rockbox/firmware/drivers/fat.c

1152 lines
33 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2002 by Linus Nielsen Feltzing
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include <ctype.h>
#ifdef DISK_WRITE
#include <time.h>
#include <sys/timeb.h>
#endif
#include <stdbool.h>
#include "fat.h"
#include "ata.h"
#include "debug.h"
#include "system.h"
#define BYTES2INT16(array,pos) \
(array[pos] | (array[pos+1] << 8 ))
#define BYTES2INT32(array,pos) \
(array[pos] | (array[pos+1] << 8 ) | \
(array[pos+2] << 16 ) | (array[pos+3] << 24 ))
#define NUM_ROOT_DIR_ENTRIES 512
#define NUM_FATS 2
#define NUM_RESERVED_SECTORS 1
#define NUM_BLOCKS 10000
#define FATTYPE_FAT12 0
#define FATTYPE_FAT16 1
#define FATTYPE_FAT32 2
/* BPB offsets; generic */
#define BS_JMPBOOT 0
#define BS_OEMNAME 3
#define BPB_BYTSPERSEC 11
#define BPB_SECPERCLUS 13
#define BPB_RSVDSECCNT 14
#define BPB_NUMFATS 16
#define BPB_ROOTENTCNT 17
#define BPB_TOTSEC16 19
#define BPB_MEDIA 21
#define BPB_FATSZ16 22
#define BPB_SECPERTRK 24
#define BPB_NUMHEADS 26
#define BPB_HIDDSEC 28
#define BPB_TOTSEC32 32
/* fat12/16 */
#define BS_DRVNUM 36
#define BS_RESERVED1 37
#define BS_BOOTSIG 38
#define BS_VOLID 39
#define BS_VOLLAB 43
#define BS_FILSYSTYPE 54
/* fat32 */
#define BPB_FATSZ32 36
#define BPB_EXTFLAGS 40
#define BPB_FSVER 42
#define BPB_ROOTCLUS 44
#define BPB_FSINFO 48
#define BPB_BKBOOTSEC 50
#define BS_32_DRVNUM 64
#define BS_32_BOOTSIG 66
#define BS_32_VOLID 67
#define BS_32_VOLLAB 71
#define BS_32_FILSYSTYPE 82
#define BPB_LAST_WORD 510
/* attributes */
#define FAT_ATTR_LONG_NAME (FAT_ATTR_READ_ONLY | FAT_ATTR_HIDDEN | \
FAT_ATTR_SYSTEM | FAT_ATTR_VOLUME_ID)
#define FAT_ATTR_LONG_NAME_MASK (FAT_ATTR_READ_ONLY | FAT_ATTR_HIDDEN | \
FAT_ATTR_SYSTEM | FAT_ATTR_VOLUME_ID | \
FAT_ATTR_DIRECTORY | FAT_ATTR_ARCHIVE )
#define FATDIR_NAME 0
#define FATDIR_ATTR 11
#define FATDIR_NTRES 12
#define FATDIR_CRTTIMETENTH 13
#define FATDIR_CRTTIME 14
#define FATDIR_CRTDATE 16
#define FATDIR_LSTACCDATE 18
#define FATDIR_FSTCLUSHI 20
#define FATDIR_WRTTIME 22
#define FATDIR_WRTDATE 24
#define FATDIR_FSTCLUSLO 26
#define FATDIR_FILESIZE 28
struct fsinfo {
int freecount; /* last known free cluster count */
int nextfree; /* first cluster to start looking for free clusters,
or 0xffffffff for no hint */
};
/* fsinfo offsets */
#define FSINFO_FREECOUNT 488
#define FSINFO_NEXTFREE 492
struct bpb
{
char bs_oemname[9]; /* OEM string, ending with \0 */
int bpb_bytspersec; /* Bytes per sectory, typically 512 */
int bpb_secperclus; /* Sectors per cluster */
int bpb_rsvdseccnt; /* Number of reserved sectors */
int bpb_numfats; /* Number of FAT structures, typically 2 */
int bpb_rootentcnt; /* Number of dir entries in the root */
int bpb_totsec16; /* Number of sectors on the volume (old 16-bit) */
int bpb_media; /* Media type (typically 0xf0 or 0xf8) */
int bpb_fatsz16; /* Number of used sectors per FAT structure */
int bpb_secpertrk; /* Number of sectors per track */
int bpb_numheads; /* Number of heads */
int bpb_hiddsec; /* Hidden sectors before the volume */
unsigned int bpb_totsec32; /* Number of sectors on the volume
(new 32-bit) */
int last_word; /* 0xAA55 */
/**** FAT12/16 specific *****/
int bs_drvnum; /* Drive number */
int bs_bootsig; /* Is 0x29 if the following 3 fields are valid */
unsigned int bs_volid; /* Volume ID */
char bs_vollab[12]; /* Volume label, 11 chars plus \0 */
char bs_filsystype[9]; /* File system type, 8 chars plus \0 */
/**** FAT32 specific *****/
int bpb_fatsz32;
int bpb_extflags;
int bpb_fsver;
int bpb_rootclus;
int bpb_fsinfo;
int bpb_bkbootsec;
/* variables for internal use */
int fatsize;
int totalsectors;
int rootdirsector;
int firstdatasector;
int startsector;
};
static struct bpb fat_bpb;
static int first_sector_of_cluster(int cluster);
static int bpb_is_sane(void);
static void *cache_fat_sector(int secnum);
#ifdef DISK_WRITE
static unsigned int getcurrdostime(unsigned short *dosdate,
unsigned short *dostime,
unsigned char *dostenth);
static int create_dos_name(unsigned char *name, unsigned char *newname);
#endif
#define FAT_CACHE_SIZE 0x20
#define FAT_CACHE_MASK (FAT_CACHE_SIZE-1)
struct fat_cache_entry
{
int secnum;
bool inuse;
bool dirty;
};
static char fat_cache_sectors[FAT_CACHE_SIZE][SECTOR_SIZE];
static struct fat_cache_entry fat_cache[FAT_CACHE_SIZE];
/* sectors cache for longname use */
static unsigned char lastsector[SECTOR_SIZE];
static unsigned char lastsector2[SECTOR_SIZE];
static int sec2cluster(int sec)
{
if ( sec < fat_bpb.firstdatasector )
{
DEBUGF( "sec2cluster() - Bad sector number (%d)\n", sec);
return -1;
}
return ((sec - fat_bpb.firstdatasector) / fat_bpb.bpb_secperclus) + 2;
}
static int cluster2sec(int cluster)
{
int max_cluster = fat_bpb.totalsectors -
fat_bpb.firstdatasector / fat_bpb.bpb_secperclus + 1;
if(cluster > max_cluster)
{
DEBUGF( "cluster2sec() - Bad cluster number (%d)\n",
cluster);
return -1;
}
return first_sector_of_cluster(cluster);
}
static int first_sector_of_cluster(int cluster)
{
return (cluster - 2) * fat_bpb.bpb_secperclus + fat_bpb.firstdatasector;
}
int fat_startsector(void)
{
return fat_bpb.startsector;
}
int fat_mount(int startsector)
{
unsigned char buf[SECTOR_SIZE];
int err;
int datasec;
int countofclusters;
int i;
for(i = 0;i < FAT_CACHE_SIZE;i++)
{
fat_cache[i].secnum = 8; /* We use a "safe" sector just in case */
fat_cache[i].inuse = false;
fat_cache[i].dirty = false;
}
/* Read the sector */
err = ata_read_sectors(startsector,1,buf);
if(err)
{
DEBUGF( "fat_mount() - Couldn't read BPB (error code %d)\n",
err);
return -1;
}
memset(&fat_bpb, 0, sizeof(struct bpb));
fat_bpb.startsector = startsector;
strncpy(fat_bpb.bs_oemname, &buf[BS_OEMNAME], 8);
fat_bpb.bs_oemname[8] = 0;
fat_bpb.bpb_bytspersec = BYTES2INT16(buf,BPB_BYTSPERSEC);
fat_bpb.bpb_secperclus = buf[BPB_SECPERCLUS];
fat_bpb.bpb_rsvdseccnt = BYTES2INT16(buf,BPB_RSVDSECCNT);
fat_bpb.bpb_numfats = buf[BPB_NUMFATS];
fat_bpb.bpb_rootentcnt = BYTES2INT16(buf,BPB_ROOTENTCNT);
fat_bpb.bpb_totsec16 = BYTES2INT16(buf,BPB_TOTSEC16);
fat_bpb.bpb_media = buf[BPB_MEDIA];
fat_bpb.bpb_fatsz16 = BYTES2INT16(buf,BPB_FATSZ16);
fat_bpb.bpb_fatsz32 = BYTES2INT32(buf,BPB_FATSZ32);
fat_bpb.bpb_secpertrk = BYTES2INT16(buf,BPB_SECPERTRK);
fat_bpb.bpb_numheads = BYTES2INT16(buf,BPB_NUMHEADS);
fat_bpb.bpb_hiddsec = BYTES2INT32(buf,BPB_HIDDSEC);
fat_bpb.bpb_totsec32 = BYTES2INT32(buf,BPB_TOTSEC32);
fat_bpb.last_word = BYTES2INT16(buf,BPB_LAST_WORD);
/* calculate a few commonly used values */
if (fat_bpb.bpb_fatsz16 != 0)
fat_bpb.fatsize = fat_bpb.bpb_fatsz16;
else
fat_bpb.fatsize = fat_bpb.bpb_fatsz32;
if (fat_bpb.bpb_totsec16 != 0)
fat_bpb.totalsectors = fat_bpb.bpb_totsec16;
else
fat_bpb.totalsectors = fat_bpb.bpb_totsec32;
fat_bpb.firstdatasector = fat_bpb.bpb_rsvdseccnt +
fat_bpb.bpb_numfats * fat_bpb.fatsize;
/* Determine FAT type */
datasec = fat_bpb.totalsectors - fat_bpb.firstdatasector;
countofclusters = datasec / fat_bpb.bpb_secperclus;
#ifdef TEST_FAT
/*
we are sometimes testing with "illegally small" fat32 images,
so we don't use the proper fat32 test case for test code
*/
if ( fat_bpb.bpb_fatsz16 )
#else
if ( countofclusters < 65525 )
#endif
{
DEBUGF("This is not FAT32. Go away!\n");
return -1;
}
fat_bpb.bpb_extflags = BYTES2INT16(buf,BPB_EXTFLAGS);
fat_bpb.bpb_fsver = BYTES2INT16(buf,BPB_FSVER);
fat_bpb.bpb_rootclus = BYTES2INT32(buf,BPB_ROOTCLUS);
fat_bpb.bpb_fsinfo = BYTES2INT16(buf,BPB_FSINFO);
fat_bpb.bpb_bkbootsec = BYTES2INT16(buf,BPB_BKBOOTSEC);
fat_bpb.bs_drvnum = buf[BS_32_DRVNUM];
fat_bpb.bs_bootsig = buf[BS_32_BOOTSIG];
if(fat_bpb.bs_bootsig == 0x29)
{
fat_bpb.bs_volid = BYTES2INT32(buf,BS_32_VOLID);
strncpy(fat_bpb.bs_vollab, &buf[BS_32_VOLLAB], 11);
strncpy(fat_bpb.bs_filsystype, &buf[BS_32_FILSYSTYPE], 8);
}
if (bpb_is_sane() < 0)
{
DEBUGF( "fat_mount() - BPB is not sane\n");
return -1;
}
fat_bpb.rootdirsector = cluster2sec(fat_bpb.bpb_rootclus);
return 0;
}
static int bpb_is_sane(void)
{
if(fat_bpb.bpb_bytspersec != 512)
{
DEBUGF( "bpb_is_sane() - Error: sector size is not 512 (%d)\n",
fat_bpb.bpb_bytspersec);
return -1;
}
if(fat_bpb.bpb_secperclus * fat_bpb.bpb_bytspersec > 32768)
{
DEBUGF( "bpb_is_sane() - Warning: cluster size is larger than 32K "
"(%d * %d = %d)\n",
fat_bpb.bpb_bytspersec, fat_bpb.bpb_secperclus,
fat_bpb.bpb_bytspersec * fat_bpb.bpb_secperclus);
}
if(fat_bpb.bpb_rsvdseccnt != 1)
{
DEBUGF( "bpb_is_sane() - Warning: Reserved sectors is not 1 (%d)\n",
fat_bpb.bpb_rsvdseccnt);
}
if(fat_bpb.bpb_numfats != 2)
{
DEBUGF( "bpb_is_sane() - Warning: NumFATS is not 2 (%d)\n",
fat_bpb.bpb_numfats);
}
if(fat_bpb.bpb_rootentcnt != 512)
{
DEBUGF( "bpb_is_sane() - Warning: RootEntCnt is not 512 (%d)\n",
fat_bpb.bpb_rootentcnt);
}
if(fat_bpb.bpb_media != 0xf0 && fat_bpb.bpb_media < 0xf8)
{
DEBUGF( "bpb_is_sane() - Warning: Non-standard "
"media type (0x%02x)\n",
fat_bpb.bpb_media);
}
if(fat_bpb.last_word != 0xaa55)
{
DEBUGF( "bpb_is_sane() - Error: Last word is not "
"0xaa55 (0x%04x)\n", fat_bpb.last_word);
return -1;
}
return 0;
}
static void *cache_fat_sector(int secnum)
{
int cache_index = secnum & FAT_CACHE_MASK;
/* Delete the cache entry if it isn't the sector we want */
if(fat_cache[cache_index].inuse &&
fat_cache[cache_index].secnum != secnum)
{
#ifdef WRITE
/* Write back if it is dirty */
if(fat_cache[cache_index].dirty)
{
if(ata_write_sectors(secnum + fat_bpb.startsector, 1, sec))
{
panic("cache_fat_sector() - Could"
" not write sector %d\n",
secnum);
}
}
fat_cache[cache_index].secnum = 8; /* Normally an unused sector */
fat_cache[cache_index].dirty = false;
#endif
fat_cache[cache_index].inuse = false;
}
/* Load the sector if it is not cached */
if(!fat_cache[cache_index].inuse)
{
if(ata_read_sectors(secnum + fat_bpb.startsector,1,
fat_cache_sectors[cache_index]))
{
DEBUGF( "cache_fat_sector() - Could not read sector %d\n", secnum);
return NULL;
}
fat_cache[cache_index].inuse = true;
fat_cache[cache_index].secnum = secnum;
}
return fat_cache_sectors[cache_index];
}
#ifdef DISK_WRITE
static int update_entry(int entry, unsigned int val)
{
unsigned long *sec;
int fatoffset;
int thisfatsecnum;
int thisfatentoffset;
fatoffset = entry * 4;
thisfatsecnum = fatoffset / fat_bpb.bpb_bytspersec + fat_bpb.bpb_rsvdseccnt;
thisfatentoffset = fatoffset % fat_bpb.bpb_bytspersec;
/* Load the sector if it is not cached */
sec = cache_fat_sector(thisfatsecnum);
if(!sec)
{
DEBUGF( "update_entry() - Could not cache sector %d\n",
thisfatsecnum);
return -1;
}
/* We can safely assume that the correct sector is in the cache,
so we mark it dirty without checking the sector number */
fat_cache[thisfatsecnum & FAT_CACHE_MASK].dirty = 1;
/* don't change top 4 bits */
sec[thisfatentoffset/sizeof(int)] &= 0xf000000;
sec[thisfatentoffset/sizeof(int)] |= val & 0x0fffffff;
return 0;
}
#endif
static int read_entry(int entry)
{
unsigned long *sec;
int fatoffset;
int thisfatsecnum;
int thisfatentoffset;
int val = -1;
fatoffset = entry * 4;
thisfatsecnum = fatoffset / fat_bpb.bpb_bytspersec + fat_bpb.bpb_rsvdseccnt;
thisfatentoffset = fatoffset % fat_bpb.bpb_bytspersec;
/* Load the sector if it is not cached */
sec = cache_fat_sector(thisfatsecnum);
if(!sec)
{
DEBUGF( "read_entry() - Could not cache sector %d\n",
thisfatsecnum);
return -1;
}
val = sec[thisfatentoffset/sizeof(int)];
val = SWAB32(val);
return val;
}
static int get_next_cluster(unsigned int cluster)
{
int next_cluster;
next_cluster = read_entry(cluster);
/* is this last cluster in chain? */
if ( next_cluster >= 0x0ffffff8 )
return 0;
else
return next_cluster;
}
#ifdef DISK_WRITE
static int flush_fat(struct bpb *bpb)
{
int i;
int err;
unsigned char *sec;
int secnum;
int fatsz;
unsigned short d, t;
char m;
fatsz = fat_bpb.fatsize;
for(i = 0;i < FAT_CACHE_SIZE;i++)
{
if(fat_cache[i].ptr && fat_cache[i].dirty)
{
secnum = fat_cache[i].secnum + fat_bpb.bpb_rsvdseccnt +
fat_bpb.startsector;
DEBUGF("Flushing FAT sector %d\n", secnum);
sec = fat_cache[i].ptr;
/* Write to the first FAT */
err = ata_write_sectors(secnum, 1, sec);
if(err)
{
DEBUGF( "flush_fat() - Couldn't write"
" sector (%d)\n", secnum);
return -1;
}
/* Write to the second FAT */
err = ata_write_sectors(secnum + fatsz, 1, sec);
if(err)
{
DEBUGF( "flush_fat() - Couldn't write"
" sector (%d)\n", secnum + fatsz);
return -1;
}
fat_cache[i].dirty = 0;
}
}
getcurrdostime(&d, &t, &m);
return 0;
}
static unsigned int getcurrdostime(unsigned short *dosdate,
unsigned short *dostime,
unsigned char *dostenth)
{
struct timeb tb;
struct tm *tm;
ftime(&tb);
tm = localtime(&tb.time);
*dosdate = ((tm->tm_year - 80) << 9) |
((tm->tm_mon + 1) << 5) |
(tm->tm_mday);
*dostime = (tm->tm_hour << 11) |
(tm->tm_min << 5) |
(tm->tm_sec >> 1);
*dostenth = (tm->tm_sec & 1) * 100 + tb.millitm / 10;
return 0;
}
static int add_dir_entry(unsigned int currdir, struct fat_direntry *de)
{
unsigned char buf[SECTOR_SIZE];
unsigned char *eptr;
int i;
int err;
unsigned int sec;
unsigned int sec_cnt;
int need_to_update_last_empty_marker = 0;
int is_rootdir = (currdir == 0);
int done = 0;
unsigned char firstbyte;
if(is_rootdir)
{
sec = fat_bpb.rootdirsector;
}
else
{
sec = first_sector_of_cluster(currdir);
}
sec_cnt = 0;
while(!done)
{
/* The root dir has a fixed size */
if(is_rootdir)
{
if(sec_cnt >= fat_bpb.bpb_rootentcnt * 32 / fat_bpb.bpb_bytspersec)
{
/* We have reached the last sector of the root dir */
if(need_to_update_last_empty_marker)
{
/* Since the directory is full, there is no room for
a marker, so we just exit */
return 0;
}
else
{
DEBUGF( "add_dir_entry() -"
" Root dir is full\n");
return -1;
}
}
}
else
{
if(sec_cnt >= fat_bpb.bpb_secperclus)
{
/* We have reached the end of this cluster */
DEBUGF("Moving to the next cluster...");
currdir = get_next_cluster(currdir);
DEBUGF("new cluster is %d\n", currdir);
if(!currdir)
{
/* This was the last in the chain,
we have to allocate a new cluster */
/* TODO */
}
}
}
DEBUGF("Reading sector %d...\n", sec);
/* Read the next sector in the current dir */
err = ata_read_sectors(sec + fat_bpb.startsector,1,buf);
if(err)
{
DEBUGF( "add_dir_entry() - Couldn't read dir sector"
" (error code %d)\n", err);
return -1;
}
if(need_to_update_last_empty_marker)
{
/* All we need to do is to set the first entry to 0 */
DEBUGF("Clearing the first entry in sector %d\n", sec);
buf[0] = 0;
done = 1;
}
else
{
/* Look for a free slot */
for(i = 0;i < SECTOR_SIZE;i+=32)
{
firstbyte = buf[i];
if(firstbyte == 0xe5 || firstbyte == 0)
{
DEBUGF("Found free slot at entry %d in sector %d\n",
i/32, sec);
eptr = &buf[i];
memset(eptr, 0, 32);
strncpy(&eptr[FATDIR_NAME], de->name, 11);
eptr[FATDIR_ATTR] = de->attr;
eptr[FATDIR_NTRES] = 0;
eptr[FATDIR_CRTTIMETENTH] = de->crttimetenth;
eptr[FATDIR_CRTDATE] = de->crtdate & 0xff;
eptr[FATDIR_CRTDATE+1] = de->crtdate >> 8;
eptr[FATDIR_CRTTIME] = de->crttime & 0xff;
eptr[FATDIR_CRTTIME+1] = de->crttime >> 8;
eptr[FATDIR_WRTDATE] = de->wrtdate & 0xff;
eptr[FATDIR_WRTDATE+1] = de->wrtdate >> 8;
eptr[FATDIR_WRTTIME] = de->wrttime & 0xff;
eptr[FATDIR_WRTTIME+1] = de->wrttime >> 8;
eptr[FATDIR_FILESIZE] = de->filesize & 0xff;
eptr[FATDIR_FILESIZE+1] = (de->filesize >> 8) & 0xff;
eptr[FATDIR_FILESIZE+2] = (de->filesize >> 16) & 0xff;
eptr[FATDIR_FILESIZE+3] = (de->filesize >> 24) & 0xff;
/* Advance the last_empty_entry marker */
if(firstbyte == 0)
{
i += 32;
if(i < SECTOR_SIZE)
{
buf[i] = 0;
/* We are done */
done = 1;
}
else
{
/* We must fill in the first entry
in the next sector */
need_to_update_last_empty_marker = 1;
}
}
err = ata_write_sectors(sec + fat_bpb.startsector,1,buf);
if(err)
{
DEBUGF( "add_dir_entry() - "
" Couldn't write dir"
" sector (error code %d)\n", err);
return -1;
}
break;
}
}
}
sec++;
sec_cnt++;
}
return 0;
}
unsigned char char2dos(unsigned char c)
{
switch(c)
{
case 0xe5: /* Special kanji character */
c = 0x05;
break;
case 0x22:
case 0x2a:
case 0x2b:
case 0x2c:
case 0x2e:
case 0x3a:
case 0x3b:
case 0x3c:
case 0x3d:
case 0x3e:
case 0x3f:
case 0x5b:
case 0x5c:
case 0x5d:
case 0x7c:
/* Illegal name */
c = 0;
break;
default:
if(c < 0x20)
{
/* Illegal name */
c = 0;
}
break;
}
return c;
}
static int create_dos_name(unsigned char *name, unsigned char *newname)
{
unsigned char n[12];
unsigned char c;
int i;
char *ext;
if(strlen(name) > 12)
{
return -1;
}
strcpy(n, name);
ext = strchr(n, '.');
if(ext)
{
*ext++ = 0;
}
/* The file name is either empty, or there was only an extension.
In either case it is illegal. */
if(n[0] == 0)
{
return -1;
}
/* Name part */
for(i = 0;n[i] && (i < 8);i++)
{
c = char2dos(n[i]);
if(c)
{
newname[i] = toupper(c);
}
}
while(i < 8)
{
newname[i++] = ' ';
}
/* Extension part */
for(i = 0;ext && ext[i] && (i < 3);i++)
{
c = char2dos(ext[i]);
if(c)
{
newname[8+i] = toupper(c);
}
}
while(i < 3)
{
newname[8+i++] = ' ';
}
return 0;
}
int fat_create_dir(unsigned int currdir, char *name)
{
struct fat_direntry de;
int err;
DEBUGF("fat_create_file()\n");
memset(&de, 0, sizeof(struct fat_direntry));
if(create_dos_name(name, de.name) < 0)
{
DEBUGF( "fat_create_file() - Illegal file name (%s)\n", name);
return -1;
}
getcurrdostime(&de.crtdate, &de.crttime, &de.crttimetenth);
de.wrtdate = de.crtdate;
de.wrttime = de.crttime;
de.filesize = 0;
de.attr = FAT_ATTR_DIRECTORY;
err = add_dir_entry(currdir, &de);
return 0;
}
int fat_create_file(unsigned int currdir, char *name)
{
struct fat_direntry de;
int err;
DEBUGF("fat_create_file()\n");
memset(&de, 0, sizeof(struct fat_direntry));
if(create_dos_name(name, de.name) < 0)
{
DEBUGF( "fat_create_file() - Illegal file name (%s)\n", name);
return -1;
}
getcurrdostime(&de.crtdate, &de.crttime, &de.crttimetenth);
de.wrtdate = de.crtdate;
de.wrttime = de.crttime;
de.filesize = 0;
err = add_dir_entry(currdir, &de);
return err;
}
#endif
static int parse_direntry(struct fat_direntry *de, unsigned char *buf)
{
int i=0,j=0;
memset(de, 0, sizeof(struct fat_direntry));
de->attr = buf[FATDIR_ATTR];
de->crttimetenth = buf[FATDIR_CRTTIMETENTH];
de->crtdate = BYTES2INT16(buf,FATDIR_CRTDATE);
de->crttime = BYTES2INT16(buf,FATDIR_CRTTIME);
de->wrtdate = BYTES2INT16(buf,FATDIR_WRTDATE);
de->wrttime = BYTES2INT16(buf,FATDIR_WRTTIME);
de->filesize = BYTES2INT32(buf,FATDIR_FILESIZE);
de->firstcluster = BYTES2INT16(buf,FATDIR_FSTCLUSLO) |
(BYTES2INT16(buf,FATDIR_FSTCLUSHI) << 16);
/* fix the name */
for (i=0; (i<8) && (buf[FATDIR_NAME+i] != ' '); i++)
de->name[j++] = buf[FATDIR_NAME+i];
if ( buf[FATDIR_NAME+8] != ' ' ) {
de->name[j++] = '.';
for (i=8; (i<11) && (buf[FATDIR_NAME+i] != ' '); i++)
de->name[j++] = buf[FATDIR_NAME+i];
}
return 1;
}
int fat_open( unsigned int startcluster, struct fat_file *file)
{
file->firstcluster = startcluster;
file->nextcluster = startcluster;
file->nextsector = cluster2sec(startcluster);
file->sectornum = 0;
return 0;
}
int fat_read( struct fat_file *file, int sectorcount, void* buf )
{
int cluster = file->nextcluster;
int sector = file->nextsector;
int numsec = file->sectornum;
int first = sector, last = sector;
int err, i;
if ( sector == -1 )
return 0;
/* find sequential sectors and read them all at once */
for (i=0; i<sectorcount && sector>=0; i++ ) {
numsec++;
if ( numsec >= fat_bpb.bpb_secperclus ) {
cluster = get_next_cluster(cluster);
if (!cluster) {
/* end of file */
sector = -1;
}
else
{
sector = cluster2sec(cluster);
if (sector<0)
return -1;
numsec=0;
}
}
else
sector++;
if ( (sector != last+1) || /* not sequential any more? */
(i == sectorcount-1) || /* last sector requested? */
(last-first+1 == 256) ) { /* max 256 sectors per ata request */
int count = last-first+1;
err = ata_read_sectors(first + fat_bpb.startsector, count, buf);
if(err) {
DEBUGF( "fat_read() - Couldn't read sector %d"
" (error code %d)\n", sector,err);
return -1;
}
((char*)buf) += count * SECTOR_SIZE;
first = sector;
}
last = sector;
}
file->nextcluster = cluster;
file->nextsector = sector;
file->sectornum = numsec;
return sectorcount;
}
int fat_seek(struct fat_file *file, int seeksector )
{
int cluster = file->firstcluster;
int sector = cluster2sec(cluster);
int numsec = 0;
int i;
if ( seeksector ) {
for (i=0; i<seeksector; i++) {
numsec++;
if ( numsec >= fat_bpb.bpb_secperclus ) {
cluster = get_next_cluster(cluster);
if (!cluster)
{
/* end of file */
if (i == (seeksector-1))
{
/* seeksector is last sector in file */
sector = -1;
break;
}
else
/* attempting to seek beyond end of file */
return -1;
}
sector = cluster2sec(cluster);
if (sector<0)
return -2;
numsec=0;
}
else
sector++;
}
}
file->nextcluster = cluster;
file->nextsector = sector;
file->sectornum = numsec;
return 0;
}
int fat_opendir(struct fat_dir *dir, unsigned int currdir)
{
int is_rootdir = (currdir == 0);
unsigned int sec;
int err;
if(is_rootdir)
{
sec = fat_bpb.rootdirsector;
}
else
{
sec = first_sector_of_cluster(currdir);
}
/* Read the first sector in the current dir */
err = ata_read_sectors(sec + fat_bpb.startsector,1,dir->cached_buf);
if(err)
{
DEBUGF( "fat_opendir() - Couldn't read dir sector"
" (error code %d)\n", err);
return -1;
}
dir->entry = 0;
dir->cached_sec = sec;
dir->num_sec = 0;
return 0;
}
int fat_getnext(struct fat_dir *dir, struct fat_direntry *entry)
{
int done = 0;
int i;
int err;
unsigned char firstbyte;
int longarray[20];
int longs=0;
int sectoridx=0;
while(!done)
{
for(i = dir->entry;i < SECTOR_SIZE/32;i++)
{
firstbyte = dir->cached_buf[i*32];
if(firstbyte == 0xe5) {
/* free entry */
sectoridx = 0;
continue;
}
if(firstbyte == 0) {
/* last entry */
entry->name[0] = 0;
return 0;
}
/* longname entry? */
if ( ( dir->cached_buf[i*32 + FATDIR_ATTR] &
FAT_ATTR_LONG_NAME_MASK ) == FAT_ATTR_LONG_NAME ) {
longarray[longs++] = i*32 + sectoridx;
}
else {
if ( parse_direntry(entry, &dir->cached_buf[i*32]) ) {
/* don't return volume id entry */
if ( entry->attr == FAT_ATTR_VOLUME_ID )
continue;
/* replace shortname with longname? */
if ( longs ) {
int j,k,l=0;
/* iterate backwards through the dir entries */
for (j=longs-1; j>=0; j--) {
unsigned char* ptr = dir->cached_buf;
int index = longarray[j];
/* current or cached sector? */
if ( sectoridx >= SECTOR_SIZE ) {
if ( sectoridx >= SECTOR_SIZE*2 ) {
if ( ( index >= SECTOR_SIZE ) &&
( index < SECTOR_SIZE*2 ))
ptr = lastsector;
else
ptr = lastsector2;
}
else {
if ( index < SECTOR_SIZE )
ptr = lastsector;
}
index &= SECTOR_SIZE-1;
}
/* names are stored in unicode, but we
only grab the low byte (iso8859-1). */
for (k=0; k<5; k++)
entry->name[l++] = ptr[index + k*2 + 1];
for (k=0; k<6; k++)
entry->name[l++] = ptr[index + k*2 + 14];
for (k=0; k<2; k++)
entry->name[l++] = ptr[index + k*2 + 28];
}
entry->name[l]=0;
}
done = 1;
sectoridx = 0;
break;
}
}
}
/* save this sector, for longname use */
if ( sectoridx )
memcpy( lastsector2, dir->cached_buf, SECTOR_SIZE );
else
memcpy( lastsector, dir->cached_buf, SECTOR_SIZE );
sectoridx += SECTOR_SIZE;
/* Next sector? */
if(i < SECTOR_SIZE/32)
{
i++;
}
else
{
dir->num_sec++;
/* Do we need to advance one cluster? */
if(dir->num_sec < fat_bpb.bpb_secperclus)
{
dir->cached_sec++;
}
else
{
int cluster = sec2cluster(dir->cached_sec);
if ( cluster < 0 ) {
DEBUGF("sec2cluster failed\n");
return -1;
}
dir->num_sec = 0;
cluster = get_next_cluster( cluster );
if(!cluster)
{
DEBUGF("End of cluster chain.\n");
return -1;
}
dir->cached_sec = cluster2sec(cluster);
if ( dir->cached_sec < 0 )
{
DEBUGF("Invalid cluster: %d\n",cluster);
return -1;
}
}
/* Read the next sector */
err = ata_read_sectors(dir->cached_sec + fat_bpb.startsector, 1,
dir->cached_buf);
if(err)
{
DEBUGF( "fat_getnext() - Couldn't read dir sector"
" (error code %d)\n", err);
return -1;
}
i = 0;
}
dir->entry = i;
}
return 0;
}
/* -----------------------------------------------------------------
* local variables:
* eval: (load-file "../rockbox-mode.el")
* end:
*/