rockbox/lib/rbcodec/dsp/dsp_cf.S

764 lines
38 KiB
ArmAsm
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2006 Thom Johansen
* Copyright (C) 2007, 2012 Michael Sevakis
* Copyright (C) 2010 Bertrik Sikken
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
/****************************************************************************
* void pga_process(struct dsp_proc_entry *this, struct dsp_buffer **buf_p)
*/
.section .text
.align 2
.global pga_process
pga_process:
| input: 4(sp) = this, 8(sp) = buf_p
movem.l 4(%sp), %a0-%a1 | %a0 = this, %a1 = buf_p
move.l (%a0), %a0 | %a0 = this->data = &pga_data
move.l (%a0), %a0 | %a0 = data->gain
move.l (%a1), %a1 | %a1 = buf = *buf_p
lea.l -20(%sp), %sp | save registers
movem.l %d2-%d4/%a2-%a3, (%sp) |
clr.l %d1 | %d1 = buf->format.num_channels
move.b 17(%a1), %d1 |
10: | channel loop |
move.l (%a1), %d0 | %d0 = buf->remcount
move.l (%a1, %d1.l*4), %a2 | %a2 = s = buf->p32[ch-1]
move.l %a2, %a3 | %a3 = d = s
move.l (%a2)+, %d2 | %d2 = *s++,
mac.l %a0, %d2, (%a2)+, %d2, %acc0 | %acc0 = S(n)*gain, load S(n+1)
subq.l #1, %d0 | --count > 0 ? : effectively n++
ble.b 30f | loop done | no? finish up
20: | loop |
move.l %accext01, %d4 | fetch S(n-1)[7:0]
movclr.l %acc0, %d3 | fetch S(n-1)[40:8] in %d5[31:0]
asl.l #8, %d3 | *s++ = (S(n-1)[40:8] << 8) | S(n-1)[7:0]
mac.l %a0, %d2, (%a2)+, %d2, %acc0 | %acc0 = S(n)*gain, load S(n+1)
move.b %d4, %d3 |
move.l %d3, (%a3)+ |
subq.l #1, %d0 | --count > 0 ? : effectively n++
bgt.b 20b | loop | yes? do more samples
30: | loop done |
move.l %accext01, %d4 | fetch S(n-1)[7:0]
movclr.l %acc0, %d3 | fetch S(n-1)[40:8] in %d5[31:0]
asl.l #8, %d3 | *s = (S(n-1)[40:8] << 8) | S(n-1)[7:0]
move.b %d4, %d3 |
move.l %d3, (%a3) |
subq.l #1, %d1 | next channel
bgt.b 10b | channel loop |
movem.l (%sp), %d2-%d4/%a2-%a3 | restore registers
lea.l 20(%sp), %sp | cleanup stack
rts |
.size pga_process, .-pga_process
/****************************************************************************
* void crossfeed_process(struct dsp_proc_entry *this,
* struct dsp_buffer **buf_p)
*/
.section .text
.align 2
.global crossfeed_process
crossfeed_process:
| input: 4(sp) = this, 8(sp) = buf_p
lea.l -44(%sp), %sp |
movem.l %d2-%d7/%a2-%a6, (%sp) | save all regs
movem.l 48(%sp), %a1/%a4 | %a1 = this, %a4 = buf_p
move.l (%a4), %a4 | %a4 = buf = *buf_p
movem.l (%a4), %d7/%a4-%a5 | %d7 = buf->remcount, %a4 = buf->p32[0],
| %a5 = buf->p32[1]
move.l (%a1), %a1 | %a1 = &crossfeed_state
move.l (%a1)+, %d6 | %d6 = direct gain
movem.l 12(%a1), %d0-%d3 | fetch filter history samples
lea.l 132(%a1), %a6 | %a6 = delay line wrap limit
move.l (%a6), %a0 | fetch delay line address
movem.l (%a1), %a1-%a3 | load filter coefs
bra.b 20f | loop start | go to loop start point
/* Register usage in loop:
* %a0 = delay_p, %a1..%a3 = b0, b1, a1 (filter coefs),
* %a4 = buf[0], %a5 = buf[1],
* %a6 = delay line pointer wrap limit,
* %d0..%d3 = history
* %d4..%d5 = temp.
* %d6 = direct gain,
* %d7 = count
*/
10: | loop |
movclr.l %acc0, %d4 | write outputs
move.l %d4, (%a4)+ | .
movclr.l %acc1, %d5 | .
move.l %d5, (%a5)+ | .
20: | loop start |
mac.l %a2, %d0, (%a0)+, %d0, %acc0 | %acc0 = b1*dl[n - 1], %d0 = dl[n]
mac.l %a1, %d0 , %acc0 | %acc0 += b0*dl[n]
mac.l %a3, %d1, (%a5), %d5, %acc0 | %acc0 += a1*y_r[n - 1], load R
mac.l %a2, %d2, (%a0)+, %d2, %acc1 | %acc1 = b1*dr[n - 1], %d2 = dr[n]
mac.l %a1, %d2 , %acc1 | %acc1 += b0*dr[n]
mac.l %a3, %d3, (%a4), %d4, %acc1 | %acc1 += a1*y_l[n - 1], load L
movem.l %d4-%d5, -8(%a0) | save left & right inputs to delay line
move.l %acc0, %d3 | get filtered delayed left sample (y_l[n])
move.l %acc1, %d1 | get filtered delayed right sample (y_r[n])
mac.l %d6, %d4, %acc0 | %acc0 += gain*x_l[n]
mac.l %d6, %d5, %acc1 | %acc1 += gain*x_r[n]
cmp.l %a6, %a0 | wrap %a0 if passed end
bhs.b 30f | wrap buffer |
tpf.l | trap the buffer wrap
30: | wrap buffer | ...fwd taken branches more costly
lea.l -104(%a6), %a0 | wrap it up
subq.l #1, %d7 | --count > 0 ?
bgt.b 10b | loop | yes? do more
movclr.l %acc0, %d4 | write last outputs
move.l %d4, (%a4) | .
movclr.l %acc1, %d5 | .
move.l %d5, (%a5) | .
movem.l %d0-%d3, -120(%a6) | ...history
move.l %a0, (%a6) | ...delay_p
movem.l (%sp), %d2-%d7/%a2-%a6 | restore all regs
lea.l 44(%sp), %sp |
rts |
.size crossfeed_process,.-crossfeed_process
/****************************************************************************
* void crossfeed_meier_process(struct dsp_proc_entry *this,
* struct dsp_buffer **buf_p)
*/
.section .text
.global crossfeed_meier_process
crossfeed_meier_process:
| input: 4(sp) = this, 8(sp) = buf_p
movem.l 4(%sp), %a0-%a1 | %a0 = this, %a1 = buf_p
lea.l -24(%sp), %sp | save non-volatiles
movem.l %d2-%d6/%a2, (%sp) | .
move.l (%a0), %a0 | %a0 = &this->data = &crossfeed_state
move.l (%a1), %a1 | %a1 = buf = *buf_p
movem.l 16(%a0), %d1-%d5 | %d1 = vcl, %d2 = vcr, %d3 = vdiff,
| %d4 = coef1, %d5 = coef2
movem.l (%a1), %d0/%a1-%a2 | %d0 = count = buf->remcount
| %a1 = p32[0], %a2 = p32[1]
| Register usage in loop:
| %d0 = count, %d1 = vcl, %d2 = vcr, %d3 = vdiff/lout,
| %d4 = coef1, %d5 = coef2, %d6 = rout/scratch
| %a1 = p32[0], %a2 = p32[1]
10: | loop
mac.l %d5, %d3, %acc0 | %acc0 = common = coef2*vdiff
move.l %acc0, %acc1 | copy common
mac.l %d4, %d1, (%a1), %d3, %acc0 | %acc0 += coef1*vcl, %d3 = lout
msac.l %d4, %d2, (%a2), %d6, %acc1 | %acc1 -= coef1*vcr, %d6 = rout
add.l %d1, %d3 | lout += vcl
add.l %d2, %d6 | rout += vcr
move.l %d3, (%a1)+ | store left channel, pos inc
move.l %d6, (%a2)+ | store right channel, pos inc
sub.l %d6, %d3 | vdiff = lout - rout
movclr.l %acc0, %d6 | %d4 = fetch res1 in s0.31
sub.l %d6, %d1 | vcl -= res1
movclr.l %acc1, %d6 | %d5 = fetch -res2 in s0.31
add.l %d6, %d2 | vcr += -res2
subq.l #1, %d0 | count--
bgt 10b | loop | more samples?
|
movem.l %d1-%d3, 16(%a0) | save vcl, vcr, vdiff
movem.l (%sp), %d2-%d6/%a2 | restore non-volatiles
lea.l 24(%sp), %sp | .
rts |
.size crossfeed_meier_process, .-crossfeed_meier_process
/****************************************************************************
* int resample_linear(struct resample_data *data, struct dsp_buffer *src,
* struct dsp_buffer *dst)
*/
.section .text
.align 2
.global resample_linear
resample_linear:
| input: 4(sp) = data, 8(sp) = src, 12(sp) = dst
lea.l -44(%sp), %sp | save non-volatiles
movem.l %d2-%d7/%a2-%a6, (%sp) |
movem.l 48(%sp), %a0-%a2 | %a0 = data
| %a1 = src
| %a2 = dst
clr.l %d1 | %d1 = ch = src->format.num_channels
move.b 17(%a1), %d1 |
moveq.l #16, %d7 | %d7 = shift
.lrs_channel_loop: |
movem.l (%a0), %d2-%d3 | %d2 = delta = data->delta,
| %d3 = phase = data->phase
move.l (%a1), %d4 | %d4 = srcrem = src->remcount
move.l 12(%a2), %d5 | %d5 = dstrem = dst->bufcount
cmp.l #0x8000, %d4 | %d4 = MIN(srcrem, 0x8000)
ble.b 10f |
move.l #0x8000, %d4 |
10: |
move.l (%a1, %d1.l*4), %a3 | %a3 = s = src->p32[ch]
move.l (%a2, %d1.l*4), %a4 | %a4 = d = dst->p32[ch]
move.l %d3, %d0 | %d0 = pos
lsr.l %d7, %d0 | ...
beq.b 11f | pos == 0?
cmp.l %d4, %d0 | pos = MIN(pos, srcrem)
blt.b 12f |
move.l %d4, %d0 | pos = srcrem
move.l -4(%a3, %d0.l*4), %d6 | %d6 = last = s[pos - 1]
bra.w .lrs_channel_complete | at limit; nothing to do but next
11: |
move.l 4(%a0, %d1.l*4), %d6 | %d6 = last = last_sample[ch]
tpf.l | trap next move.l (last = s[pos - 1])
12: |
move.l -4(%a3, %d0.l*4), %d6 | %d6 = last = s[pos - 1]
cmp.l #0x10000, %d2 | delta >= 1.0?
bhs.b .lrs_downsample | yes? downsampling
|
/** Upsampling **/ |
lea.l (%a3, %d0.l*4), %a3 | %a3 = &s[pos]
sub.l %d4, %d0 | %d0 = pos - srcrem = -dte
lsl.l %d7, %d2 | move delta to bits 30..15
lsr.l #1, %d2 |
lsl.l %d7, %d3 | move phase to bits 30..15
lsr.l #1, %d3 |
move.l (%a3)+, %a5 | %a5 = s[pos]
move.l %a5, %a6 | %a6 = diff = s[pos] - last
sub.l %d6, %a6 |
bra.b 22f |
/* Funky loop structure is to avoid emac latency stalls */
20: |
move.l (%a3)+, %a5 | %a5 = s[pos]
move.l %a5, %a6 | %a6 = diff = s[pos] - last
sub.l %d6, %a6 |
21: |
movclr.l %acc0, %d7 | *d++ = %d7 = result
move.l %d7, (%a4)+ |
22: |
move.l %d6, %acc0 | %acc0 = last
mac.l %d3, %a6, %acc0 | %acc0 += frac * diff
subq.l #1, %d5 | dstrem <= 0?
ble.b 23f | yes? stop
add.l %d2, %d3 | phase += delta
bpl.b 21b | load next values?
move.l %a5, %d6 |
bclr.l #31, %d3 | clear sign bit
addq.l #1, %d0 | dte > 0?
bmi.b 20b | yes? continue resampling
tpf.w | trap next add.l (phase += delta)
23: |
add.l %d2, %d3 | phase += delta
lsl.l #1, %d3 | frac -> phase
bcs.b 24f | was sign bit set?
tpf.l |
24: |
move.l %a5, %d6 | yes? was going to move to new s[pos]
addq.l #1, %d0 |
movclr.l %acc0, %d7 | *d = %d7 = result
move.l %d7, (%a4) |
add.l %d4, %d0 | %d0 = -dte + srcrem = pos
or.l %d0, %d3 | restore phase
swap.w %d3 |
moveq.l #16, %d7 | %d7 = shift
bra.b .lrs_channel_complete |
|
/** Downsampling **/ |
.lrs_downsample: |
move.l (%a3, %d0.l*4), %a5 | %a5 = s[pos]
bra.b 31f |
30: |
lea.l -4(%a3, %d0.l*4), %a5 | %d6 = s[pos - 1], %a5 = s[pos]
movem.l (%a5), %d6/%a5 |
31: |
move.l %d6, %acc0 | %acc0 = last
sub.l %d6, %a5 | %a5 = diff = s[pos] - s[pos - 1]
move.l %d3, %d0 | frac = (phase << 16) >> 1
lsl.l %d7, %d0 |
lsr.l #1, %d0 |
mac.l %d0, %a5, %acc0 | %acc0 += frac * diff
add.l %d2, %d3 | phase += delta
move.l %d3, %d0 | pos = phase >> 16
lsr.l %d7, %d0 |
movclr.l %acc0, %a5 |
move.l %a5, (%a4)+ | *d++ = %d0
subq.l #1, %d5 | dst full?
ble.b 32f | yes? stop
cmp.l %d4, %d0 | pos < srcrem?
blt.b 30b | yes? continue resampling
tpf.l | trap cmp.l and ble.b
32: |
cmp.l %d4, %d0 | pos = MIN(pos, srcrem)
ble.b 33f |
move.l %d4, %d0 |
33: |
move.l -4(%a3, %d0.l*4), %d6 | %d6 = s[pos - 1]
|
.lrs_channel_complete: |
move.l %d6, 4(%a0, %d1.l*4) | last_sample[ch] = last
subq.l #1, %d1 | ch > 0?
bgt.w .lrs_channel_loop | yes? process next channel
|
move.l 12(%a2), %d1 | %d1 = dst->bufcount
sub.l %d5, %d1 | written = dst->bufcount - dstrem
move.l %d1, (%a2) | dst->remcount = written
move.l %d0, %d1 | wrap phase to position in next frame
lsl.l %d7, %d1 | data->phase = phase - (pos << 16)
sub.l %d1, %d3 | ...
move.l %d3, 4(%a0) | ...
movem.l (%sp), %d2-%d7/%a2-%a6 | restore non-volatiles
lea.l 44(%sp), %sp | cleanup stack
rts | buh-bye
.size resample_linear, .-resample_linear
/****************************************************************************
* void channel_mode_proc_mono(struct dsp_proc_entry *this,
* struct dsp_buffer **buf_p)
*
* Mix left and right channels 50/50 into a center channel.
*/
.section .text
.align 2
.global channel_mode_proc_mono
channel_mode_proc_mono:
| input: 4(sp) = this, 8(sp) = buf_p
move.l 8(%sp), %a0 | %a0 = buf_p
move.l (%a0), %a0 | %a0 = buf = *buf_p
lea.l -20(%sp), %sp | save registers
movem.l %d2-%d4/%a2-%a3, (%sp) |
movem.l (%a0), %d0/%a0-%a1 | %d0 = buf->remcount, %a0 = buf->p32[0],
| %a1 = buf->p32[1]
move.l %a0, %a2 | use separate dst pointers since read
move.l %a1, %a3 | pointers run one ahead of write
move.l #0x40000000, %d3 | %d3 = 0.5
move.l (%a0)+, %d1 | prime the input registers
move.l (%a1)+, %d2 |
mac.l %d1, %d3, (%a0)+, %d1, %acc0 |
mac.l %d2, %d3, (%a1)+, %d2, %acc0 |
subq.l #1, %d0 |
ble.s 20f | loop done |
10: | loop |
movclr.l %acc0, %d4 | L = R = l/2 + r/2
mac.l %d1, %d3, (%a0)+, %d1, %acc0 |
mac.l %d2, %d3, (%a1)+, %d2, %acc0 |
move.l %d4, (%a2)+ | output to original buffer
move.l %d4, (%a3)+ |
subq.l #1, %d0 |
bgt.s 10b | loop |
20: | loop done |
movclr.l %acc0, %d4 | output last sample
move.l %d4, (%a2) |
move.l %d4, (%a3) |
movem.l (%sp), %d2-%d4/%a2-%a3 | restore registers
lea.l 20(%sp), %sp | cleanup
rts |
.size channel_mode_proc_mono, .-channel_mode_proc_mono
/****************************************************************************
* void channel_mode_proc_custom(struct dsp_proc_entry *this,
* struct dsp_buffer **buf_p)
*
* Apply stereo width (narrowing/expanding) effect.
*/
.section .text
.align 2
.global channel_mode_proc_custom
channel_mode_proc_custom:
| input: 4(sp) = this, 8(sp) = buf_p
lea.l -28(%sp), %sp | save registers
movem.l %d2-%d6/%a2-%a3, (%sp) |
movem.l 32(%sp), %a0-%a1 | %a0 = this, %a1 = buf_p
move.l (%a1), %a1 | %a1 = buf = *buf_p
move.l (%a0), %a2 | %a2 = this->data = &channel_mode_data
movem.l (%a1), %d0/%a0-%a1 | %d0 = buf->remcount, %a0 = buf->p32[0],
| %a1 = buf->p32[1]
movem.l (%a2), %d3-%d4 | %d3 = sw_gain, %d4 = sw_cross
move.l %a0, %a2 | use separate dst pointers since read
move.l %a1, %a3 | pointers run one ahead of write
move.l (%a0)+, %d1 | prime the input registers
move.l (%a1)+, %d2 |
mac.l %d1, %d3 , %acc0 | L = l*gain + r*cross
mac.l %d1, %d4, (%a0)+, %d1, %acc1 | R = r*gain + l*cross
mac.l %d2, %d4 , %acc0 |
mac.l %d2, %d3, (%a1)+, %d2, %acc1 |
subq.l #1, %d0 |
ble.b 20f | loop done |
10: | loop |
movclr.l %acc0, %d5 |
movclr.l %acc1, %d6 |
mac.l %d1, %d3 , %acc0 | L = l*gain + r*cross
mac.l %d1, %d4, (%a0)+, %d1, %acc1 | R = r*gain + l*cross
mac.l %d2, %d4 , %acc0 |
mac.l %d2, %d3, (%a1)+, %d2, %acc1 |
move.l %d5, (%a2)+ |
move.l %d6, (%a3)+ |
subq.l #1, %d0 |
bgt.s 10b | loop |
20: | loop done |
movclr.l %acc0, %d5 | output last sample
movclr.l %acc1, %d6 |
move.l %d5, (%a2) |
move.l %d6, (%a3) |
movem.l (%sp), %d2-%d6/%a2-%a3 | restore registers
lea.l 28(%sp), %sp | cleanup
rts |
.size channel_mode_proc_custom, .-channel_mode_proc_custom
/****************************************************************************
* void channel_mode_proc_karaoke(struct dsp_proc_entry *this,
* struct dsp_buffer **buf_p)
*
* Separate channels into side channels.
*/
.section .text
.align 2
.global channel_mode_proc_karaoke
channel_mode_proc_karaoke:
| input: 4(sp) = this, 8(sp) = buf_p
move.l 8(%sp), %a0 | %a0 = buf_p
move.l (%a0), %a0 | %a0 = buf = *buf_p
lea.l -20(%sp), %sp | save registers
movem.l %d2-%d4/%a2-%a3, (%sp) |
movem.l (%a0), %d0/%a0-%a1 | %d0 = buf->remcount, %a0 = buf->p32[0],
| %a1 = buf->p32[1]
move.l %a0, %a2 | use separate dst pointers since read
move.l %a1, %a3 | pointers run one ahead of write
move.l #0x40000000, %d3 | %d3 = 0.5
move.l (%a0)+, %d1 | prime the input registers
move.l (%a1)+, %d2 |
mac.l %d1, %d3, (%a0)+, %d1, %acc0 | L = l/2 - r/2
msac.l %d2, %d3, (%a1)+, %d2, %acc0 |
subq.l #1, %d0 |
ble.b 20f | loop done |
10: | loop |
movclr.l %acc0, %d4 |
mac.l %d1, %d3, (%a0)+, %d1, %acc0 | L = l/2 - r/2
msac.l %d2, %d3, (%a1)+, %d2, %acc0 |
move.l %d4, (%a2)+ |
neg.l %d4 | R = -L = -(l/2 - r/2) = r/2 - l/2
move.l %d4, (%a3)+ |
subq.l #1, %d0 |
bgt.s 10b | loop |
20: | loop done |
movclr.l %acc0, %d4 | output last sample
move.l %d4, (%a2) |
neg.l %d4 | R = -L = -(l/2 - r/2) = r/2 - l/2
move.l %d4, (%a3) |
movem.l (%sp), %d2-%d4/%a2-%a3 | restore registers
lea.l 20(%sp), %sp | cleanup
rts |
.size channel_mode_proc_karaoke, .-channel_mode_proc_karaoke
/****************************************************************************
* void filter_process(struct dsp_filter *f, int32_t *buf[], int count,
* unsigned int channels)
*
* define HIGH_PRECISION as '1' to make filtering calculate lower bits after
* shifting. without this, "shift" - 1 of the lower bits will be lost here.
*/
#define HIGH_PRECISION 0
.text
.global filter_process
filter_process:
| input: 4(sp) = f, 8(sp) = buf, 12(sp) = count, 16(sp) = channels
lea.l -44(%sp), %sp | save clobbered regs
#if HIGH_PRECISION
movem.l %d2-%d7/%a2-%a6, (%sp) | .
#else
movem.l %d2-%d6/%a2-%a6, (%sp) |
#endif
move.l 48(%sp), %a5 | fetch filter structure address
clr.l %d6 | load shift count
move.b 52(%a5), %d6 | .
subq.l #1, %d6 | EMAC gives us one free shift
#if HIGH_PRECISION
moveq.l #8, %d7
sub.l %d6, %d7 | shift for lower part of accumulator
#endif
movem.l (%a5), %a0-%a4 | load coefs
lea.l 20(%a5), %a5 | point to filter history
10: | channel loop
move.l 52(%sp), %a6 | load input channel pointer
addq.l #4, 52(%sp) | point x to next channel
move.l (%a6), %a6 |
move.l 56(%sp), %d5 | number of samples
movem.l (%a5), %d0-%d3 | load filter history
| d0-d3 = history, d4 = temp, d5 = sample count, d6 = upper shift amount,
| d7 = lower shift amount,a0-a4 = coefs, a5 = history pointer, a6 = buf[ch]
20: | loop
| Direct form 1 filtering code. We assume DSP has put EMAC in frac mode.
| y[n] = b0*x[i] + b1*x[i - 1] + b2*x[i - 2] + a1*y[i - 1] + a2*y[i - 2],
| where y[] is output and x[] is input. This is performed out of order
| to do parallel load of input value.
mac.l %a2, %d1, %acc0 | acc = b2*x[i - 2]
move.l %d0, %d1 | fix input history
mac.l %a1, %d0, (%a6), %d0, %acc0 | acc += b1*x[i - 1], x[i] -> d0
mac.l %a0, %d0, %acc0 | acc += b0*x[i]
mac.l %a3, %d2, %acc0 | acc += a1*y[i - 1]
mac.l %a4, %d3, %acc0 | acc += a2*y[i - 2]
move.l %d2, %d3 | fix output history
#if HIGH_PRECISION
move.l %accext01, %d2 | fetch lower part of accumulator
move.b %d2, %d4 | clear upper three bytes
lsr.l %d7, %d4 | shift lower bits
#endif
movclr.l %acc0, %d2 | fetch upper part of result
asl.l %d6, %d2 | restore fixed point format
#if HIGH_PRECISION
or.l %d2, %d4 | combine lower and upper parts
#endif
move.l %d2, (%a6)+ | save result
subq.l #1, %d5 | are we done with this channel?
bgt 20b | loop
movem.l %d0-%d3, (%a5) | save history back to struct
lea.l 16(%a5), %a5 | point to next channel's history
subq.l #1, 60(%sp) | have we processed both channels?
bhi 10b | channel loop
#if HIGH_PRECISION
movem.l (%sp), %d2-%d7/%a2-%a6
#else
movem.l (%sp), %d2-%d6/%a2-%a6
#endif
lea.l 44(%sp), %sp
rts
.size filter_process, .-filter_process
/****************************************************************************
* void sample_output_stereo(struct sample_io_data *this,
* struct dsp_buffer *src,
* struct dsp_buffer *dst)
*
* Framework based on the ubiquitous Rockbox line transfer logic for
* Coldfire CPUs.
*
* Does emac clamping and scaling (which proved faster than the usual
* checks and branches - even single test clamping) and writes using
* line burst transfers. Also better than writing a single L-R pair per
* loop but a good deal more code.
*
* Attemping bursting during reads is rather futile since the source and
* destination alignments rarely agree and too much complication will
* slow us up. The parallel loads seem to do a bit better at least until
* a pcm buffer can always give line aligned chunk and then aligning the
* dest can then imply the source is aligned if the source buffers are.
* For now longword alignment is assumed of both the source and dest.
*
*/
.section .text
.align 2
.global sample_output_stereo
sample_output_stereo:
| input: 4(sp) = count, 8(sp) = src, 12(sp) = dst
lea.l -48(%sp), %sp | save registers
move.l %macsr, %d1 | do it now as at many lines will
movem.l %d1-%d7/%a2-%a6, (%sp) | be the far more common condition
move.l #0x80, %macsr | put emac unit in signed int mode
movem.l 52(%sp), %a0-%a2 | %a0 = this, %a1 = src, %a2 = dst
move.l (%a0), %a0 | %a0 = this->outcount
move.l 4(%a2), %a4 | %a4 = dst->p16out
lea.l (%a4, %a0.l*4), %a0 | %a0 = count -> end address
movem.l 4(%a1), %a2-%a3 | %a2 = src->p32[0], %a3 = src->p32[1]
clr.l %d1 | %a1 = multiplier: (1 << (16 - scale))
move.b 19(%a1), %d1 | %d1 = src->format.output_scale
sub.l #16, %d1 |
neg.l %d1 |
moveq.l #1, %d0 |
asl.l %d1, %d0 |
move.l %d0, %a1 |
move.l #0x8000, %a6 | %a6 = rounding term
moveq.l #28, %d0 | %d0 = second line bound
add.l %a4, %d0 |
and.l #0xfffffff0, %d0 |
cmp.l %a0, %d0 | at least a full line?
bhi.w 40f | long loop 1 start | no? do as trailing longwords
sub.l #16, %d0 | %d1 = first line bound
cmp.l %a4, %d0 | any leading longwords?
bls.b 20f | line loop start | no? start line loop
10: | long loop 0 |
move.l (%a2)+, %d1 | read longword from L and R
move.l %a6, %acc0 |
move.l %acc0, %acc1 |
mac.l %d1, %a1, (%a3)+, %d2, %acc0 | shift L to high word
mac.l %d2, %a1, %acc1 | shift R to high word
movclr.l %acc0, %d1 | get possibly saturated results
movclr.l %acc1, %d2 |
swap.w %d2 | move R to low word
move.w %d2, %d1 | interleave MS 16 bits of each
move.l %d1, (%a4)+ | ...and write both
cmp.l %a4, %d0 |
bhi.b 10b | long loop 0 |
20: | line loop start |
lea.l -12(%a0), %a5 | %a5 = at or just before last line bound
30: | line loop |
move.l (%a3)+, %d4 | get next 4 R samples and scale
move.l %a6, %acc0 |
move.l %acc0, %acc1 |
move.l %acc1, %acc2 |
move.l %acc2, %acc3 |
mac.l %d4, %a1, (%a3)+, %d5, %acc0 | with saturation
mac.l %d5, %a1, (%a3)+, %d6, %acc1 |
mac.l %d6, %a1, (%a3)+, %d7, %acc2 |
mac.l %d7, %a1, (%a2)+, %d0, %acc3 |
lea.l 16(%a4), %a4 | increment dest here, mitigate stalls
movclr.l %acc0, %d4 | obtain R results
movclr.l %acc1, %d5 |
movclr.l %acc2, %d6 |
movclr.l %acc3, %d7 |
move.l %a6, %acc0 |
move.l %acc0, %acc1 |
move.l %acc1, %acc2 |
move.l %acc2, %acc3 |
mac.l %d0, %a1, (%a2)+, %d1, %acc0 | get next 4 L samples and scale
mac.l %d1, %a1, (%a2)+, %d2, %acc1 | with saturation
mac.l %d2, %a1, (%a2)+, %d3, %acc2 |
mac.l %d3, %a1 , %acc3 |
swap.w %d4 | a) interleave most significant...
swap.w %d5 |
swap.w %d6 |
swap.w %d7 |
movclr.l %acc0, %d0 | obtain L results
movclr.l %acc1, %d1 |
movclr.l %acc2, %d2 |
movclr.l %acc3, %d3 |
move.w %d4, %d0 | a) ... 16 bits of L and R
move.w %d5, %d1 |
move.w %d6, %d2 |
move.w %d7, %d3 |
movem.l %d0-%d3, -16(%a4) | write four stereo samples
cmp.l %a4, %a5 |
bhi.b 30b | line loop |
40: | long loop 1 start |
cmp.l %a4, %a0 | any longwords left?
bls.b 60f | output end | no? stop
50: | long loop 1 |
move.l (%a2)+, %d1 | handle trailing longwords
move.l %a6, %acc0 |
move.l %acc0, %acc1 |
mac.l %d1, %a1, (%a3)+, %d2, %acc0 | the same way as leading ones
mac.l %d2, %a1, %acc1 |
movclr.l %acc0, %d1 |
movclr.l %acc1, %d2 |
swap.w %d2 |
move.w %d2, %d1 |
move.l %d1, (%a4)+ |
cmp.l %a4, %a0 |
bhi.b 50b | long loop 1
60: | output end |
movem.l (%sp), %d1-%d7/%a2-%a6 | restore registers
move.l %d1, %macsr |
lea.l 48(%sp), %sp | cleanup
rts |
.size sample_output_stereo, .-sample_output_stereo
/****************************************************************************
* void sample_output_mono(struct sample_io_data *this,
* struct dsp_buffer *src,
* struct dsp_buffer *dst)
*
* Same treatment as sample_output_stereo but for one channel.
*/
.section .text
.align 2
.global sample_output_mono
sample_output_mono:
| input: 4(sp) = count, 8(sp) = src, 12(sp) = dst
lea.l -32(%sp), %sp | save registers
move.l %macsr, %d1 | do it now as at many lines will
movem.l %d1-%d5/%a2-%a4, (%sp) | be the far more common condition
move.l #0x80, %macsr | put emac unit in signed int mode
movem.l 36(%sp), %a0-%a2 | %a0 = this, %a1 = src, %a2 = dst
move.l (%a0), %a0 | %a0 = this->outcount
move.l 4(%a2), %a3 | %a3 = dst->p16out
movem.l 4(%a1), %a2 | %a2 = src->p32[0]
lea.l (%a3, %a0.l*4), %a0 | %a0 = count -> end address
clr.l %d1 | %d5 = multiplier: (1 << (16 - scale))
move.b 19(%a1), %d1 | %d1 = src->format.output_scale
sub.l #16, %d1 |
neg.l %d1 |
moveq.l #1, %d5 |
asl.l %d1, %d5 |
move.l #0x8000, %a4 | %a4 = rounding term
moveq.l #28, %d0 | %d0 = second line bound
add.l %a3, %d0 |
and.l #0xfffffff0, %d0 |
cmp.l %a0, %d0 | at least a full line?
bhi.w 40f | long loop 1 start | no? do as trailing longwords
sub.l #16, %d0 | %d1 = first line bound
cmp.l %a3, %d0 | any leading longwords?
bls.b 20f | line loop start | no? start line loop
10: | long loop 0 |
move.l (%a2)+, %d1 | read longword from L and R
move.l %a4, %acc0 |
mac.l %d1, %d5, %acc0 | shift L to high word
movclr.l %acc0, %d1 | get possibly saturated results
move.l %d1, %d2 |
swap.w %d2 | move R to low word
move.w %d2, %d1 | duplicate single channel into
move.l %d1, (%a3)+ | L and R
cmp.l %a3, %d0 |
bhi.b 10b | long loop 0 |
20: | line loop start |
lea.l -12(%a0), %a1 | %a1 = at or just before last line bound
30: | line loop |
move.l (%a2)+, %d0 | get next 4 L samples and scale
move.l %a4, %acc0 |
move.l %acc0, %acc1 |
move.l %acc1, %acc2 |
move.l %acc2, %acc3 |
mac.l %d0, %d5, (%a2)+, %d1, %acc0 | with saturation
mac.l %d1, %d5, (%a2)+, %d2, %acc1 |
mac.l %d2, %d5, (%a2)+, %d3, %acc2 |
mac.l %d3, %d5 , %acc3 |
lea.l 16(%a3), %a3 | increment dest here, mitigate stalls
movclr.l %acc0, %d0 | obtain results
movclr.l %acc1, %d1 |
movclr.l %acc2, %d2 |
movclr.l %acc3, %d3 |
move.l %d0, %d4 | duplicate single channel
swap.w %d4 | into L and R
move.w %d4, %d0 |
move.l %d1, %d4 |
swap.w %d4 |
move.w %d4, %d1 |
move.l %d2, %d4 |
swap.w %d4 |
move.w %d4, %d2 |
move.l %d3, %d4 |
swap.w %d4 |
move.w %d4, %d3 |
movem.l %d0-%d3, -16(%a3) | write four stereo samples
cmp.l %a3, %a1 |
bhi.b 30b | line loop |
40: | long loop 1 start |
cmp.l %a3, %a0 | any longwords left?
bls.b 60f | output end | no? stop
50: | loop loop 1 |
move.l (%a2)+, %d1 | handle trailing longwords
move.l %a4, %acc0 |
mac.l %d1, %d5, %acc0 | the same way as leading ones
movclr.l %acc0, %d1 |
move.l %d1, %d2 |
swap.w %d2 |
move.w %d2, %d1 |
move.l %d1, (%a3)+ |
cmp.l %a3, %a0 |
bhi.b 50b | long loop 1 |
60: | output end |
movem.l (%sp), %d1-%d5/%a2-%a4 | restore registers
move.l %d1, %macsr |
lea.l 32(%sp), %sp | cleanup
rts |
.size sample_output_mono, .-sample_output_mono