle)
{
/* 14.31818 MHz crystal */
pll48 = 0x5d9d0;
pll44 = 0xfffceceb;
config = 0;
}
else
{
/* 14.725 MHz crystal */
pll48 = 0x2d0de;
pll44 = 0xfffa2319;
config = 0;
}
mas_writemem(MAS_BANK_D0, 0x32d, &pll48, 1);
mas_writemem(MAS_BANK_D0, 0x32e, &pll44, 1);
mas_writemem(MAS_BANK_D0, 0x32f, &config, 1);
mas_run(0x475);
break;
}
}
return false;
}
#endif
static bool view_runtime(void)
{
char s[32];
bool done = false;
int state = 1;
while(!done)
{
int y=0;
int t;
int key;
lcd_clear_display();
#ifdef HAVE_LCD_BITMAP
lcd_puts(0, y++, "Running time:");
y++;
#endif
if (state & 1) {
t = global_settings.runtime;
lcd_puts(0, y++, "Current time");
}
else {
t = global_settings.topruntime;
lcd_puts(0, y++, "Top time");
}
snprintf(s, sizeof(s), "%dh %dm %ds",
t / 3600, (t % 3600) / 60, t % 60);
lcd_puts(0, y++, s);
lcd_update();
/* Wait for a key to be pushed */
key = button_get_w_tmo(HZ*5);
switch(key) {
#ifdef HAVE_PLAYER_KEYPAD
case BUTTON_STOP | BUTTON_REL:
#else
case BUTTON_OFF | BUTTON_REL:
#endif
done = true;
break;
case BUTTON_LEFT:
case BUTTON_RIGHT:
if (state == 1)
state = 2;
else
state = 1;
break;
case BUTTON_PLAY:
lcd_clear_display();
lcd_puts(0,0,"Clear time?");
lcd_puts(0,1,"PLAY = Yes");
lcd_update();
while (1) {
key = button_get_w_tmo(HZ*10);
if ( key & BUTTON_REL )
continue;
if ( key == BUTTON_PLAY ) {
if ( state == 1 )
global_settings.runtime = 0;
else
global_settings.topruntime = 0;
}
break;
}
break;
}
}
return false;
}
static bool dbg_disk_info(void)
{
char buf[128];
bool done = false;
int i;
int page = 0;
const int max_page = 3;
unsigned short* identify_info = ata_get_identify();
while(!done)
{
int y=0;
int key;
lcd_clear_display();
#ifdef HAVE_LCD_BITMAP
lcd_puts(0, y++, "Disk info:");
y++;
#endif
switch (page) {
case 0:
for (i=0; i < 20; i++)
((unsigned short*)buf)[i]=identify_info[i+27];
buf[40]=0;
/* kill trailing space */
for (i=39; i && buf[i]==' '; i--)
buf[i] = 0;
lcd_puts(0, y++, "Model");
lcd_puts_scroll(0, y++, buf);
break;
case 1:
for (i=0; i < 4; i++)
((unsigned short*)buf)[i]=identify_info[i+23];
buf[8]=0;
lcd_puts(0, y++, "Firmware");
lcd_puts(0, y++, buf);
break;
case 2:
snprintf(buf, sizeof buf, "%d MB",
((unsigned)identify_info[61] << 16 |
(unsigned)identify_info[60]) / 2048 );
lcd_puts(0, y++, "Size");
lcd_puts(0, y++, buf);
break;
case 3: {
unsigned int free;
fat_size( NULL, &free );
snprintf(buf, sizeof buf, "%d MB", free / 1024 );
lcd_puts(0, y++, "Free");
lcd_puts(0, y++, buf);
break;
}
case 4:
snprintf(buf, sizeof buf, "%d ms", ata_spinup_time * (1000/HZ));
lcd_puts(0, y++, "Spinup time");
lcd_puts(0, y++, buf);
break;
}
lcd_update();
/* Wait for a key to be pushed */
key = button_get_w_tmo(HZ*5);
switch(key) {
#ifdef HAVE_PLAYER_KEYPAD
case BUTTON_STOP | BUTTON_REL:
#else
case BUTTON_OFF | BUTTON_REL:
#endif
done = true;
break;
case BUTTON_LEFT:
if (--page < 0)
page = max_page;
break;
case BUTTON_RIGHT:
if (++page > max_page)
page = 0;
break;
case BUTTON_PLAY:
if (page == 3) {
mpeg_stop(); /* stop playback, to avoid disk access */
lcd_clear_display();
lcd_puts(0,0,"Scanning");
lcd_puts(0,1,"disk...");
lcd_update();
fat_recalc_free();
}
break;
}
lcd_stop_scroll();
}
return false;
}
bool debug_menu(void)
{
int m;
bool result;
struct menu_items items[] = {
{ "View I/O ports", dbg_ports },
#ifdef HAVE_LCD_BITMAP
#ifdef HAVE_RTC
{ "View/clr RTC RAM", dbg_rtc },
#endif /* HAVE_RTC */
#endif /* HAVE_LCD_BITMAP */
{ "View OS stacks", dbg_os },
#ifdef HAVE_MAS3507D
{ "View MAS info", dbg_mas_info },
#endif
{ "View MAS regs", dbg_mas },
#ifdef HAVE_MAS3587F
{ "View MAS codec", dbg_mas_codec },
#endif
#ifdef HAVE_LCD_BITMAP
{ "View battery", view_battery },
#endif
{ "View HW info", dbg_hw_info },
{ "View partitions", dbg_partitions },
{ "View disk info", dbg_disk_info },
#ifdef HAVE_LCD_BITMAP
{ "View mpeg thread", dbg_mpeg_thread },
#ifdef PM_DEBUG
{ "pm histogram", peak_meter_histogram},
#endif /* PM_DEBUG */
#endif /* HAVE_LCD_BITMAP */
{ "View runtime", view_runtime },
};
m=menu_init( items, sizeof items / sizeof(struct menu_items) );
result = menu_run(m);
menu_exit(m);
return result;
}
#endif /* SIMULATOR */