rockbox/apps/codecs/demac/libdemac/predictor.c

197 lines
5.7 KiB
C
Raw Normal View History

/*
libdemac - A Monkey's Audio decoder
$Id$
Copyright (C) Dave Chapman 2007
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110, USA
*/
#include <inttypes.h>
#include <string.h>
#include "parser.h"
#include "predictor.h"
#include "vector_math32.h"
/* Return 0 if x is zero, -1 if x is positive, 1 if x is negative */
#define SIGN(x) (x) ? (((x) > 0) ? -1 : 1) : 0
static const int32_t initial_coeffs[4] = {
360, 317, -109, 98
};
static void init_predictor(struct predictor_t* p)
{
/* Zero the history buffers */
memset(p->historybuffer, 0, (PREDICTOR_ORDER*4) * sizeof(int32_t));
p->delayA = p->historybuffer + PREDICTOR_ORDER*4;
p->delayB = p->historybuffer + PREDICTOR_ORDER*3;
p->adaptcoeffsA = p->historybuffer + PREDICTOR_ORDER*2;
p->adaptcoeffsB = p->historybuffer + PREDICTOR_ORDER;
/* Initialise and zero the co-efficients */
memcpy(p->coeffsA, initial_coeffs, sizeof(initial_coeffs));
memset(p->coeffsB, 0, sizeof(p->coeffsB));
p->filterA = 0;
p->filterB = 0;
p->lastA = 0;
}
static int do_predictor_decode(struct predictor_t* p, int32_t A, int32_t B)
{
int32_t predictionA, predictionB, currentA;
p->delayA[0] = p->lastA;
p->delayA[-1] = p->delayA[0] - p->delayA[-1];
predictionA = scalarproduct4_rev32(p->coeffsA,p->delayA);
/* Apply a scaled first-order filter compression */
p->delayB[0] = B - ((p->filterB * 31) >> 5);
p->filterB = B;
p->delayB[-1] = p->delayB[0] - p->delayB[-1];
predictionB = scalarproduct5_rev32(p->coeffsB,p->delayB);
currentA = A + ((predictionA + (predictionB >> 1)) >> 10);
p->adaptcoeffsA[0] = SIGN(p->delayA[0]);
p->adaptcoeffsA[-1] = SIGN(p->delayA[-1]);
p->adaptcoeffsB[0] = SIGN(p->delayB[0]);
p->adaptcoeffsB[-1] = SIGN(p->delayB[-1]);
if (A > 0)
{
vector_sub4_rev32(p->coeffsA, p->adaptcoeffsA);
vector_sub5_rev32(p->coeffsB, p->adaptcoeffsB);
}
else if (A < 0)
{
vector_add4_rev32(p->coeffsA, p->adaptcoeffsA);
vector_add5_rev32(p->coeffsB, p->adaptcoeffsB);
}
p->delayA++;
p->delayB++;
p->adaptcoeffsA++;
p->adaptcoeffsB++;
/* Have we filled the history buffer? */
if (p->delayA == p->historybuffer + HISTORY_SIZE + (PREDICTOR_ORDER*4)) {
memmove(p->historybuffer, p->delayA - (PREDICTOR_ORDER*4),
(PREDICTOR_ORDER*4) * sizeof(int32_t));
p->delayA = p->historybuffer + PREDICTOR_ORDER*4;
p->delayB = p->historybuffer + PREDICTOR_ORDER*3;
p->adaptcoeffsA = p->historybuffer + PREDICTOR_ORDER*2;
p->adaptcoeffsB = p->historybuffer + PREDICTOR_ORDER;
}
p->lastA = currentA;
p->filterA = currentA + ((p->filterA * 31) >> 5);
return p->filterA;
}
static int32_t X;
void init_predictor_decoder(struct ape_ctx_t* ape_ctx)
{
X = 0;
init_predictor(&ape_ctx->predictorY);
init_predictor(&ape_ctx->predictorX);
}
int predictor_decode_stereo(struct ape_ctx_t* ape_ctx, int32_t* decoded0, int32_t* decoded1, int count) ICODE_ATTR;
int predictor_decode_stereo(struct ape_ctx_t* ape_ctx, int32_t* decoded0, int32_t* decoded1, int count)
{
while (count--)
{
*decoded0 = do_predictor_decode(&ape_ctx->predictorY, *decoded0, X);
X = do_predictor_decode(&ape_ctx->predictorX, *decoded1, *(decoded0)++);
*(decoded1++) = X;
}
return 0;
}
int predictor_decode_mono(struct ape_ctx_t* ape_ctx, int32_t* decoded0, int count)
{
struct predictor_t* p = &ape_ctx->predictorY;
int32_t predictionA, currentA, A;
currentA = p->lastA;
while (count--)
{
A = *decoded0;
p->delayA[0] = currentA;
p->delayA[-1] = p->delayA[0] - p->delayA[-1];
predictionA = (p->delayA[0] * p->coeffsA[0]) +
(p->delayA[-1] * p->coeffsA[1]) +
(p->delayA[-2] * p->coeffsA[2]) +
(p->delayA[-3] * p->coeffsA[3]);
currentA = A + (predictionA >> 10);
p->adaptcoeffsA[0] = SIGN(p->delayA[0]);
p->adaptcoeffsA[-1] = SIGN(p->delayA[-1]);
if (A > 0)
{
p->coeffsA[0] -= p->adaptcoeffsA[0];
p->coeffsA[1] -= p->adaptcoeffsA[-1];
p->coeffsA[2] -= p->adaptcoeffsA[-2];
p->coeffsA[3] -= p->adaptcoeffsA[-3];
}
else if (A < 0)
{
p->coeffsA[0] += p->adaptcoeffsA[0];
p->coeffsA[1] += p->adaptcoeffsA[-1];
p->coeffsA[2] += p->adaptcoeffsA[-2];
p->coeffsA[3] += p->adaptcoeffsA[-3];
}
p->delayA++;
p->adaptcoeffsA++;
/* Have we filled the history buffer? */
if (p->delayA == p->historybuffer + HISTORY_SIZE + (PREDICTOR_ORDER*4)) {
memmove(p->historybuffer, p->delayA - (PREDICTOR_ORDER*4),
(PREDICTOR_ORDER*4) * sizeof(int32_t));
p->delayA = p->historybuffer + PREDICTOR_ORDER*4;
p->adaptcoeffsA = p->historybuffer + PREDICTOR_ORDER*2;
}
p->filterA = currentA + ((p->filterA * 31) >> 5);
*(decoded0++) = p->filterA;
}
p->lastA = currentA;
return 0;
}