rockbox/apps/codecs/lib/codeclib_misc.h

291 lines
6.5 KiB
C
Raw Normal View History

/********************************************************************
* *
* THIS FILE IS PART OF THE OggVorbis 'TREMOR' CODEC SOURCE CODE. *
* *
* USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS *
* GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
* IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. *
* *
* THE OggVorbis 'TREMOR' SOURCE CODE IS (C) COPYRIGHT 1994-2002 *
* BY THE Xiph.Org FOUNDATION http://www.xiph.org/ *
* *
********************************************************************
function: miscellaneous math and prototypes
********************************************************************/
//#include "config-tremor.h"
#ifndef _V_RANDOM_H_
#define _V_RANDOM_H_
//#include "ivorbiscodec.h"
//#include "os_types.h"
#include "asm_arm.h"
#include "asm_mcf5249.h"
/* Some prototypes that were not defined elsewhere */
//void *_vorbis_block_alloc(vorbis_block *vb,long bytes);
//void _vorbis_block_ripcord(vorbis_block *vb);
//extern int _ilog(unsigned int v);
#ifndef _V_WIDE_MATH
#define _V_WIDE_MATH
#ifndef ROCKBOX
#include <inttypes.h>
#endif /* ROCKBOX */
#ifndef _LOW_ACCURACY_
/* 64 bit multiply */
/* #include <sys/types.h> */
#ifdef ROCKBOX_LITTLE_ENDIAN
union magic {
struct {
int32_t lo;
int32_t hi;
} halves;
int64_t whole;
};
#elif defined(ROCKBOX_BIG_ENDIAN)
union magic {
struct {
int32_t hi;
int32_t lo;
} halves;
int64_t whole;
};
#endif
static inline int32_t MULT32(int32_t x, int32_t y) {
union magic magic;
magic.whole = (int64_t)x * y;
return magic.halves.hi;
}
static inline int32_t MULT31(int32_t x, int32_t y) {
return MULT32(x,y)<<1;
}
static inline int32_t MULT31_SHIFT15(int32_t x, int32_t y) {
union magic magic;
magic.whole = (int64_t)x * y;
return ((uint32_t)(magic.halves.lo)>>15) | ((magic.halves.hi)<<17);
}
#else
/* 32 bit multiply, more portable but less accurate */
/*
* Note: Precision is biased towards the first argument therefore ordering
* is important. Shift values were chosen for the best sound quality after
* many listening tests.
*/
/*
* For MULT32 and MULT31: The second argument is always a lookup table
* value already preshifted from 31 to 8 bits. We therefore take the
* opportunity to save on text space and use unsigned char for those
* tables in this case.
*/
static inline int32_t MULT32(int32_t x, int32_t y) {
return (x >> 9) * y; /* y preshifted >>23 */
}
static inline int32_t MULT31(int32_t x, int32_t y) {
return (x >> 8) * y; /* y preshifted >>23 */
}
static inline int32_t MULT31_SHIFT15(int32_t x, int32_t y) {
return (x >> 6) * y; /* y preshifted >>9 */
}
#endif
/*
* The XPROD functions are meant to optimize the cross products found all
* over the place in mdct.c by forcing memory operation ordering to avoid
* unnecessary register reloads as soon as memory is being written to.
* However this is only beneficial on CPUs with a sane number of general
* purpose registers which exclude the Intel x86. On Intel, better let the
* compiler actually reload registers directly from original memory by using
* macros.
*/
/* replaced XPROD32 with a macro to avoid memory reference
_x, _y are the results (must be l-values) */
#define XPROD32(_a, _b, _t, _v, _x, _y) \
{ (_x)=MULT32(_a,_t)+MULT32(_b,_v); \
(_y)=MULT32(_b,_t)-MULT32(_a,_v); }
#ifdef __i386__
#define XPROD31(_a, _b, _t, _v, _x, _y) \
{ *(_x)=MULT31(_a,_t)+MULT31(_b,_v); \
*(_y)=MULT31(_b,_t)-MULT31(_a,_v); }
#define XNPROD31(_a, _b, _t, _v, _x, _y) \
{ *(_x)=MULT31(_a,_t)-MULT31(_b,_v); \
*(_y)=MULT31(_b,_t)+MULT31(_a,_v); }
#else
static inline void XPROD31(int32_t a, int32_t b,
int32_t t, int32_t v,
int32_t *x, int32_t *y)
{
*x = MULT31(a, t) + MULT31(b, v);
*y = MULT31(b, t) - MULT31(a, v);
}
static inline void XNPROD31(int32_t a, int32_t b,
int32_t t, int32_t v,
int32_t *x, int32_t *y)
{
*x = MULT31(a, t) - MULT31(b, v);
*y = MULT31(b, t) + MULT31(a, v);
}
#endif
#define XPROD31_R(_a, _b, _t, _v, _x, _y)\
{\
_x = MULT31(_a, _t) + MULT31(_b, _v);\
_y = MULT31(_b, _t) - MULT31(_a, _v);\
}
#define XNPROD31_R(_a, _b, _t, _v, _x, _y)\
{\
_x = MULT31(_a, _t) - MULT31(_b, _v);\
_y = MULT31(_b, _t) + MULT31(_a, _v);\
}
#ifndef _V_VECT_OPS
#define _V_VECT_OPS
static inline
void vect_add(int32_t *x, int32_t *y, int n)
{
while (n>0) {
*x++ += *y++;
n--;
}
}
static inline
void vect_copy(int32_t *x, int32_t *y, int n)
{
while (n>0) {
*x++ = *y++;
n--;
}
}
static inline
void vect_mult_fw(int32_t *data, int32_t *window, int n)
{
while(n>0) {
*data = MULT31(*data, *window);
data++;
window++;
n--;
}
}
static inline
void vect_mult_bw(int32_t *data, int32_t *window, int n)
{
while(n>0) {
*data = MULT31(*data, *window);
data++;
window--;
n--;
}
}
#endif
#endif
/* not used anymore */
/*
#ifndef _V_CLIP_MATH
#define _V_CLIP_MATH
static inline int32_t CLIP_TO_15(int32_t x) {
int ret=x;
ret-= ((x<=32767)-1)&(x-32767);
ret-= ((x>=-32768)-1)&(x+32768);
return(ret);
}
#endif
*/
static inline int32_t VFLOAT_MULT(int32_t a,int32_t ap,
int32_t b,int32_t bp,
int32_t *p){
if(a && b){
#ifndef _LOW_ACCURACY_
*p=ap+bp+32;
return MULT32(a,b);
#else
*p=ap+bp+31;
return (a>>15)*(b>>16);
#endif
}else
return 0;
}
/*static inline int32_t VFLOAT_MULTI(int32_t a,int32_t ap,
int32_t i,
int32_t *p){
int ip=_ilog(abs(i))-31;
return VFLOAT_MULT(a,ap,i<<-ip,ip,p);
}
*/
static inline int32_t VFLOAT_ADD(int32_t a,int32_t ap,
int32_t b,int32_t bp,
int32_t *p){
if(!a){
*p=bp;
return b;
}else if(!b){
*p=ap;
return a;
}
/* yes, this can leak a bit. */
if(ap>bp){
int shift=ap-bp+1;
*p=ap+1;
a>>=1;
if(shift<32){
b=(b+(1<<(shift-1)))>>shift;
}else{
b=0;
}
}else{
int shift=bp-ap+1;
*p=bp+1;
b>>=1;
if(shift<32){
a=(a+(1<<(shift-1)))>>shift;
}else{
a=0;
}
}
a+=b;
if((a&0xc0000000)==0xc0000000 ||
(a&0xc0000000)==0){
a<<=1;
(*p)--;
}
return(a);
}
#endif