rockbox/firmware/target/mips/ingenic_jz47xx/usb-jz4760.c

1298 lines
35 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2016 Roman Stolyarov
* Copyright (C) 2020 Solomon Peachy
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
//#define LOGF_ENABLE
#include "logf.h"
#include "system.h"
#include "usb_ch9.h"
#include "usb_drv.h"
#include "usb_core.h"
#include "cpu.h"
#include "thread.h"
#define USE_USB_DMA
#define PIN_USB_DET (32*4+19)
#define IRQ_USB_DET GPIO_IRQ(PIN_USB_DET)
#define GPIO_USB_DET GPIO147
#define PIN_USB_DRVVBUS (32*4+10)
#define PIN_USB_OTG_ID (32*3+7)
#define EP_BUF_LEFT(ep) ((ep)->length - (ep)->sent)
#define EP_PTR(ep) ((void*)((unsigned int)(ep)->buf + (ep)->sent))
#define EP_NUMBER(ep) (((int)(ep) - (int)&endpoints[0])/sizeof(struct usb_endpoint))
#define EP_NUMBER2(ep) (EP_NUMBER((ep))/2)
#define TOTAL_EP() (sizeof(endpoints)/sizeof(struct usb_endpoint))
#define EP_IS_IN(ep) (EP_NUMBER((ep))%2)
#define TXCSR_WZC_BITS (USB_INCSR_SENTSTALL | USB_INCSR_UNDERRUN | USB_INCSR_FFNOTEMPT | USB_INCSR_INCOMPTX)
#define RXCSR_WZC_BITS (USB_OUTCSR_SENTSTALL | USB_OUTCSR_OVERRUN | USB_OUTCSR_OUTPKTRDY)
/* NOTE: IN/OUT is from the HOST perspective. We're a peripheral, so:
IN = DEV->HOST, (ie we send)
OUT = HOST->DEV, (ie we recv)
*/
enum ep_type
{
ep_control,
ep_bulk,
ep_interrupt,
ep_isochronous
};
struct usb_endpoint
{
const enum ep_type type;
const long fifo_addr;
unsigned short fifo_size;
bool allocated;
int use_dma; /* -1 = no, 0 = mode_0, 1 = mode_1 */
struct semaphore complete;
uint8_t config;
volatile void *buf;
volatile size_t length;
union
{
volatile size_t sent;
volatile size_t received;
};
volatile int rc;
volatile bool busy;
volatile bool wait;
};
#define EP_INIT(_type, _fifo_addr, _fifo_size, _buf) \
{ .type = (_type), .fifo_addr = (_fifo_addr), .fifo_size = (_fifo_size), \
.buf = (_buf), .use_dma = -1, \
.length = 0, .busy = false, .wait = false, .allocated = false }
#define short_not_ok 1 /* only works for mass storage.. */
#define ep_doublebuf(__ep) 0
static union
{
int buf[64 / sizeof(int)];
struct usb_ctrlrequest request;
} ep0_rx;
static volatile bool ep0_data_supplied = false;
static volatile bool ep0_data_requested = false;
static struct usb_endpoint endpoints[] =
{
EP_INIT(ep_control, USB_FIFO_EP(0), 64, NULL),
EP_INIT(ep_control, USB_FIFO_EP(0), 64, ep0_rx.buf),
EP_INIT(ep_bulk, USB_FIFO_EP(1), 512, NULL),
EP_INIT(ep_bulk, USB_FIFO_EP(1), 512, NULL),
EP_INIT(ep_interrupt, USB_FIFO_EP(2), 512, NULL),
EP_INIT(ep_interrupt, USB_FIFO_EP(2), 512, NULL),
};
static inline void select_endpoint(int ep)
{
REG_USB_INDEX = ep;
}
static void readFIFO(struct usb_endpoint *ep, unsigned int size)
{
logf("%s(EP%d, %d)", __func__, EP_NUMBER2(ep), size);
register unsigned char *ptr = (unsigned char*)EP_PTR(ep);
register unsigned int *ptr32 = (unsigned int*)ptr;
register unsigned int s = size >> 2;
register unsigned int x;
if(size > 0)
{
if( ((unsigned int)ptr & 3) == 0 )
{
while(s--)
*ptr32++ = REG32(ep->fifo_addr);
ptr = (unsigned char*)ptr32;
}
else
{
while(s--)
{
x = REG32(ep->fifo_addr);
*ptr++ = x & 0xFF; x >>= 8;
*ptr++ = x & 0xFF; x >>= 8;
*ptr++ = x & 0xFF; x >>= 8;
*ptr++ = x;
}
}
s = size & 3;
while(s--)
*ptr++ = REG8(ep->fifo_addr);
}
}
static void writeFIFO(struct usb_endpoint *ep, size_t size)
{
logf("%s(EP%d, %d)", __func__, EP_NUMBER2(ep), size);
register unsigned int *d32 = (unsigned int *)EP_PTR(ep);
register unsigned char *d8 = (unsigned char *)d32;
register size_t s = size >> 2;
register unsigned int x;
if(size > 0)
{
if( ((unsigned int)d8 & 3) == 0 )
{
while (s--)
REG32(ep->fifo_addr) = *d32++;
d8 = (unsigned char *)d32;
}
else
{
while (s--)
{
x = (unsigned int)(*d8++) & 0xff;
x |= ((unsigned int)(*d8++) & 0xff) << 8;
x |= ((unsigned int)(*d8++) & 0xff) << 16;
x |= ((unsigned int)(*d8++) & 0xff) << 24;
REG32(ep->fifo_addr) = x;
}
}
if( (s = size & 3) )
{
while (s--)
REG8(ep->fifo_addr) = *d8++;
}
}
}
static void flushFIFO(struct usb_endpoint *ep)
{
logf("%s(%d)", __func__, EP_NUMBER(ep));
switch (ep->type)
{
case ep_control:
break;
case ep_bulk:
case ep_interrupt:
case ep_isochronous:
if(EP_IS_IN(ep))
REG_USB_INCSR |= (USB_INCSR_FF | USB_INCSR_CDT);
else
REG_USB_OUTCSR |= (USB_OUTCSR_FF | USB_OUTCSR_CDT);
break;
}
}
static inline void ep_transfer_completed(struct usb_endpoint* ep)
{
ep->sent = 0;
ep->length = 0;
ep->buf = NULL;
ep->busy = false;
if(ep->wait)
semaphore_release(&ep->complete);
}
static void EP0_send(void)
{
struct usb_endpoint* ep = &endpoints[0];
unsigned int length;
unsigned short csr0;
select_endpoint(0);
csr0 = REG_USB_CSR0;
logf("%s(): 0x%x %d %d", __func__, csr0, ep->sent, ep->length);
if(ep->sent == 0)
{
length = MIN(ep->length, ep->fifo_size);
REG_USB_CSR0 = (csr0 | USB_CSR0_FLUSHFIFO);
}
else
length = MIN(EP_BUF_LEFT(ep), ep->fifo_size);
writeFIFO(ep, length);
ep->sent += length;
if(ep->sent >= ep->length)
{
REG_USB_CSR0 = (csr0 | USB_CSR0_INPKTRDY | USB_CSR0_DATAEND); /* Set data end! */
if (!ep->wait)
usb_core_transfer_complete(EP_CONTROL, USB_DIR_IN, 0, ep->sent);
ep->rc = 0;
ep_transfer_completed(ep);
}
else
REG_USB_CSR0 = (csr0 | USB_CSR0_INPKTRDY);
}
static void EP0_handler(void)
{
unsigned short csr0;
struct usb_endpoint *ep_send = &endpoints[0];
struct usb_endpoint *ep_recv = &endpoints[1];
/* Read CSR0 */
select_endpoint(0);
csr0 = REG_USB_CSR0;
logf("%s(): 0x%x %d", __func__, csr0, ep_send->busy);
/* Check for SentStall:
This bit is set when a STALL handshake is transmitted. The CPU should clear this bit.
*/
if(csr0 & USB_CSR0_SENTSTALL)
{
REG_USB_CSR0 = csr0 & ~USB_CSR0_SENTSTALL;
return;
}
/* Check for SetupEnd:
This bit will be set when a control transaction ends before the DataEnd bit has been set.
An interrupt will be generated and the FIFO flushed at this time.
The bit is cleared by the CPU writing a 1 to the ServicedSetupEnd bit.
*/
if(csr0 & USB_CSR0_SETUPEND)
{
csr0 |= USB_CSR0_SVDSETUPEND;
REG_USB_CSR0 = csr0;
ep0_data_supplied = false;
ep0_data_requested = false;
if (ep_send->busy)
{
if (!ep_send->wait)
usb_core_transfer_complete(EP_CONTROL, USB_DIR_IN, -1, 0);
ep_transfer_completed(ep_send);
}
if (ep_recv->busy)
{
usb_core_transfer_complete(EP_CONTROL, USB_DIR_OUT, -1, 0);
ep_transfer_completed(ep_recv);
}
}
/* Call relevant routines for endpoint 0 state */
if(csr0 & USB_CSR0_OUTPKTRDY) /* There is a packet in the fifo */
{
if (ep_send->busy)
{
if (!ep_send->wait)
usb_core_transfer_complete(EP_CONTROL, USB_DIR_IN, -1, 0);
ep_transfer_completed(ep_send);
}
if (ep_recv->busy && ep_recv->buf && ep_recv->length)
{
unsigned int size = REG_USB_COUNT0;
readFIFO(ep_recv, size);
ep_recv->received += size;
if (size < ep_recv->fifo_size || ep_recv->received >= ep_recv->length)
{
REG_USB_CSR0 = csr0 | USB_CSR0_SVDOUTPKTRDY | USB_CSR0_DATAEND; /* Set data end! */
usb_core_transfer_complete(EP_CONTROL, USB_DIR_OUT, 0, ep_recv->received);
ep_transfer_completed(ep_recv);
}
else REG_USB_CSR0 = csr0 | USB_CSR0_SVDOUTPKTRDY; /* clear OUTPKTRDY bit */
}
else if (!ep0_data_supplied)
{
ep_recv->buf = ep0_rx.buf;
readFIFO(ep_recv, REG_USB_COUNT0);
csr0 |= USB_CSR0_SVDOUTPKTRDY;
if (!ep0_rx.request.wLength)
{
csr0 |= USB_CSR0_DATAEND; /* Set data end! */
ep0_data_requested = false;
ep0_data_supplied = false;
}
else if (ep0_rx.request.bRequestType & USB_DIR_IN)
ep0_data_requested = true;
else ep0_data_supplied = true;
REG_USB_CSR0 = csr0;
usb_core_legacy_control_request(&ep0_rx.request);
ep_transfer_completed(ep_recv);
}
}
else if (ep_send->busy)
EP0_send();
}
/* Does new work */
static void EPIN_send(unsigned int endpoint)
{
struct usb_endpoint* ep = &endpoints[endpoint*2];
unsigned int length, csr;
select_endpoint(endpoint);
csr = REG_USB_INCSR;
logf("%s(%d): 0x%x", __func__, endpoint, csr);
if (!ep->busy) {
logf("Entered EPIN handler without work!");
return;
}
if (csr & USB_INCSR_INPKTRDY) {
logf("PKTRDY %d", endpoint);
return;
}
if (csr & USB_INCSR_SENTSTALL) {
logf("TX SENTSTALL %d", endpoint);
REG_USB_INCSR = csr & ~USB_INCSR_SENTSTALL;
return;
}
if (csr & USB_INCSR_FFNOTEMPT) {
logf("FIFO is not empty! 0x%x", csr);
return;
}
#ifdef USE_USB_DMA
if(ep->use_dma >= 0) {
logf("DMA busy(%x %x %x)", REG_USB_ADDR(USB_INTR_DMA_BULKIN), REG_USB_COUNT(USB_INTR_DMA_BULKIN),REG_USB_CNTL(USB_INTR_DMA_BULKIN));
return;
}
#endif
logf("EP%d: %d -> %d", endpoint, ep->sent, ep->length);
#ifdef USE_USB_DMA
/* Can we use DMA? */
if (ep->type == ep_bulk && ep->length && (!(((unsigned long)ep->buf + ep->sent) % 4)) && !button_hold()) {
if (ep->length >= ep->fifo_size)
ep->use_dma = 1;
else
ep->use_dma = 0;
} else {
ep->use_dma = -1;
}
if (ep->use_dma >= 0) {
commit_discard_dcache_range((void*)ep->buf + ep->sent, ep->length - ep->sent);
/* Set up DMA */
uint16_t dmacr = USB_CNTL_BURST_16 | USB_CNTL_EP(EP_NUMBER2(ep)) | USB_CNTL_ENA | USB_CNTL_INTR_EN | USB_CNTL_DIR_IN ;
if (ep->use_dma > 0)
dmacr |= USB_CNTL_MODE_1;
REG_USB_ADDR(USB_INTR_DMA_BULKIN) = PHYSADDR((unsigned long)ep->buf + ep->sent);
REG_USB_COUNT(USB_INTR_DMA_BULKIN) = ep->length - ep->sent;
REG_USB_CNTL(USB_INTR_DMA_BULKIN) = dmacr;
uint16_t csr = REG_USB_INCSR;
if (ep->use_dma == 0) {
csr &= ~((USB_INCSRH_AUTOSET | USB_INCSRH_DMAREQENAB) << 8);
REG_USB_INCSR = csr | TXCSR_WZC_BITS;
csr &= ~((USB_INCSRH_DMAREQMODE) << 8);
csr |= ((USB_INCSRH_DMAREQENAB | USB_INCSRH_MODE) << 8);
} else {
csr |= ((USB_INCSRH_DMAREQENAB | USB_INCSRH_MODE | USB_INCSRH_DMAREQMODE) << 8);
csr |= ((USB_INCSRH_AUTOSET) << 8);
}
csr &= ~USB_INCSR_UNDERRUN;
logf("DMA setup(%d: %x %x %x %x - %d)", EP_NUMBER2(ep), (unsigned int)PHYSADDR((unsigned long)ep->buf), ep->length, dmacr, csr, ep->use_dma);
REG_USB_INCSR = csr;
return;
}
#endif
/* Non-DMA code */
if(ep->sent == 0)
length = MIN(ep->length, ep->fifo_size);
else
length = MIN(EP_BUF_LEFT(ep), ep->fifo_size);
writeFIFO(ep, length);
ep->sent += length;
csr &= ~USB_INCSR_UNDERRUN;
csr |= USB_INCSR_INPKTRDY;
logf("Non-DMA TX %x", csr);
REG_USB_INCSR = csr;
}
static void EPIN_complete(unsigned int endpoint)
{
struct usb_endpoint* ep = &endpoints[endpoint*2];
uint16_t csr;
select_endpoint(endpoint);
csr = REG_USB_INCSR;
logf("%s(%d): 0x%x", __func__, endpoint, csr);
if (csr & USB_INCSR_SENTSTALL) {
logf("TX SENTSTALL %d", endpoint);
REG_USB_INCSR = csr & ~USB_INCSR_SENTSTALL; // XXX TXCSR_P_WZC_BITS
return;
}
if (csr & USB_INCSR_UNDERRUN) {
csr |= TXCSR_WZC_BITS;
csr &= ~(USB_INCSR_UNDERRUN | USB_INCSR_INPKTRDY);
REG_USB_INCSR = csr;
logf("underrun! %x", csr);
}
if (!ep->busy) {
logf("Entered EPIN_complete without work!");
return;
}
if (ep->use_dma >= 0) {
logf("DMA status (%x %x %x)", REG_USB_ADDR(USB_INTR_DMA_BULKIN), REG_USB_COUNT(USB_INTR_DMA_BULKIN),REG_USB_CNTL(USB_INTR_DMA_BULKIN));
return;
}
/* If we get here, the operation is completed, and we need to clean up */
/* Make sure DMA engine is idle */
if (csr & (USB_INCSRH_DMAREQENAB << 8)) {
csr |= TXCSR_WZC_BITS;
csr &= ~(USB_INCSR_UNDERRUN | USB_INCSR_INPKTRDY |
((USB_INCSRH_DMAREQENAB | USB_INCSRH_AUTOSET) << 8));
REG_USB_INCSR = csr;
csr = REG_USB_INCSR;
logf("DMA cleanup %x", csr);
}
// XXX send a zero-length packet if necessary.
// if tx complete, and ep->length > 0 and ep->length % fifo == 0,
// REG_USB_INCSR = MODE | PKTRDY;
// Not needed for mass storage as it counts packets but
// if we ever enable other protocls...
logf("EP%d: %d -> %d", endpoint, ep->sent, ep->length);
if(ep->sent >= ep->length) {
if (!ep->wait)
usb_core_transfer_complete(endpoint, USB_DIR_IN, 0, ep->sent);
ep->rc = 0;
ep_transfer_completed(ep);
logf("send complete");
} else {
EPIN_send(endpoint);
}
}
static void EPOUT_handler(unsigned int endpoint)
{
struct usb_endpoint* ep = &endpoints[endpoint*2+1];
unsigned int size, csr;
if(!ep->busy) {
logf("Entered EPOUT handler without work!");
return;
}
select_endpoint(endpoint);
while((csr = REG_USB_OUTCSR) & (USB_OUTCSR_SENTSTALL|USB_OUTCSR_OUTPKTRDY)) {
logf("%s(%d): 0x%x", __func__, endpoint, csr);
if(csr & USB_OUTCSR_SENTSTALL) {
logf("stall sent, flushing fifo..");
flushFIFO(ep);
REG_USB_OUTCSR = csr & ~USB_OUTCSR_SENTSTALL;
return;
}
#ifdef USE_USB_DMA
if (ep->use_dma >= 0) {
logf("DMA busy(%x %x %x)", REG_USB_ADDR(USB_INTR_DMA_BULKOUT), REG_USB_COUNT(USB_INTR_DMA_BULKOUT),REG_USB_CNTL(USB_INTR_DMA_BULKOUT));
return;
}
/* Can we use DMA? */
if (ep->type == ep_bulk && ep->length && (!(((unsigned long)ep->buf + ep->received) % 4)) && !button_hold()) {
if (ep->length >= ep->fifo_size && short_not_ok)
ep->use_dma = 1;
else
ep->use_dma = 0;
} else {
ep->use_dma = -1;
}
logf("RX DMA? %d", ep->use_dma);
/* Set up RX side for DMA */
if (ep->use_dma == 1) {
csr |= (USB_OUTCSRH_AUTOCLR) << 8;
REG_USB_OUTCSR = csr;
csr |= USB_OUTCSRH_DMAREQENAB << 8;
REG_USB_OUTCSR = csr;
csr |= (USB_OUTCSRH_DMAREQMODE << 8); // XXX
// /* Work around HW quirk; write and clear DMAMODE */
// REG_USB_OUTCSR = csr | (USB_OUTCSRH_DMAREQMODE << 8);
} else if (ep->use_dma == 0) {
if (ep_doublebuf(ep)) // XXX or isoc..
csr |= ((USB_OUTCSRH_AUTOCLR) << 8);
csr |= USB_OUTCSRH_DMAREQENAB << 8;
}
/* Set up DMA engine */
if (ep->use_dma >= 0) {
REG_USB_OUTCSR = csr;
logf("DMA RX %d csr %x", ep->use_dma, csr);
discard_dcache_range((void*)ep->buf + ep->received, ep->length - ep->received);
/* Program actual DMA channel */
uint16_t dmacr = USB_CNTL_BURST_16 | USB_CNTL_EP(EP_NUMBER2(ep)) | USB_CNTL_ENA | USB_CNTL_INTR_EN;
if (ep->use_dma > 0)
dmacr |= USB_CNTL_MODE_1;
REG_USB_ADDR(USB_INTR_DMA_BULKOUT) = PHYSADDR((unsigned long)ep->buf + ep->received);
REG_USB_COUNT(USB_INTR_DMA_BULKOUT) = ep->length - ep->received;
REG_USB_CNTL(USB_INTR_DMA_BULKOUT) = dmacr;
logf("DMA RX start %x %d %x", (unsigned int)ep->buf + ep->received,
(ep->length - ep->received), dmacr);
return; /* ie wait for DMA to complete */
}
#endif
/* There is a packet in the fifo, copy it out via PIO */
if (csr & USB_OUTCSR_OUTPKTRDY) {
size = REG_USB_OUTCOUNT;
readFIFO(ep, size);
ep->received += size;
/*if(csr & USB_OUTCSR_FFFULL)
csr &= ~USB_OUTCSR_FFFULL;*/
REG_USB_OUTCSR = csr & ~USB_OUTCSR_OUTPKTRDY;
logf("received: %d max length: %d", ep->received, ep->length);
if(size < ep->fifo_size || ep->received >= ep->length) {
usb_core_transfer_complete(endpoint, USB_DIR_OUT, 0, ep->received);
ep_transfer_completed(ep);
logf("receive transfer_complete");
}
}
}
}
static void EPOUT_ready(unsigned int endpoint)
{
logf("%s(%d)", __func__, endpoint);
#ifdef USE_USB_DMA
struct usb_endpoint* ep = &endpoints[endpoint*2+1];
unsigned int csr;
select_endpoint(endpoint);
csr = REG_USB_OUTCSR;
if(!ep->busy)
{
logf("Entered EPOUT handler without work!");
return;
}
// check for stall
// check for overrun
// check for incomprx
/* If DMA engine is enabled, handle and clean up */
if (ep->use_dma >= 0 && csr & (USB_OUTCSRH_DMAREQENAB << 8)) {
int size = VIRTADDR(REG_USB_ADDR(USB_INTR_DMA_BULKOUT)) - ((unsigned int)ep->buf + ep->received);
csr &= ~((USB_OUTCSRH_AUTOCLR | USB_OUTCSRH_DMAREQENAB | USB_OUTCSRH_DMAREQMODE) << 8);
REG_USB_OUTCSR = csr | RXCSR_WZC_BITS;
logf("EPOUT DMA RX %x %d @%d/%d", csr, size, ep->received, ep->length);
ep->received += size;
/* Autoclear doesn't clear OutPktRdy for short packets.. */
if ((ep->use_dma == 0 && !ep_doublebuf(ep)) || size % ep->fifo_size) {
csr &= ~USB_OUTCSR_OUTPKTRDY;
REG_USB_OUTCSR = csr;
logf("Cleanup after short RX %x", csr);
}
// XXX what about 0-length transfers?
/* If we're incomplete, wait for the next one.. */
if (ep->received < ep->length && size == ep->fifo_size) {
csr = REG_USB_OUTCSR;
if (csr & USB_OUTCSR_OUTPKTRDY && ep_doublebuf(ep))
goto exit;
return;
}
/* It we're done, clean up */
if (size < ep->fifo_size || ep->received >= ep->length) {
ep->use_dma = -1;
usb_core_transfer_complete(endpoint, USB_DIR_OUT, 0, ep->received);
ep_transfer_completed(ep);
logf("DMA RX transfer_complete");
return;
}
}
exit:
#endif
EPOUT_handler(endpoint);
}
#ifdef USE_USB_DMA
static void EPDMA_handler(int number)
{
int endpoint = -1;
int size = 0;
struct usb_endpoint* ep = NULL;
endpoint = (REG_USB_CNTL(number) >> 4) & 0xF;
ep = &endpoints[endpoint*2];
if (!(REG_USB_CNTL(number) & USB_CNTL_DIR_IN))
ep++; /* RX endpoint is +1 in the array */
size = VIRTADDR(REG_USB_ADDR(number)) - ((unsigned int)ep->buf + ep->sent);
if (number == USB_INTR_DMA_BULKIN) {
if ((ep->use_dma == 0) || (size % ep->fifo_size)) {
/* DMA is completed, but the final (short) packet needs to
be manually initiated! */
uint16_t incsr;
select_endpoint(endpoint);
incsr = REG_USB_INCSR;
if (ep->use_dma == 1) {
/* Switch to Mode 0 DMA */
incsr &= ~((USB_INCSRH_AUTOSET | USB_INCSRH_DMAREQENAB) << 8);
REG_USB_INCSR = incsr;
incsr &= ~((USB_INCSRH_DMAREQMODE) << 8);
incsr |= ((USB_INCSRH_DMAREQENAB) << 8);
}
incsr |= USB_INCSR_INPKTRDY;
logf("DMA dangling %x", incsr);
REG_USB_INCSR = incsr;
}
logf("DMA TX%d %d @%d/%d", number, size, ep->sent, ep->length);
ep->sent += size;
ep->use_dma = -1; /* DMA is complete, mark channel as idle */
EPIN_complete(endpoint);
} else if (number == USB_INTR_DMA_BULKOUT) {
/* RX DMA completed */
logf("DMA RX%d %d @%d/%d", number, size, ep->received, ep->length);
EPOUT_ready(endpoint);
} else if (ep) {
ep->use_dma = -1;
}
}
#endif
static void setup_endpoint(struct usb_endpoint *ep)
{
int endpoint = EP_NUMBER2(ep);
unsigned char csr, csrh;
select_endpoint(endpoint);
if (ep->busy)
{
if(EP_IS_IN(ep))
{
if (ep->wait)
semaphore_release(&ep->complete);
else usb_core_transfer_complete(endpoint, USB_DIR_IN, -1, 0);
}
else usb_core_transfer_complete(endpoint, USB_DIR_OUT, -1, 0);
}
ep->busy = false;
ep->wait = false;
ep->sent = 0;
ep->length = 0;
if(ep->type != ep_control)
ep->fifo_size = usb_drv_port_speed() ? 512 : 64;
ep->config = REG_USB_CONFIGDATA;
if(EP_IS_IN(ep))
{
csr = (USB_INCSR_FF | USB_INCSR_CDT);
csrh = USB_INCSRH_MODE;
if(ep->type == ep_interrupt)
csrh |= USB_INCSRH_FRCDATATOG;
REG_USB_INMAXP = ep->fifo_size;
REG_USB_INCSR = csr;
REG_USB_INCSRH = csrh;
logf("IN %d (%x %x %x)", endpoint, ep->fifo_size, csr, csrh);
if (ep->allocated)
REG_USB_INTRINE |= USB_INTR_EP(EP_NUMBER2(ep));
}
else
{
csr = (USB_OUTCSR_FF | USB_OUTCSR_CDT);
csrh = 0;
if(ep->type == ep_interrupt)
csrh |= USB_OUTCSRH_DNYT;
REG_USB_OUTMAXP = ep->fifo_size;
REG_USB_OUTCSR = csr;
REG_USB_OUTCSRH = csrh;
logf("OUT %d (%x %x %x)", endpoint, ep->fifo_size, csr, csrh);
if (ep->allocated)
REG_USB_INTROUTE |= USB_INTR_EP(EP_NUMBER2(ep));
}
}
static void udc_reset(void)
{
/* From the datasheet:
When a reset condition is detected on the USB, the controller performs the following actions:
* Sets FAddr to 0.
* Sets Index to 0.
* Flushes all endpoint FIFOs.
* Clears all control/status registers.
* Enables all endpoint interrupts.
* Generates a Reset interrupt.
*/
logf("%s()", __func__);
unsigned int i;
REG_USB_FADDR = 0;
REG_USB_INDEX = 0;
/* Disable interrupts */
REG_USB_INTRINE = 0;
REG_USB_INTROUTE = 0;
REG_USB_INTRUSBE = 0;
/* Disable DMA */
REG_USB_CNTL(USB_INTR_DMA_BULKIN) = 0;
REG_USB_CNTL(USB_INTR_DMA_BULKOUT) = 0;
/* High speed, softconnect */
REG_USB_POWER = (USB_POWER_SOFTCONN | USB_POWER_HSENAB);
/* Reset EP0 */
select_endpoint(0);
REG_USB_CSR0 = (USB_CSR0_SVDOUTPKTRDY | USB_CSR0_SVDSETUPEND | USB_CSR0_FLUSHFIFO);
endpoints[0].config = REG_USB_CONFIGDATA;
endpoints[1].config = REG_USB_CONFIGDATA;
if (endpoints[0].busy)
{
if (endpoints[0].wait)
semaphore_release(&endpoints[0].complete);
else
usb_core_transfer_complete(EP_CONTROL, USB_DIR_IN, -1, 0);
}
endpoints[0].busy = false;
endpoints[0].wait = false;
endpoints[0].sent = 0;
endpoints[0].length = 0;
endpoints[0].allocated = true;
if (endpoints[1].busy)
usb_core_transfer_complete(EP_CONTROL, USB_DIR_OUT, -1, 0);
endpoints[1].busy = false;
endpoints[1].wait = false;
endpoints[1].received = 0;
endpoints[1].length = 0;
endpoints[1].allocated = true;
/* Reset other endpoints */
for(i=2; i<TOTAL_EP(); i++)
setup_endpoint(&endpoints[i]);
ep0_data_supplied = false;
ep0_data_requested = false;
/* Enable interrupts */
REG_USB_INTRINE |= USB_INTR_EP(0);
REG_USB_INTRUSBE |= USB_INTR_RESET;
usb_core_bus_reset();
}
/* Interrupt handler */
void OTG(void)
{
/* Read interrupt registers */
unsigned char intrUSB = REG_USB_INTRUSB;
unsigned short intrIn = REG_USB_INTRIN;
unsigned short intrOut = REG_USB_INTROUT;
#ifdef USE_USB_DMA
unsigned char intrDMA = REG_USB_INTR;
#endif
logf("IRQ %x %x %x %x", intrUSB, intrIn, intrOut, intrDMA);
/* EPIN & EPOUT are all handled in DMA */
if(intrIn & USB_INTR_EP(0))
EP0_handler();
if(intrIn & USB_INTR_EP(1))
EPIN_complete(1);
if(intrIn & USB_INTR_EP(2))
EPIN_complete(2);
if(intrOut & USB_INTR_EP(1))
EPOUT_ready(1);
if(intrOut & USB_INTR_EP(2))
EPOUT_ready(2);
if(intrUSB & USB_INTR_RESET)
udc_reset();
if(intrUSB & USB_INTR_SUSPEND)
logf("USB suspend");
if(intrUSB & USB_INTR_RESUME)
logf("USB resume");
#ifdef USE_USB_DMA
if(intrDMA & (1<<USB_INTR_DMA_BULKIN))
EPDMA_handler(USB_INTR_DMA_BULKIN);
if(intrDMA & (1<<USB_INTR_DMA_BULKOUT))
EPDMA_handler(USB_INTR_DMA_BULKOUT);
#endif
}
bool usb_drv_stalled(int endpoint, bool in)
{
endpoint &= 0x7F;
logf("%s(%d, %s)", __func__, endpoint, in?"IN":"OUT");
select_endpoint(endpoint);
if(endpoint == EP_CONTROL)
return (REG_USB_CSR0 & USB_CSR0_SENDSTALL) != 0;
else
{
if(in)
return (REG_USB_INCSR & USB_INCSR_SENDSTALL) != 0;
else
return (REG_USB_OUTCSR & USB_OUTCSR_SENDSTALL) != 0;
}
}
void usb_drv_stall(int endpoint, bool stall, bool in)
{
endpoint &= 0x7F;
logf("%s(%d,%s,%s)", __func__, endpoint, stall?"Y":"N", in?"IN":"OUT");
select_endpoint(endpoint);
if(endpoint == EP_CONTROL)
{
if(stall)
REG_USB_CSR0 |= USB_CSR0_SENDSTALL;
else
REG_USB_CSR0 &= ~USB_CSR0_SENDSTALL;
}
else
{
if(in)
{
if(stall)
REG_USB_INCSR |= USB_INCSR_SENDSTALL;
else
REG_USB_INCSR = (REG_USB_INCSR & ~USB_INCSR_SENDSTALL) | USB_INCSR_CDT;
}
else
{
if(stall)
REG_USB_OUTCSR |= USB_OUTCSR_SENDSTALL;
else
REG_USB_OUTCSR = (REG_USB_OUTCSR & ~USB_OUTCSR_SENDSTALL) | USB_OUTCSR_CDT;
}
}
}
int usb_detect(void)
{
return (__gpio_get_pin(PIN_USB_DET) == 1)
? USB_INSERTED : USB_EXTRACTED;
}
void usb_init_device(void)
{
__gpio_clear_pin(PIN_USB_DRVVBUS);
__gpio_as_output(PIN_USB_DRVVBUS);
__gpio_as_input(PIN_USB_OTG_ID);
__gpio_as_input(PIN_USB_DET);
__gpio_disable_pull(PIN_USB_OTG_ID);
__gpio_disable_pull(PIN_USB_DET);
#ifdef USB_STATUS_BY_EVENT
__gpio_as_irq_rise_edge(PIN_USB_DET);
system_enable_irq(IRQ_USB_DET);
#endif
system_enable_irq(IRQ_OTG);
for(unsigned i=0; i<TOTAL_EP(); i++)
semaphore_init(&endpoints[i].complete, 1, 0);
}
#ifdef USB_STATUS_BY_EVENT
static int usb_oneshot_callback(struct timeout *tmo)
{
(void)tmo;
int state = usb_detect();
/* This is called only if the state was stable for HZ/16 - check state
* and post appropriate event. */
usb_status_event(state);
if(state == USB_EXTRACTED)
__gpio_as_irq_rise_edge(PIN_USB_DET);
else
__gpio_as_irq_fall_edge(PIN_USB_DET);
return 0;
}
void GPIO_USB_DET(void)
{
static struct timeout usb_oneshot;
timeout_register(&usb_oneshot, usb_oneshot_callback, (HZ/16), 0);
}
#endif
void usb_enable(bool on)
{
if(on)
usb_core_init();
else
usb_core_exit();
}
void usb_attach(void)
{
usb_enable(true);
}
void usb_drv_init(void)
{
logf("%s()", __func__);
/* Dis- and reconnect from USB */
REG_USB_POWER &= ~USB_POWER_SOFTCONN;
mdelay(20);
REG_USB_POWER |= USB_POWER_SOFTCONN;
mdelay(20);
udc_reset();
}
void usb_drv_exit(void)
{
logf("%s()", __func__);
REG_USB_FADDR = 0;
REG_USB_INDEX = 0;
/* Disable interrupts */
REG_USB_INTRINE = 0;
REG_USB_INTROUTE = 0;
REG_USB_INTRUSBE = 0;
#ifdef USE_USB_DMA
select_endpoint(1);
logf("X DMA RX (%x %x %x %x)", REG_USB_ADDR(USB_INTR_DMA_BULKOUT), REG_USB_COUNT(USB_INTR_DMA_BULKOUT),REG_USB_CNTL(USB_INTR_DMA_BULKOUT), REG_USB_OUTCSR);
logf("X DMA TX (%x %x %x %x)", REG_USB_ADDR(USB_INTR_DMA_BULKIN), REG_USB_COUNT(USB_INTR_DMA_BULKIN),REG_USB_CNTL(USB_INTR_DMA_BULKIN), REG_USB_INCSR);
/* Disable DMA */
REG_USB_CNTL(USB_INTR_DMA_BULKIN) = 0;
REG_USB_CNTL(USB_INTR_DMA_BULKOUT) = 0;
#endif
/* Disconnect from USB */
REG_USB_POWER &= ~USB_POWER_SOFTCONN;
}
void usb_drv_set_address(int address)
{
logf("%s(%d)", __func__, address);
REG_USB_FADDR = address;
}
static void usb_drv_send_internal(struct usb_endpoint* ep, void* ptr, int length, bool blocking)
{
int flags = disable_irq_save();
if (ep->type == ep_control) {
if ((ptr == NULL && length == 0) || !ep0_data_requested) {
restore_irq(flags);
return;
}
ep0_data_requested = false;
}
ep->buf = ptr;
ep->sent = 0;
ep->length = length;
ep->busy = true;
if(blocking) {
ep->rc = -1;
ep->wait = true;
} else {
ep->rc = 0;
}
if (ep->type == ep_control) {
EP0_send();
} else {
EPIN_send(EP_NUMBER2(ep));
}
restore_irq(flags);
if(blocking) {
semaphore_wait(&ep->complete, HZ);
ep->wait = false;
}
}
int usb_drv_send_nonblocking(int endpoint, void* ptr, int length)
{
struct usb_endpoint *ep = &endpoints[(endpoint & 0x7F)*2];
logf("%s(%d, 0x%x, %d)", __func__, endpoint, (int)ptr, length);
if (ep->allocated)
{
usb_drv_send_internal(ep, ptr, length, false);
return 0;
}
return -1;
}
int usb_drv_send(int endpoint, void* ptr, int length)
{
struct usb_endpoint *ep = &endpoints[(endpoint & 0x7F)*2];
logf("%s(%d, 0x%x, %d)", __func__, endpoint, (int)ptr, length);
if (ep->allocated)
{
usb_drv_send_internal(ep, ptr, length, true);
return ep->rc;
}
return -1;
}
int usb_drv_recv_nonblocking(int endpoint, void* ptr, int length)
{
int flags;
struct usb_endpoint *ep;
endpoint &= 0x7F;
logf("%s(%d, 0x%x, %d)", __func__, endpoint, (int)ptr, length);
if (ptr == NULL || length == 0)
return 0;
ep = &endpoints[endpoint*2+1];
if (!ep->allocated)
return -1;
flags = disable_irq_save();
ep->buf = ptr;
ep->received = 0;
ep->length = length;
ep->busy = true;
if (endpoint == EP_CONTROL) {
ep0_data_supplied = false;
EP0_handler();
} else {
EPOUT_handler(endpoint);
}
restore_irq(flags);
return 0;
}
void usb_drv_set_test_mode(int mode)
{
logf("%s(%d)", __func__, mode);
switch(mode)
{
case 0:
REG_USB_TESTMODE &= ~USB_TEST_ALL;
break;
case 1:
REG_USB_TESTMODE |= USB_TEST_J;
break;
case 2:
REG_USB_TESTMODE |= USB_TEST_K;
break;
case 3:
REG_USB_TESTMODE |= USB_TEST_SE0NAK;
break;
case 4:
REG_USB_TESTMODE |= USB_TEST_PACKET;
break;
}
}
int usb_drv_port_speed(void)
{
return (REG_USB_POWER & USB_POWER_HSMODE) ? 1 : 0;
}
void usb_drv_cancel_all_transfers(void)
{
logf("%s()", __func__);
unsigned int i, flags = disable_irq_save();
#ifdef USE_USB_DMA
/* Disable DMA */
REG_USB_CNTL(USB_INTR_DMA_BULKIN) = 0;
REG_USB_CNTL(USB_INTR_DMA_BULKOUT) = 0;
#endif
for(i=0; i<TOTAL_EP(); i++)
{
if (endpoints[i].busy)
{
if (i & 1)
usb_core_transfer_complete(i >> 1, USB_DIR_OUT, -1, 0);
else if (endpoints[i].wait)
semaphore_release(&endpoints[i].complete);
else usb_core_transfer_complete(i >> 1, USB_DIR_IN, -1, 0);
}
if(i != 1) /* ep0 out needs special handling */
endpoints[i].buf = NULL;
endpoints[i].sent = 0;
endpoints[i].length = 0;
select_endpoint(i/2);
flushFIFO(&endpoints[i]);
}
restore_irq(flags);
}
void usb_drv_release_endpoint(int ep)
{
int n = ep & 0x7f;
logf("%s(%d, %s)", __func__, (ep & 0x7F), (ep >> 7) ? "IN" : "OUT");
if (n)
{
int dir = ep & USB_ENDPOINT_DIR_MASK;
if(dir == USB_DIR_IN)
{
REG_USB_INTRINE &= ~USB_INTR_EP(n);
endpoints[n << 1].allocated = false;
}
else
{
REG_USB_INTROUTE &= ~USB_INTR_EP(n);
endpoints[(n << 1) + 1].allocated = false;
}
}
}
int usb_drv_request_endpoint(int type, int dir)
{
logf("%s(%d, %s)", __func__, type, (dir == USB_DIR_IN) ? "IN" : "OUT");
dir &= USB_ENDPOINT_DIR_MASK;
type &= USB_ENDPOINT_XFERTYPE_MASK;
/* There are only 3+2 endpoints, so hardcode this ... */
switch(type)
{
case USB_ENDPOINT_XFER_BULK:
if(dir == USB_DIR_IN)
{
if (endpoints[2].allocated)
break;
endpoints[2].allocated = true;
REG_USB_INTRINE |= USB_INTR_EP(1);
return (1 | USB_DIR_IN);
}
else
{
if (endpoints[3].allocated)
break;
endpoints[3].allocated = true;
REG_USB_INTROUTE |= USB_INTR_EP(1);
return (1 | USB_DIR_OUT);
}
case USB_ENDPOINT_XFER_INT:
if(dir == USB_DIR_IN)
{
if (endpoints[4].allocated)
break;
endpoints[4].allocated = true;
REG_USB_INTRINE |= USB_INTR_EP(2);
return (2 | USB_DIR_IN);
}
else
{
if (endpoints[5].allocated)
break;
endpoints[5].allocated = true;
REG_USB_INTROUTE |= USB_INTR_EP(2);
return (2 | USB_DIR_OUT);
}
default:
break;
}
return -1;
}