rockbox/firmware/target/arm/imx31/mc13783-imx31.c

364 lines
11 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (c) 2008 by Michael Sevakis
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "system.h"
#include "cpu.h"
#include "gpio-imx31.h"
#include "mc13783.h"
#include "mc13783-target.h"
#include "debug.h"
#include "kernel.h"
/* Extend the basic SPI transfer descriptor with our own fields */
struct mc13783_transfer_desc
{
struct spi_transfer_desc xfer;
union
{
struct semaphore sema;
uint32_t data;
};
};
extern const struct mc13783_event mc13783_events[MC13783_NUM_EVENTS];
extern struct spi_node mc13783_spi;
static uint32_t pmic_int_enb[2]; /* Enabled ints */
static uint32_t pmic_int_sense_enb[2]; /* Enabled sense reading */
static uint32_t int_pnd_buf[2]; /* Pending ints */
static uint32_t int_data_buf[4]; /* ISR data buffer */
static struct spi_transfer_desc int_xfers[2]; /* ISR transfer descriptor */
static bool restore_event = true; /* Protect SPI callback from unmasking GPIO
interrupt (lockout) */
static inline bool mc13783_transfer(struct spi_transfer_desc *xfer,
uint32_t *txbuf,
uint32_t *rxbuf,
int count,
spi_transfer_cb_fn_type callback)
{
xfer->node = &mc13783_spi;
xfer->txbuf = txbuf;
xfer->rxbuf = rxbuf;
xfer->count = count;
xfer->callback = callback;
xfer->next = NULL;
return spi_transfer(xfer);
}
/* Called when a transfer is finished and data is ready/written */
static void mc13783_xfer_complete_cb(struct spi_transfer_desc *xfer)
{
semaphore_release(&((struct mc13783_transfer_desc *)xfer)->sema);
}
static inline bool wait_for_transfer_complete(struct mc13783_transfer_desc *xfer)
{
return semaphore_wait(&xfer->sema, TIMEOUT_BLOCK)
== OBJ_WAIT_SUCCEEDED && xfer->xfer.count == 0;
}
/* Efficient interrupt status and acking */
static void mc13783_int_svc_complete_callback(struct spi_transfer_desc *xfer)
{
/* Restore PMIC interrupt events */
if (restore_event)
bitset32(&MC13783_GPIO_IMR, 1ul << MC13783_GPIO_LINE);
/* Call handlers */
for (
const struct mc13783_event *event = mc13783_events;
int_pnd_buf[0] | int_pnd_buf[1];
event++
)
{
unsigned int set = event->int_id / MC13783_INT_ID_SET_DIV;
uint32_t pnd = int_pnd_buf[set];
uint32_t mask = 1 << (event->int_id & MC13783_INT_ID_NUM_MASK);
if (pnd & mask)
{
event->callback();
int_pnd_buf[set] = pnd & ~mask;
}
}
(void)xfer;
}
static void mc13783_int_svc_callback(struct spi_transfer_desc *xfer)
{
/* Only clear interrupts with handlers */
int_pnd_buf[0] &= pmic_int_enb[0];
int_pnd_buf[1] &= pmic_int_enb[1];
/* Only read sense if enabled interrupts have them enabled */
if ((int_pnd_buf[0] & pmic_int_sense_enb[0]) ||
(int_pnd_buf[1] & pmic_int_sense_enb[1]))
{
int_data_buf[2] = MC13783_INTERRUPT_SENSE0 << 25;
int_data_buf[3] = MC13783_INTERRUPT_SENSE1 << 25;
int_xfers[1].rxbuf = int_data_buf;
int_xfers[1].count = 4;
}
/* Setup the write packets with status(es) to clear */
int_data_buf[0] = (1 << 31) | (MC13783_INTERRUPT_STATUS0 << 25)
| int_pnd_buf[0];
int_data_buf[1] = (1 << 31) | (MC13783_INTERRUPT_STATUS1 << 25)
| int_pnd_buf[1];
(void)xfer;
}
/* GPIO interrupt handler for mc13783 */
void mc13783_event(void)
{
/* Mask the interrupt (unmasked after final read services it). */
bitclr32(&MC13783_GPIO_IMR, 1ul << MC13783_GPIO_LINE);
MC13783_GPIO_ISR = (1ul << MC13783_GPIO_LINE);
/* Setup the read packets */
int_pnd_buf[0] = MC13783_INTERRUPT_STATUS0 << 25;
int_pnd_buf[1] = MC13783_INTERRUPT_STATUS1 << 25;
unsigned long cpsr = disable_irq_save();
/* Do these without intervening transfers */
if (mc13783_transfer(&int_xfers[0], int_pnd_buf, int_pnd_buf, 2,
mc13783_int_svc_callback))
{
/* Start this provisionally and fill-in actual values during the
first transfer's callback - set whatever could be known */
mc13783_transfer(&int_xfers[1], int_data_buf, NULL, 2,
mc13783_int_svc_complete_callback);
}
restore_irq(cpsr);
}
void INIT_ATTR mc13783_init(void)
{
/* Serial interface must have been initialized first! */
/* Enable the PMIC SPI module */
spi_enable_node(&mc13783_spi, true);
/* Mask any PMIC interrupts for now - modules will enable them as
* required */
mc13783_write(MC13783_INTERRUPT_MASK0, 0xffffff);
mc13783_write(MC13783_INTERRUPT_MASK1, 0xffffff);
MC13783_GPIO_ISR = (1ul << MC13783_GPIO_LINE);
gpio_enable_event(MC13783_EVENT_ID);
}
void mc13783_close(void)
{
restore_event = false;
gpio_disable_event(MC13783_EVENT_ID);
spi_enable_node(&mc13783_spi, false);
}
void mc13783_enable_event(enum mc13783_event_ids id, bool enable)
{
static const unsigned char pmic_intm_regs[2] =
{ MC13783_INTERRUPT_MASK0, MC13783_INTERRUPT_MASK1 };
const struct mc13783_event * const event = &mc13783_events[id];
unsigned int set = event->int_id / MC13783_INT_ID_SET_DIV;
uint32_t mask = 1 << (event->int_id & MC13783_INT_ID_NUM_MASK);
/* Mask GPIO while changing bits around */
restore_event = false;
bitclr32(&MC13783_GPIO_IMR, 1ul << MC13783_GPIO_LINE);
mc13783_write_masked(pmic_intm_regs[set],
enable ? 0 : mask, mask);
bitmod32(&pmic_int_enb[set], enable ? mask : 0, mask);
bitmod32(&pmic_int_sense_enb[set], enable ? event->sense : 0,
event->sense);
restore_event = true;
bitset32(&MC13783_GPIO_IMR, 1ul << MC13783_GPIO_LINE);
}
uint32_t mc13783_event_sense(enum mc13783_event_ids id)
{
const struct mc13783_event * const event = &mc13783_events[id];
unsigned int set = event->int_id / MC13783_INT_ID_SET_DIV;
return int_data_buf[2 + set] & event->sense;
}
uint32_t mc13783_set(unsigned address, uint32_t bits)
{
return mc13783_write_masked(address, bits, bits);
}
uint32_t mc13783_clear(unsigned address, uint32_t bits)
{
return mc13783_write_masked(address, 0, bits);
}
/* Called when the first transfer of mc13783_write_masked is complete */
static void mc13783_write_masked_cb(struct spi_transfer_desc *xfer)
{
struct mc13783_transfer_desc *desc = (struct mc13783_transfer_desc *)xfer;
uint32_t *packets = desc->xfer.rxbuf; /* Will have been advanced by 1 */
packets[0] |= packets[-1] & ~desc->data;
}
uint32_t mc13783_write_masked(unsigned address, uint32_t data, uint32_t mask)
{
if (address >= MC13783_NUM_REGS)
return MC13783_DATA_ERROR;
mask &= 0xffffff;
uint32_t packets[2] =
{
address << 25,
(1 << 31) | (address << 25) | (data & mask)
};
struct mc13783_transfer_desc xfers[2];
xfers[0].data = mask;
semaphore_init(&xfers[1].sema, 1, 0);
unsigned long cpsr = disable_irq_save();
/* Queue up two transfers in a row */
bool ok = mc13783_transfer(&xfers[0].xfer, &packets[0], &packets[0], 1,
mc13783_write_masked_cb) &&
mc13783_transfer(&xfers[1].xfer, &packets[1], NULL, 1,
mc13783_xfer_complete_cb);
restore_irq(cpsr);
if (ok && wait_for_transfer_complete(&xfers[1]))
return packets[0];
return MC13783_DATA_ERROR;
}
uint32_t mc13783_read(unsigned address)
{
if (address >= MC13783_NUM_REGS)
return MC13783_DATA_ERROR;
uint32_t packet = address << 25;
struct mc13783_transfer_desc xfer;
semaphore_init(&xfer.sema, 1, 0);
if (mc13783_transfer(&xfer.xfer, &packet, &packet, 1,
mc13783_xfer_complete_cb) &&
wait_for_transfer_complete(&xfer))
{
return packet;
}
return MC13783_DATA_ERROR;
}
int mc13783_write(unsigned address, uint32_t data)
{
if (address >= MC13783_NUM_REGS)
return -1;
uint32_t packet = (1 << 31) | (address << 25) | (data & 0xffffff);
struct mc13783_transfer_desc xfer;
semaphore_init(&xfer.sema, 1, 0);
if (mc13783_transfer(&xfer.xfer, &packet, NULL, 1,
mc13783_xfer_complete_cb) &&
wait_for_transfer_complete(&xfer))
{
return 1 - xfer.xfer.count;
}
return -1;
}
int mc13783_read_regs(const unsigned char *regs, uint32_t *buffer,
int count)
{
struct mc13783_transfer_desc xfer;
semaphore_init(&xfer.sema, 1, 0);
if (mc13783_read_async(&xfer.xfer, regs, buffer, count,
mc13783_xfer_complete_cb) &&
wait_for_transfer_complete(&xfer))
{
return count - xfer.xfer.count;
}
return -1;
}
int mc13783_write_regs(const unsigned char *regs, uint32_t *buffer,
int count)
{
struct mc13783_transfer_desc xfer;
semaphore_init(&xfer.sema, 1, 0);
if (mc13783_write_async(&xfer.xfer, regs, buffer, count,
mc13783_xfer_complete_cb) &&
wait_for_transfer_complete(&xfer))
{
return count - xfer.xfer.count;
}
return -1;
}
bool mc13783_read_async(struct spi_transfer_desc *xfer,
const unsigned char *regs, uint32_t *buffer,
int count, spi_transfer_cb_fn_type callback)
{
for (int i = 0; i < count; i++)
{
unsigned reg = regs[i];
if (reg >= MC13783_NUM_REGS)
return false;
buffer[i] = reg << 25;
}
return mc13783_transfer(xfer, buffer, buffer, count, callback);
}
bool mc13783_write_async(struct spi_transfer_desc *xfer,
const unsigned char *regs, uint32_t *buffer,
int count, spi_transfer_cb_fn_type callback)
{
for (int i = 0; i < count; i++)
{
unsigned reg = regs[i];
if (reg >= MC13783_NUM_REGS)
return false;
buffer[i] = (1 << 31) | (reg << 25) | (buffer[i] & 0xffffff);
}
return mc13783_transfer(xfer, buffer, NULL, count, callback);
}