rockbox/firmware/drivers/adc.c

375 lines
9.1 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2002 by Linus Nielsen Feltzing
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "cpu.h"
#include "system.h"
#include "kernel.h"
#include "thread.h"
#include "string.h"
#include "adc.h"
#include "pcf50605.h"
#include "pcf50606.h"
#if CONFIG_CPU == SH7034
/**************************************************************************
** The A/D conversion is done every tick, in three steps:
**
** 1) On the tick interrupt, the conversion of channels 0-3 is started, and
** the A/D interrupt is enabled.
**
** 2) After the conversion is done (approx. 256*4 cycles later), an interrupt
** is generated at level 1, which is the same level as the tick interrupt
** itself. This interrupt will be pending until the tick interrupt is
** finished.
** When the A/D interrupt is finally served, it will read the results
** from the first conversion and start the conversion of channels 4-7.
**
** 3) When the conversion of channels 4-7 is finished, the interrupt is
** triggered again, and the results are read. This time, no new
** conversion is started, it will be done in the next tick interrupt.
**
** Thus, each channel will be updated HZ times per second.
**
*************************************************************************/
static int current_channel;
static unsigned short adcdata[NUM_ADC_CHANNELS];
static void adc_tick(void)
{
/* Start a conversion of channel group 0. This will trigger an interrupt,
and the interrupt handler will take care of group 1. */
current_channel = 0;
ADCSR = ADCSR_ADST | ADCSR_ADIE | ADCSR_SCAN | 3;
}
#pragma interrupt
void ADITI(void)
{
if(ADCSR & ADCSR_ADF)
{
ADCSR = 0;
if(current_channel == 0)
{
adcdata[0] = ADDRA >> 6;
adcdata[1] = ADDRB >> 6;
adcdata[2] = ADDRC >> 6;
adcdata[3] = ADDRD >> 6;
current_channel = 4;
/* Convert the next group */
ADCSR = ADCSR_ADST | ADCSR_ADIE | ADCSR_SCAN | 7;
}
else
{
adcdata[4] = ADDRA >> 6;
adcdata[5] = ADDRB >> 6;
adcdata[6] = ADDRC >> 6;
adcdata[7] = ADDRD >> 6;
}
}
}
unsigned short adc_read(int channel)
{
return adcdata[channel];
}
void adc_init(void)
{
ADCR = 0x7f; /* No external trigger; other bits should be 1 according
to the manual... */
ADCSR = 0;
current_channel = 0;
/* Enable the A/D IRQ on level 1 */
IPRE = (IPRE & 0xf0ff) | 0x0100;
tick_add_task(adc_tick);
sleep(2); /* Ensure valid readings when adc_init returns */
}
#elif CONFIG_CPU == MCF5249
static unsigned char adcdata[NUM_ADC_CHANNELS];
#ifdef IRIVER_H300_SERIES
static int channelnum[] =
{
5, /* ADC_BUTTONS (ADCIN2) */
6, /* ADC_REMOTE (ADCIN3) */
0, /* ADC_BATTERY (BATVOLT, resistive divider) */
2, /* ADC_REMOTEDETECT (ADCIN1, resistive divider) */
};
unsigned short adc_scan(int channel)
{
unsigned char data;
pcf50606_write(0x2f, 0x80 | (channelnum[channel] << 1) | 1);
data = pcf50606_read(0x30);
adcdata[channel] = data;
return data;
}
#else
#define CS_LO and_l(~0x80, &GPIO_OUT)
#define CS_HI or_l(0x80, &GPIO_OUT)
#define CLK_LO and_l(~0x00400000, &GPIO_OUT)
#define CLK_HI or_l(0x00400000, &GPIO_OUT)
#define DO (GPIO_READ & 0x80000000)
#define DI_LO and_l(~0x00200000, &GPIO_OUT)
#define DI_HI or_l(0x00200000, &GPIO_OUT)
/* delay loop */
#define DELAY do { int _x; for(_x=0;_x<10;_x++);} while (0)
unsigned short adc_scan(int channel)
{
unsigned char data = 0;
int i;
CS_LO;
DI_HI; /* Start bit */
DELAY;
CLK_HI;
DELAY;
CLK_LO;
DI_HI; /* Single channel */
DELAY;
CLK_HI;
DELAY;
CLK_LO;
if(channel & 1) /* LSB of channel number */
DI_HI;
else
DI_LO;
DELAY;
CLK_HI;
DELAY;
CLK_LO;
if(channel & 2) /* MSB of channel number */
DI_HI;
else
DI_LO;
DELAY;
CLK_HI;
DELAY;
CLK_LO;
DELAY;
for(i = 0;i < 8;i++) /* 8 bits of data */
{
CLK_HI;
DELAY;
CLK_LO;
DELAY;
data <<= 1;
data |= DO?1:0;
}
CS_HI;
adcdata[channel] = data;
return data;
}
#endif
unsigned short adc_read(int channel)
{
return adcdata[channel];
}
static int adc_counter;
static void adc_tick(void)
{
if(++adc_counter == HZ)
{
adc_counter = 0;
adc_scan(ADC_BATTERY);
adc_scan(ADC_REMOTEDETECT); /* Temporary. Remove when the remote
detection feels stable. */
}
}
void adc_init(void)
{
#ifndef IRIVER_H300_SERIES
or_l(0x80600080, &GPIO_FUNCTION); /* GPIO7: CS
GPIO21: Data In (to the ADC)
GPIO22: CLK
GPIO31: Data Out (from the ADC) */
or_l(0x00600080, &GPIO_ENABLE);
or_l(0x80, &GPIO_OUT); /* CS high */
and_l(~0x00400000, &GPIO_OUT); /* CLK low */
#endif
adc_scan(ADC_BATTERY);
tick_add_task(adc_tick);
}
#elif CONFIG_CPU == TCC730
/**************************************************************************
**
** Each channel will be updated HZ/CHANNEL_ORDER_SIZE times per second.
**
*************************************************************************/
static int current_channel;
static int current_channel_idx;
static unsigned short adcdata[NUM_ADC_CHANNELS];
#define CHANNEL_ORDER_SIZE 2
static int channel_order[CHANNEL_ORDER_SIZE] = {6,7};
static void adc_tick(void)
{
if (ADCON & (1 << 3)) {
/* previous conversion finished? */
adcdata[current_channel] = ADDATA >> 6;
if (++current_channel_idx >= CHANNEL_ORDER_SIZE)
current_channel_idx = 0;
current_channel = channel_order[current_channel_idx];
int adcon = (current_channel << 4) | 1;
ADCON = adcon;
}
}
unsigned short adc_read(int channel)
{
return adcdata[channel];
}
void adc_init(void)
{
current_channel_idx = 0;
current_channel = channel_order[current_channel_idx];
ADCON = (current_channel << 4) | 1;
tick_add_task(adc_tick);
sleep(2); /* Ensure valid readings when adc_init returns */
}
#elif CONFIG_CPU == PP5020 || (CONFIG_CPU == PP5002)
struct adc_struct {
long last_read;
unsigned short (*conversion)(unsigned short data);
short channelnum;
unsigned short data;
};
static struct adc_struct adcdata[NUM_ADC_CHANNELS] IDATA_ATTR;
/* This takes 10 bit ADC data from the subtractor circuit and scales it to
* a 13 bit value corresponding to 0-5.4v, the resulting range is 13FB-17FA,
* representing 3.1-5.4v */
static unsigned short ten_bit_subtractor(unsigned short data) {
return (data<<2)+0x13FB;
}
static unsigned short _adc_scan(struct adc_struct *adc)
{
unsigned short data = pcf50605_a2d_read(adc->channelnum);
if (adc->conversion) {
data = adc->conversion(data);
}
adc->data = data;
return data;
}
/* Force an ADC scan _now_ */
unsigned short adc_scan(int channel) {
return _adc_scan(&adcdata[channel]);
}
/* Retrieve the ADC value, only does a scan once per second or less */
unsigned short adc_read(int channel)
{
struct adc_struct *adc = &adcdata[channel];
if (adc->last_read + HZ < current_tick) {
adc->last_read = current_tick;
return _adc_scan(adc);
} else {
return adc->data;
}
}
void adc_init(void)
{
struct adc_struct *adc_battery = &adcdata[ADC_BATTERY];
adc_battery->channelnum = 0x3; /* ADCVIN1, subtractor */
adc_battery->conversion = ten_bit_subtractor;
adc_battery->last_read = current_tick;
_adc_scan(adc_battery);
}
#elif CONFIG_CPU == PNX0101
static unsigned short adcdata[NUM_ADC_CHANNELS];
unsigned short adc_read(int channel)
{
return adcdata[channel];
}
static void adc_tick(void)
{
if (ADCST & 0x10) {
adcdata[0] = ADCCH0 & 0x3ff;
adcdata[1] = ADCCH1 & 0x3ff;
adcdata[2] = ADCCH2 & 0x3ff;
adcdata[3] = ADCCH3 & 0x3ff;
adcdata[4] = ADCCH4 & 0x3ff;
ADCST = 0xa;
}
}
void adc_init(void)
{
ADCR24 = 0xaaaaa;
ADCR28 = 0;
ADCST = 2;
ADCST = 0xa;
while (!(ADCST & 0x10));
adc_tick();
tick_add_task(adc_tick);
}
#endif