rockbox/apps/plugins/wormlet.c

2518 lines
72 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2002 Philipp Pertermann
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "plugin.h"
#include "lib/configfile.h"
#include "lib/helper.h"
#include "lib/playback_control.h"
PLUGIN_HEADER
/* size of the field the worm lives in */
#define FIELD_RECT_X 1
#define FIELD_RECT_Y 1
#define FIELD_RECT_WIDTH (LCD_WIDTH - 45)
#define FIELD_RECT_HEIGHT (LCD_HEIGHT - 2)
/* when the game starts */
#define INITIAL_WORM_LENGTH 10
/* num of pixel the worm grows per eaten food */
#define WORM_PER_FOOD 7
/* num of worms creeping in the FIELD */
#define MAX_WORMS 3
/* minimal distance between a worm and an argh
when a new argh is made */
#define MIN_ARGH_DIST 5
#if (CONFIG_KEYPAD == RECORDER_PAD)
#define BTN_DIR_UP BUTTON_UP
#define BTN_DIR_DOWN BUTTON_DOWN
#define BTN_DIR_LEFT BUTTON_LEFT
#define BTN_DIR_RIGHT BUTTON_RIGHT
#define BTN_PLAYER2_DIR1 BUTTON_F2
#define BTN_PLAYER2_DIR2 BUTTON_F3
#define BTN_STARTPAUSE BUTTON_PLAY
#define BTN_QUIT BUTTON_OFF
#define BTN_STOPRESET BUTTON_ON
#define BTN_TOGGLE_KEYS BUTTON_F1
#if BUTTON_REMOTE != 0
#define BTN_RC_UP BUTTON_RC_VOL_UP
#define BTN_RC_DOWN BUTTON_RC_VOL_DOWN
#define REMOTE
#define MULTIPLAYER
#endif
#elif (CONFIG_KEYPAD == ARCHOS_AV300_PAD)
#define BTN_DIR_UP BUTTON_UP
#define BTN_DIR_DOWN BUTTON_DOWN
#define BTN_DIR_LEFT BUTTON_LEFT
#define BTN_DIR_RIGHT BUTTON_RIGHT
#define BTN_PLAYER2_DIR1 BUTTON_F2
#define BTN_PLAYER2_DIR2 BUTTON_F3
#define BTN_STARTPAUSE BUTTON_SELECT
#define BTN_QUIT BUTTON_OFF
#define BTN_STOPRESET BUTTON_ON
#define BTN_TOGGLE_KEYS BUTTON_F1
#elif (CONFIG_KEYPAD == ONDIO_PAD)
#define BTN_DIR_UP BUTTON_UP
#define BTN_DIR_DOWN BUTTON_DOWN
#define BTN_DIR_LEFT BUTTON_LEFT
#define BTN_DIR_RIGHT BUTTON_RIGHT
#define BTN_STARTPAUSE (BUTTON_MENU|BUTTON_REL)
#define BTN_QUIT (BUTTON_OFF|BUTTON_REL)
#define BTN_STOPRESET (BUTTON_OFF|BUTTON_MENU)
#elif (CONFIG_KEYPAD == IPOD_4G_PAD) || (CONFIG_KEYPAD == IPOD_3G_PAD) || \
(CONFIG_KEYPAD == IPOD_1G2G_PAD)
#define BTN_DIR_UP BUTTON_MENU
#define BTN_DIR_DOWN BUTTON_PLAY
#define BTN_DIR_LEFT BUTTON_LEFT
#define BTN_DIR_RIGHT BUTTON_RIGHT
#define BTN_STARTPAUSE (BUTTON_SELECT|BUTTON_REL)
#define BTN_QUIT (BUTTON_SELECT|BUTTON_MENU)
#define BTN_STOPRESET (BUTTON_SELECT|BUTTON_PLAY)
#elif (CONFIG_KEYPAD == IRIVER_H300_PAD) || (CONFIG_KEYPAD == IRIVER_H100_PAD)
#define BTN_DIR_UP BUTTON_UP
#define BTN_DIR_DOWN BUTTON_DOWN
#define BTN_DIR_LEFT BUTTON_LEFT
#define BTN_DIR_RIGHT BUTTON_RIGHT
#define BTN_STARTPAUSE (BUTTON_SELECT|BUTTON_REL)
#define BTN_QUIT BUTTON_OFF
#define BTN_STOPRESET BUTTON_ON
#define BTN_RC_QUIT BUTTON_RC_STOP
#elif (CONFIG_KEYPAD == IAUDIO_X5M5_PAD)
#define BTN_DIR_UP BUTTON_UP
#define BTN_DIR_DOWN BUTTON_DOWN
#define BTN_DIR_LEFT BUTTON_LEFT
#define BTN_DIR_RIGHT BUTTON_RIGHT
#define BTN_STARTPAUSE BUTTON_PLAY
#define BTN_QUIT BUTTON_POWER
#define BTN_STOPRESET BUTTON_REC
#elif (CONFIG_KEYPAD == GIGABEAT_PAD)
#define BTN_DIR_UP BUTTON_UP
#define BTN_DIR_DOWN BUTTON_DOWN
#define BTN_DIR_LEFT BUTTON_LEFT
#define BTN_DIR_RIGHT BUTTON_RIGHT
#define BTN_STARTPAUSE BUTTON_SELECT
#define BTN_QUIT BUTTON_POWER
#define BTN_STOPRESET BUTTON_A
#elif (CONFIG_KEYPAD == SANSA_E200_PAD) || \
(CONFIG_KEYPAD == SANSA_C200_PAD)
#define BTN_DIR_UP BUTTON_UP
#define BTN_DIR_DOWN BUTTON_DOWN
#define BTN_DIR_LEFT BUTTON_LEFT
#define BTN_DIR_RIGHT BUTTON_RIGHT
#define BTN_STARTPAUSE BUTTON_SELECT
#define BTN_QUIT BUTTON_POWER
#define BTN_STOPRESET BUTTON_REC
#elif (CONFIG_KEYPAD == SANSA_CLIP_PAD)
#define BTN_DIR_UP BUTTON_UP
#define BTN_DIR_DOWN BUTTON_DOWN
#define BTN_DIR_LEFT BUTTON_LEFT
#define BTN_DIR_RIGHT BUTTON_RIGHT
#define BTN_STARTPAUSE BUTTON_SELECT
#define BTN_QUIT BUTTON_POWER
#define BTN_STOPRESET BUTTON_HOME
#elif (CONFIG_KEYPAD == SANSA_FUZE_PAD)
#define BTN_DIR_UP BUTTON_UP
#define BTN_DIR_DOWN BUTTON_DOWN
#define BTN_DIR_LEFT BUTTON_LEFT
#define BTN_DIR_RIGHT BUTTON_RIGHT
#define BTN_STARTPAUSE BUTTON_SELECT
#define BTN_QUIT (BUTTON_HOME|BUTTON_REPEAT)
#define BTN_STOPRESET (BUTTON_SELECT | BUTTON_UP)
#elif (CONFIG_KEYPAD == SANSA_M200_PAD)
#define BTN_DIR_UP BUTTON_UP
#define BTN_DIR_DOWN BUTTON_DOWN
#define BTN_DIR_LEFT BUTTON_LEFT
#define BTN_DIR_RIGHT BUTTON_RIGHT
#define BTN_STARTPAUSE (BUTTON_SELECT | BUTTON_REL)
#define BTN_QUIT BUTTON_POWER
#define BTN_STOPRESET (BUTTON_SELECT | BUTTON_UP)
#elif (CONFIG_KEYPAD == IRIVER_H10_PAD)
#define BTN_DIR_UP BUTTON_SCROLL_UP
#define BTN_DIR_DOWN BUTTON_SCROLL_DOWN
#define BTN_DIR_LEFT BUTTON_LEFT
#define BTN_DIR_RIGHT BUTTON_RIGHT
#define BTN_STARTPAUSE BUTTON_PLAY
#define BTN_QUIT BUTTON_POWER
#define BTN_STOPRESET BUTTON_REW
#elif (CONFIG_KEYPAD == GIGABEAT_S_PAD)
#define BTN_DIR_UP BUTTON_UP
#define BTN_DIR_DOWN BUTTON_DOWN
#define BTN_DIR_LEFT BUTTON_LEFT
#define BTN_DIR_RIGHT BUTTON_RIGHT
#define BTN_STARTPAUSE BUTTON_SELECT
#define BTN_QUIT BUTTON_BACK
#define BTN_STOPRESET BUTTON_MENU
#elif (CONFIG_KEYPAD == MROBE100_PAD)
#define BTN_DIR_UP BUTTON_UP
#define BTN_DIR_DOWN BUTTON_DOWN
#define BTN_DIR_LEFT BUTTON_LEFT
#define BTN_DIR_RIGHT BUTTON_RIGHT
#define BTN_STARTPAUSE BUTTON_SELECT
#define BTN_QUIT BUTTON_POWER
#define BTN_STOPRESET BUTTON_DISPLAY
#elif CONFIG_KEYPAD == IAUDIO_M3_PAD
#define BTN_DIR_UP BUTTON_RC_VOL_UP
#define BTN_DIR_DOWN BUTTON_RC_VOL_DOWN
#define BTN_DIR_LEFT BUTTON_RC_REW
#define BTN_DIR_RIGHT BUTTON_RC_FF
#define BTN_STARTPAUSE BUTTON_RC_PLAY
#define BTN_QUIT BUTTON_RC_REC
#define BTN_STOPRESET BUTTON_RC_MODE
#elif (CONFIG_KEYPAD == COWON_D2_PAD)
#define BTN_QUIT BUTTON_POWER
#elif CONFIG_KEYPAD == CREATIVEZVM_PAD
#define BTN_DIR_UP BUTTON_UP
#define BTN_DIR_DOWN BUTTON_DOWN
#define BTN_DIR_LEFT BUTTON_LEFT
#define BTN_DIR_RIGHT BUTTON_RIGHT
#define BTN_STARTPAUSE BUTTON_PLAY
#define BTN_QUIT BUTTON_BACK
#define BTN_STOPRESET BUTTON_MENU
#elif CONFIG_KEYPAD == PHILIPS_HDD1630_PAD
#define BTN_DIR_UP BUTTON_UP
#define BTN_DIR_DOWN BUTTON_DOWN
#define BTN_DIR_LEFT BUTTON_LEFT
#define BTN_DIR_RIGHT BUTTON_RIGHT
#define BTN_STARTPAUSE BUTTON_MENU
#define BTN_QUIT BUTTON_POWER
#define BTN_STOPRESET BUTTON_VIEW
#elif CONFIG_KEYPAD == PHILIPS_SA9200_PAD
#define BTN_DIR_UP BUTTON_UP
#define BTN_DIR_DOWN BUTTON_DOWN
#define BTN_DIR_LEFT BUTTON_PREV
#define BTN_DIR_RIGHT BUTTON_RIGHT
#define BTN_STARTPAUSE BUTTON_MENU
#define BTN_QUIT BUTTON_POWER
#define BTN_STOPRESET BUTTON_RIGHT
#elif (CONFIG_KEYPAD == ONDAVX747_PAD) || \
(CONFIG_KEYPAD == ONDAVX777_PAD) || \
CONFIG_KEYPAD == MROBE500_PAD
#define BTN_QUIT BUTTON_POWER
#elif CONFIG_KEYPAD == SAMSUNG_YH_PAD
#define BTN_DIR_UP BUTTON_UP
#define BTN_DIR_DOWN BUTTON_DOWN
#define BTN_DIR_LEFT BUTTON_LEFT
#define BTN_DIR_RIGHT BUTTON_RIGHT
#define BTN_STARTPAUSE BUTTON_PLAY
#define BTN_QUIT BUTTON_FFWD
#define BTN_STOPRESET BUTTON_REW
#elif CONFIG_KEYPAD == PBELL_VIBE500_PAD
#define BTN_DIR_UP BUTTON_UP
#define BTN_DIR_DOWN BUTTON_DOWN
#define BTN_DIR_LEFT BUTTON_PREV
#define BTN_DIR_RIGHT BUTTON_NEXT
#define BTN_STARTPAUSE BUTTON_PLAY
#define BTN_QUIT BUTTON_REC
#define BTN_STOPRESET BUTTON_CANCEL
#else
#error No keymap defined!
#endif
#ifdef HAVE_TOUCHSCREEN
#ifndef BTN_DIR_UP
#define BTN_DIR_UP BUTTON_TOPMIDDLE
#endif
#ifndef BTN_DIR_DOWN
#define BTN_DIR_DOWN BUTTON_BOTTOMMIDDLE
#endif
#ifndef BTN_DIR_LEFT
#define BTN_DIR_LEFT BUTTON_MIDLEFT
#endif
#ifndef BTN_DIR_RIGHT
#define BTN_DIR_RIGHT BUTTON_MIDRIGHT
#endif
#ifndef BTN_STARTPAUSE
#define BTN_STARTPAUSE BUTTON_CENTER
#endif
#ifndef BTN_QUIT
#define BTN_QUIT BUTTON_TOPLEFT
#endif
#ifndef BTN_STOPRESET
#define BTN_STOPRESET BUTTON_TOPRIGHT
#endif
#endif
#if (LCD_WIDTH == 112) && (LCD_HEIGHT == 64)
#define FOOD_SIZE 3
#define ARGH_SIZE 4
#define SPEED 14
#define MAX_WORM_SEGMENTS 128
#elif (LCD_WIDTH == 128) && (LCD_HEIGHT == 64)
#define FOOD_SIZE 3
#define ARGH_SIZE 4
#define SPEED 14
#define MAX_WORM_SEGMENTS 128
#elif (LCD_WIDTH == 132) && (LCD_HEIGHT == 80)
#define FOOD_SIZE 3
#define ARGH_SIZE 4
#define SPEED 14
#define MAX_WORM_SEGMENTS 128
#elif (LCD_WIDTH == 128) && (LCD_HEIGHT == 96)
#define FOOD_SIZE 3
#define ARGH_SIZE 4
#define SPEED 12
#define MAX_WORM_SEGMENTS 128
#elif (LCD_WIDTH == 138) && (LCD_HEIGHT == 110)
#define FOOD_SIZE 4
#define ARGH_SIZE 5
#define SPEED 10
#define MAX_WORM_SEGMENTS 128
#elif (LCD_WIDTH == 128) && (LCD_HEIGHT == 128)
#define FOOD_SIZE 4
#define ARGH_SIZE 5
#define SPEED 9
#define MAX_WORM_SEGMENTS 128
#elif (LCD_WIDTH == 160) && (LCD_HEIGHT == 128)
#define FOOD_SIZE 4
#define ARGH_SIZE 5
#define SPEED 8
#define MAX_WORM_SEGMENTS 256
#elif (LCD_WIDTH == 176) && (LCD_HEIGHT == 132)
#define FOOD_SIZE 4
#define ARGH_SIZE 5
#define SPEED 6
#define MAX_WORM_SEGMENTS 256
#elif (LCD_WIDTH == 220) && (LCD_HEIGHT == 176)
#define FOOD_SIZE 5
#define ARGH_SIZE 6
#define SPEED 4
#define MAX_WORM_SEGMENTS 512
#elif (LCD_WIDTH == 176) && (LCD_HEIGHT == 220)
#define FOOD_SIZE 5
#define ARGH_SIZE 6
#define SPEED 4
#define MAX_WORM_SEGMENTS 512
#elif ((LCD_WIDTH == 320) && (LCD_HEIGHT == 240)) || \
((LCD_WIDTH == 240) && ((LCD_HEIGHT == 320) || (LCD_HEIGHT == 400)))
#define FOOD_SIZE 7
#define ARGH_SIZE 8
#define SPEED 4
#define MAX_WORM_SEGMENTS 512
#elif ((LCD_WIDTH == 640) && (LCD_HEIGHT == 480)) || \
((LCD_WIDTH == 480) && (LCD_HEIGHT == 640))
#define FOOD_SIZE 14
#define ARGH_SIZE 16
#define SPEED 4
#define MAX_WORM_SEGMENTS 512
#endif
#ifdef HAVE_LCD_COLOR
#define COLOR_WORM LCD_RGBPACK(80, 40, 0)
#define COLOR_ARGH LCD_RGBPACK(175, 0, 0)
#define COLOR_FOOD LCD_RGBPACK(0, 150, 0)
#define COLOR_FG LCD_RGBPACK(0, 0, 0)
#define COLOR_BG LCD_RGBPACK(181, 199, 231)
#endif
#define CHECK_SQUARE_COLLISION(x1,y1,s1,x2,y2,s2) (x1+s1>x2)&&(x2+s2>x1)&&(y1+s1>y2)&&(y2+s2>y1)
/**
* All the properties that a worm has.
*/
static struct worm {
/* The worm is stored in a ring of xy coordinates */
int x[MAX_WORM_SEGMENTS];
int y[MAX_WORM_SEGMENTS];
int head; /* index of the head within the buffer */
int tail; /* index of the tail within the buffer */
int growing; /* number of cyles the worm still keeps growing */
bool alive; /* the worms living state */
/* direction vector in which the worm moves */
int dirx; /* only values -1 0 1 allowed */
int diry; /* only values -1 0 1 allowed */
/* this method is used to fetch the direction the user
has selected. It can be one of the values
human_player1, human_player2, remote_player, virtual_player.
All these values are fuctions, that can change the direction
of the worm */
void (*fetch_worm_direction)(struct worm *w);
} worms[MAX_WORMS];
/* stores the highscore - besides it was scored by a virtual player */
static int highscore;
#define MAX_FOOD 5 /* maximal number of food items */
/* The arrays store the food coordinates */
static int foodx[MAX_FOOD];
static int foody[MAX_FOOD];
#define MAX_ARGH 100 /* maximal number of argh items */
#define ARGHS_PER_FOOD 2 /* number of arghs produced per eaten food */
/* The arrays store the argh coordinates */
static int arghx[MAX_ARGH];
static int arghy[MAX_ARGH];
/* the number of arghs that are currently in use */
static int argh_count;
/* the number of arghs per food, settable by user */
static int arghs_per_food = ARGHS_PER_FOOD;
/* the size of the argh, settable by user */
static int argh_size = ARGH_SIZE;
/* the size of the food, settable by user */
static int food_size = FOOD_SIZE;
/* the speed of the worm, settable by user */
static int speed = SPEED;
/* the amount a worm grows by eating a food, settable by user */
static int worm_food = WORM_PER_FOOD;
/* End additional variables */
#ifdef DEBUG_WORMLET
/* just a buffer used for debug output */
static char debugout[15];
#endif
/* the number of active worms (dead or alive) */
static int worm_count = MAX_WORMS;
/* in multiplayer mode: en- / disables the remote worm control
in singleplayer mode: toggles 4 / 2 button worm control */
static bool use_remote = false;
/* return values of check_collision */
#define COLLISION_NONE 0
#define COLLISION_WORM 1
#define COLLISION_FOOD 2
#define COLLISION_ARGH 3
#define COLLISION_FIELD 4
/* constants for use as directions.
Note that the values are ordered clockwise.
Thus increasing / decreasing the values
is equivalent to right / left turns. */
#define WEST 0
#define NORTH 1
#define EAST 2
#define SOUTH 3
/* direction of human player 1 */
static int player1_dir = EAST;
/* direction of human player 2 */
static int player2_dir = EAST;
/* direction of human player 3 */
static int player3_dir = EAST;
/* the number of (human) players that currently
control a worm */
static int players = 1;
#define SETTINGS_VERSION 1
#define SETTINGS_MIN_VERSION 1
#define SETTINGS_FILENAME "wormlet.cfg"
static struct configdata config[] =
{
{TYPE_INT, 0, 1024, { .int_p = &highscore }, "highscore", NULL},
{TYPE_INT, 0, 15, { .int_p = &arghs_per_food }, "arghs per food", NULL},
{TYPE_INT, 0, 15, { .int_p = &argh_size }, "argh size", NULL},
{TYPE_INT, 0, 15, { .int_p = &food_size }, "food size", NULL},
{TYPE_INT, 0, 3, { .int_p = &players }, "players", NULL},
{TYPE_INT, 0, 3, { .int_p = &worm_count }, "worms", NULL},
{TYPE_INT, 0, 20, { .int_p = &speed }, "speed", NULL},
{TYPE_INT, 0, 15, { .int_p = &worm_food }, "Worm Growth Per Food", NULL}
};
#ifdef DEBUG_WORMLET
static void set_debug_out(char *str){
strcpy(debugout, str);
}
#endif
/**
* Returns the direction id in which the worm
* currently is creeping.
* @param struct worm *w The worm that is to be investigated.
* w Must not be null.
* @return int A value 0 <= value < 4
* Note the predefined constants NORTH, SOUTH, EAST, WEST
*/
static int get_worm_dir(struct worm *w)
{
int retVal ;
if (w->dirx == 0) {
if (w->diry == 1) {
retVal = SOUTH;
} else {
retVal = NORTH;
}
} else {
if (w->dirx == 1) {
retVal = EAST;
} else {
retVal = WEST;
}
}
return retVal;
}
/**
* Set the direction of the specified worm with a direction id.
* Increasing the value by 1 means to turn the worm direction
* to right by 90 degree.
* @param struct worm *w The worm that is to be altered. w Must not be null.
* @param int dir The new direction in which the worm is to creep.
* dir must be 0 <= dir < 4. Use predefined constants
* NORTH, SOUTH, EAST, WEST
*/
static void set_worm_dir(struct worm *w, int dir)
{
switch (dir) {
case WEST:
w->dirx = -1;
w->diry = 0;
break;
case NORTH:
w->dirx = 0;
w->diry = - 1;
break;
case EAST:
w->dirx = 1;
w->diry = 0;
break;
case SOUTH:
w->dirx = 0;
w->diry = 1;
break;
}
}
/**
* Returns the current length of the worm array. This
* is also a value for the number of bends that are in the worm.
* @return int a positive value with 0 <= value < MAX_WORM_SEGMENTS
*/
static int get_worm_array_length(struct worm *w)
{
/* initial simple calculation will be overwritten if wrong. */
int retVal = w->head - w->tail;
/* if the worm 'crosses' the boundaries of the ringbuffer */
if (retVal < 0) {
retVal = w->head + MAX_WORM_SEGMENTS - w->tail;
}
return retVal;
}
/**
* Returns the score the specified worm. The score is the length
* of the worm.
* @param struct worm *w The worm that is to be investigated.
* w must not be null.
* @return int The length of the worm (>= 0).
*/
static int get_score(struct worm *w)
{
int retval = 0;
int length = get_worm_array_length(w);
int i;
for (i = 0; i < length; i++) {
/* The iteration iterates the length of the worm.
Here's the conversion to the true indices within the worm arrays. */
int linestart = (w->tail + i ) % MAX_WORM_SEGMENTS;
int lineend = (linestart + 1) % MAX_WORM_SEGMENTS;
int startx = w->x[linestart];
int starty = w->y[linestart];
int endx = w->x[lineend];
int endy = w->y[lineend];
int minimum, maximum;
if (startx == endx) {
minimum = MIN(starty, endy);
maximum = MAX(starty, endy);
} else {
minimum = MIN(startx, endx);
maximum = MAX(startx, endx);
}
retval += abs(maximum - minimum);
}
return retval;
}
/**
* Determines wether the line specified by startx, starty, endx, endy intersects
* the rectangle specified by x, y, width, height. Note that the line must be exactly
* horizontal or vertical (startx == endx or starty == endy).
* @param int startx The x coordinate of the start point of the line.
* @param int starty The y coordinate of the start point of the line.
* @param int endx The x coordinate of the end point of the line.
* @param int endy The y coordinate of the end point of the line.
* @param int x The x coordinate of the top left corner of the rectangle.
* @param int y The y coordinate of the top left corner of the rectangle.
* @param int width The width of the rectangle.
* @param int height The height of the rectangle.
* @return bool Returns true if the specified line intersects with the recangle.
*/
static bool line_in_rect(int startx, int starty, int endx, int endy,
int x, int y, int width, int height)
{
bool retval = false;
int simple, simplemin, simplemax;
int compa, compb, compmin, compmax;
int temp;
if (startx == endx) {
simple = startx;
simplemin = x;
simplemax = x + width;
compa = starty;
compb = endy;
compmin = y;
compmax = y + height;
} else {
simple = starty;
simplemin = y;
simplemax = y + height;
compa = startx;
compb = endx;
compmin = x;
compmax = x + width;
};
temp = compa;
compa = MIN(compa, compb);
compb = MAX(temp, compb);
if (simplemin <= simple && simple <= simplemax) {
if ((compmin <= compa && compa <= compmax) ||
(compmin <= compb && compb <= compmax) ||
(compa <= compmin && compb >= compmax)) {
retval = true;
}
}
return retval;
}
/**
* Tests wether the specified worm intersects with the rect.
* @param struct worm *w The worm to be investigated
* @param int x The x coordinate of the top left corner of the rect
* @param int y The y coordinate of the top left corner of the rect
* @param int widht The width of the rect
* @param int height The height of the rect
* @return bool Returns true if the worm intersects with the rect
*/
static bool worm_in_rect(struct worm *w, int x, int y, int width, int height)
{
bool retval = false;
/* get_worm_array_length is expensive -> buffer the value */
int wormLength = get_worm_array_length(w);
int i;
/* test each entry that is part of the worm */
for (i = 0; i < wormLength && retval == false; i++) {
/* The iteration iterates the length of the worm.
Here's the conversion to the true indices within the worm arrays. */
int linestart = (w->tail + i ) % MAX_WORM_SEGMENTS;
int lineend = (linestart + 1) % MAX_WORM_SEGMENTS;
int startx = w->x[linestart];
int starty = w->y[linestart];
int endx = w->x[lineend];
int endy = w->y[lineend];
retval = line_in_rect(startx, starty, endx, endy, x, y, width, height);
}
return retval;
}
/**
* Checks wether a specific food in the food arrays is at the
* specified coordinates.
* @param int foodIndex The index of the food in the food arrays
* @param int x the x coordinate.
* @param int y the y coordinate.
* @return Returns true if the coordinate hits the food specified by
* foodIndex.
*/
static bool specific_food_collision(int foodIndex, int x, int y)
{
bool retVal = false;
if (x >= foodx[foodIndex] &&
x < foodx[foodIndex] + food_size &&
y >= foody[foodIndex] &&
y < foody[foodIndex] + food_size) {
retVal = true;
}
return retVal;
}
/**
* Returns the index of the food that is at the
* given coordinates. If no food is at the coordinates
* -1 is returned.
* @return int -1 <= value < MAX_FOOD
*/
static int food_collision(int x, int y)
{
int i = 0;
int retVal = -1;
for (i = 0; i < MAX_FOOD; i++) {
if (specific_food_collision(i, x, y)) {
retVal = i;
break;
}
}
return retVal;
}
/**
* Checks wether a specific argh in the argh arrays is at the
* specified coordinates.
* @param int arghIndex The index of the argh in the argh arrays
* @param int x the x coordinate.
* @param int y the y coordinate.
* @return Returns true if the coordinate hits the argh specified by
* arghIndex.
*/
static bool specific_argh_collision(int arghIndex, int x, int y)
{
if ( x >= arghx[arghIndex] &&
y >= arghy[arghIndex] &&
x < arghx[arghIndex] + argh_size &&
y < arghy[arghIndex] + argh_size )
{
return true;
}
return false;
}
/**
* Returns the index of the argh that is at the
* given coordinates. If no argh is at the coordinates
* -1 is returned.
* @param int x The x coordinate.
* @param int y The y coordinate.
* @return int -1 <= value < argh_count <= MAX_ARGH
*/
static int argh_collision(int x, int y)
{
int i = 0;
int retVal = -1;
/* search for the argh that has the specified coords */
for (i = 0; i < argh_count; i++) {
if (specific_argh_collision(i, x, y)) {
retVal = i;
break;
}
}
return retVal;
}
/**
* Checks wether the worm collides with the food at the specfied food-arrays.
* @param int foodIndex The index of the food in the arrays. Ensure the value is
* 0 <= foodIndex <= MAX_FOOD
* @return Returns true if the worm collides with the specified food.
*/
static bool worm_food_collision(struct worm *w, int foodIndex)
{
bool retVal = false;
retVal = worm_in_rect(w, foodx[foodIndex], foody[foodIndex],
food_size - 1, food_size - 1);
return retVal;
}
/**
* Returns true if the worm hits the argh within the next moves (unless
* the worm changes it's direction).
* @param struct worm *w - The worm to investigate
* @param int argh_idx - The index of the argh
* @param int moves - The number of moves that are considered.
* @return Returns false if the specified argh is not hit within the next
* moves.
*/
static bool worm_argh_collision_in_moves(struct worm *w, int argh_idx, int moves)
{
bool retVal = false;
int x1, y1, x2, y2;
x1 = w->x[w->head];
y1 = w->y[w->head];
x2 = w->x[w->head] + moves * w->dirx;
y2 = w->y[w->head] + moves * w->diry;
retVal = line_in_rect(x1, y1, x2, y2, arghx[argh_idx], arghy[argh_idx],
argh_size, argh_size);
return retVal;
}
/**
* Checks wether the worm collides with the argh at the specfied argh-arrays.
* @param int arghIndex The index of the argh in the arrays.
* Ensure the value is 0 <= arghIndex < argh_count <= MAX_ARGH
* @return Returns true if the worm collides with the specified argh.
*/
static bool worm_argh_collision(struct worm *w, int arghIndex)
{
bool retVal = false;
retVal = worm_in_rect(w, arghx[arghIndex], arghy[arghIndex],
argh_size - 1, argh_size - 1);
return retVal;
}
/**
* Find new coordinates for the food stored in foodx[index], foody[index]
* that don't collide with any other food or argh
* @param int index
* Ensure that 0 <= index < MAX_FOOD.
*/
static void make_food(int index)
{
int x = 0;
int y = 0;
bool collisionDetected = false;
int i;
do {
/* make coordinates for a new food so that
the entire food lies within the FIELD */
x = rb->rand() % (FIELD_RECT_WIDTH - food_size);
y = rb->rand() % (FIELD_RECT_HEIGHT - food_size);
collisionDetected = false;
/* Ensure that the new food doesn't collide with any
existing foods or arghs.
If the new food hit any existing
argh or food a collision is detected.
*/
for (i=0; i<MAX_FOOD && !collisionDetected; i++) {
collisionDetected = CHECK_SQUARE_COLLISION(x,y,food_size,foodx[i],foody[i],food_size);
}
for (i=0; i<argh_count && !collisionDetected; i++) {
collisionDetected = CHECK_SQUARE_COLLISION(x,y,food_size,arghx[i],arghy[i],argh_size);
}
/* use coordinates for further testing */
foodx[index] = x;
foody[index] = y;
/* now test wether we accidently hit the worm with food ;) */
i = 0;
for (i = 0; i < worm_count && !collisionDetected; i++) {
collisionDetected = worm_food_collision(&worms[i], index);
}
}
while (collisionDetected);
return;
}
/**
* Clears a food from the lcd buffer.
* @param int index The index of the food arrays under which
* the coordinates of the desired food can be found. Ensure
* that the value is 0 <= index <= MAX_FOOD.
*/
static void clear_food(int index)
{
/* remove the old food from the screen */
rb->lcd_set_drawmode(DRMODE_SOLID|DRMODE_INVERSEVID);
rb->lcd_fillrect(foodx[index] + FIELD_RECT_X,
foody[index] + FIELD_RECT_Y,
food_size, food_size);
rb->lcd_set_drawmode(DRMODE_SOLID);
}
/**
* Draws a food in the lcd buffer.
* @param int index The index of the food arrays under which
* the coordinates of the desired food can be found. Ensure
* that the value is 0 <= index <= MAX_FOOD.
*/
static void draw_food(int index)
{
/* draw the food object */
#ifdef HAVE_LCD_COLOR
rb->lcd_set_foreground(COLOR_FOOD);
#endif
rb->lcd_fillrect(foodx[index] + FIELD_RECT_X,
foody[index] + FIELD_RECT_Y,
food_size, food_size);
rb->lcd_set_drawmode(DRMODE_SOLID|DRMODE_INVERSEVID);
rb->lcd_fillrect(foodx[index] + FIELD_RECT_X + 1,
foody[index] + FIELD_RECT_Y + 1,
food_size - 2, food_size - 2);
rb->lcd_set_drawmode(DRMODE_SOLID);
#ifdef HAVE_LCD_COLOR
rb->lcd_set_foreground(COLOR_FG);
#endif
}
/**
* Find new coordinates for the argh stored in arghx[index], arghy[index]
* that don't collide with any other food or argh.
* @param int index
* Ensure that 0 <= index < argh_count < MAX_ARGH.
*/
static void make_argh(int index)
{
int x = -1;
int y = -1;
bool collisionDetected = false;
int i;
do {
/* make coordinates for a new argh so that
the entire food lies within the FIELD */
x = rb->rand() % (FIELD_RECT_WIDTH - argh_size);
y = rb->rand() % (FIELD_RECT_HEIGHT - argh_size);
collisionDetected = false;
/* Ensure that the new argh doesn't intersect with any
existing foods or arghs.
If the new argh hit any existing
argh or food an intersection is detected.
*/
for (i=0; i<MAX_FOOD && !collisionDetected; i++) {
collisionDetected = CHECK_SQUARE_COLLISION(x,y,argh_size,foodx[i],foody[i],food_size);
}
for (i=0; i<argh_count && !collisionDetected; i++) {
collisionDetected = CHECK_SQUARE_COLLISION(x,y,argh_size,arghx[i],arghy[i],argh_size);
}
/* use the candidate coordinates to make a real argh */
arghx[index] = x;
arghy[index] = y;
/* now test wether we accidently hit the worm with argh ;) */
for (i = 0; i < worm_count && !collisionDetected; i++) {
collisionDetected |= worm_argh_collision(&worms[i], index);
collisionDetected |= worm_argh_collision_in_moves(&worms[i], index,
MIN_ARGH_DIST);
}
}
while (collisionDetected);
return;
}
/**
* Draws an argh in the lcd buffer.
* @param int index The index of the argh arrays under which
* the coordinates of the desired argh can be found. Ensure
* that the value is 0 <= index < argh_count <= MAX_ARGH.
*/
static void draw_argh(int index)
{
/* draw the new argh */
#ifdef HAVE_LCD_COLOR
rb->lcd_set_foreground(COLOR_ARGH);
#endif
rb->lcd_fillrect(arghx[index] + FIELD_RECT_X,
arghy[index] + FIELD_RECT_Y,
argh_size, argh_size);
#ifdef HAVE_LCD_COLOR
rb->lcd_set_foreground(COLOR_FG);
#endif
}
static void virtual_player(struct worm *w);
/**
* Initialzes the specified worm with INITIAL_WORM_LENGTH
* and the tail at the specified position. The worm will
* be initialized alive and creeping EAST.
* @param struct worm *w The worm that is to be initialized
* @param int x The x coordinate at which the tail of the worm starts.
* x must be 0 <= x < FIELD_RECT_WIDTH.
* @param int y The y coordinate at which the tail of the worm starts
* y must be 0 <= y < FIELD_RECT_WIDTH.
*/
static void init_worm(struct worm *w, int x, int y)
{
/* initialize the worm size */
w->head = 1;
w->tail = 0;
w->x[w->head] = x + 1;
w->y[w->head] = y;
w->x[w->tail] = x;
w->y[w->tail] = y;
/* set the initial direction the worm creeps to */
w->dirx = 1;
w->diry = 0;
w->growing = INITIAL_WORM_LENGTH - 1;
w->alive = true;
w->fetch_worm_direction = virtual_player;
}
/**
* Writes the direction that was stored for
* human player 1 into the specified worm. This function
* may be used to be stored in worm.fetch_worm_direction.
* The value of
* the direction is read from player1_dir.
* @param struct worm *w - The worm of which the direction
* is altered.
*/
static void human_player1(struct worm *w) {
set_worm_dir(w, player1_dir);
}
/**
* Writes the direction that was stored for
* human player 2 into the specified worm. This function
* may be used to be stored in worm.fetch_worm_direction.
* The value of
* the direction is read from player2_dir.
* @param struct worm *w - The worm of which the direction
* is altered.
*/
static void human_player2(struct worm *w) {
set_worm_dir(w, player2_dir);
}
/**
* Writes the direction that was stored for
* human player using a remote control
* into the specified worm. This function
* may be used to be stored in worm.fetch_worm_direction.
* The value of
* the direction is read from player3_dir.
* @param struct worm *w - The worm of which the direction
* is altered.
*/
static void remote_player(struct worm *w) {
set_worm_dir(w, player3_dir);
}
/**
* Initializes the worm-, food- and argh-arrays, draws a frame,
* makes some food and argh and display all that stuff.
*/
static void init_wormlet(void)
{
int i;
for (i = 0; i< worm_count; i++) {
/* Initialize all the worm coordinates to center. */
int x = (int)(FIELD_RECT_WIDTH / 2);
int y = (int)((FIELD_RECT_HEIGHT - 20)/ 2) + i * 10;
init_worm(&worms[i], x, y);
}
player1_dir = EAST;
player2_dir = EAST;
player3_dir = EAST;
if (players > 0) {
worms[0].fetch_worm_direction = human_player1;
}
if (players > 1) {
if (use_remote) {
worms[1].fetch_worm_direction = remote_player;
} else {
worms[1].fetch_worm_direction = human_player2;
}
}
if (players > 2) {
worms[2].fetch_worm_direction = human_player2;
}
/* Needed when the game is restarted using BTN_STOPRESET */
rb->lcd_clear_display();
/* make and display some food and argh */
argh_count = MAX_FOOD;
for (i = 0; i < MAX_FOOD; i++) {
make_food(i);
draw_food(i);
make_argh(i);
draw_argh(i);
}
/* draw the game field */
rb->lcd_set_drawmode(DRMODE_COMPLEMENT);
rb->lcd_fillrect(0, 0, FIELD_RECT_WIDTH + 2, FIELD_RECT_HEIGHT + 2);
rb->lcd_fillrect(1, 1, FIELD_RECT_WIDTH, FIELD_RECT_HEIGHT);
rb->lcd_set_drawmode(DRMODE_SOLID);
/* make everything visible */
rb->lcd_update();
}
/**
* Move the worm one step further if it is alive.
* The direction in which the worm moves is taken from dirx and diry.
* move_worm decreases growing if > 0. While the worm is growing the tail
* is left untouched.
* @param struct worm *w The worm to move. w must not be NULL.
*/
static void move_worm(struct worm *w)
{
if (w->alive) {
/* determine the head point and its precessor */
int headx = w->x[w->head];
int heady = w->y[w->head];
int prehead = (w->head + MAX_WORM_SEGMENTS - 1) % MAX_WORM_SEGMENTS;
int preheadx = w->x[prehead];
int preheady = w->y[prehead];
/* determine the old direction */
int olddirx;
int olddiry;
if (headx == preheadx) {
olddirx = 0;
olddiry = (heady > preheady) ? 1 : -1;
} else {
olddiry = 0;
olddirx = (headx > preheadx) ? 1 : -1;
}
/* olddir == dir?
a change of direction means a new segment
has been opened */
if (olddirx != w->dirx ||
olddiry != w->diry) {
w->head = (w->head + 1) % MAX_WORM_SEGMENTS;
}
/* new head position */
w->x[w->head] = headx + w->dirx;
w->y[w->head] = heady + w->diry;
/* while the worm is growing no tail procession is necessary */
if (w->growing > 0) {
/* update the worms grow state */
w->growing--;
}
/* if the worm isn't growing the tail has to be dragged */
else {
/* index of the end of the tail segment */
int tail_segment_end = (w->tail + 1) % MAX_WORM_SEGMENTS;
/* drag the end of the tail */
/* only one coordinate has to be altered. Here it is
determined which one */
int dir = 0; /* specifies wether the coord has to be in- or decreased */
if (w->x[w->tail] == w->x[tail_segment_end]) {
dir = (w->y[w->tail] - w->y[tail_segment_end] < 0) ? 1 : -1;
w->y[w->tail] += dir;
} else {
dir = (w->x[w->tail] - w->x[tail_segment_end] < 0) ? 1 : -1;
w->x[w->tail] += dir;
}
/* when the tail has been dragged so far that it meets
the next segment start the tail segment is obsolete and
must be freed */
if (w->x[w->tail] == w->x[tail_segment_end] &&
w->y[w->tail] == w->y[tail_segment_end]){
/* drop the last tail point */
w->tail = tail_segment_end;
}
}
}
}
/**
* Draws the head and clears the tail of the worm in
* the display buffer. lcd_update() is NOT called thus
* the caller has to take care that the buffer is displayed.
*/
static void draw_worm(struct worm *w)
{
/* draw the new head */
int x = w->x[w->head];
int y = w->y[w->head];
#ifdef HAVE_LCD_COLOR
rb->lcd_set_foreground(COLOR_WORM);
#endif
if (x >= 0 && x < FIELD_RECT_WIDTH && y >= 0 && y < FIELD_RECT_HEIGHT) {
rb->lcd_drawpixel(x + FIELD_RECT_X, y + FIELD_RECT_Y);
}
rb->lcd_set_drawmode(DRMODE_SOLID|DRMODE_INVERSEVID);
/* clear the space behind the worm */
x = w->x[w->tail] ;
y = w->y[w->tail] ;
if (x >= 0 && x < FIELD_RECT_WIDTH && y >= 0 && y < FIELD_RECT_HEIGHT) {
rb->lcd_drawpixel(x + FIELD_RECT_X, y + FIELD_RECT_Y);
}
rb->lcd_set_drawmode(DRMODE_SOLID);
#ifdef HAVE_LCD_COLOR
rb->lcd_set_foreground(COLOR_FG);
#endif
}
/**
* Checks wether the coordinate is part of the worm. Returns
* true if any part of the worm was hit - including the head.
* @param x int The x coordinate
* @param y int The y coordinate
* @return int The index of the worm arrays that contain x, y.
* Returns -1 if the coordinates are not part of the worm.
*/
static int specific_worm_collision(struct worm *w, int x, int y)
{
int retVal = -1;
/* get_worm_array_length is expensive -> buffer the value */
int wormLength = get_worm_array_length(w);
int i;
/* test each entry that is part of the worm */
for (i = 0; i < wormLength && retVal == -1; i++) {
/* The iteration iterates the length of the worm.
Here's the conversion to the true indices within the worm arrays. */
int linestart = (w->tail + i ) % MAX_WORM_SEGMENTS;
int lineend = (linestart + 1) % MAX_WORM_SEGMENTS;
bool samex = (w->x[linestart] == x) && (w->x[lineend] == x);
bool samey = (w->y[linestart] == y) && (w->y[lineend] == y);
if (samex || samey){
int test, min, max, tmp;
if (samey) {
min = w->x[linestart];
max = w->x[lineend];
test = x;
} else {
min = w->y[linestart];
max = w->y[lineend];
test = y;
}
tmp = min;
min = MIN(min, max);
max = MAX(tmp, max);
if (min <= test && test <= max) {
retVal = lineend;
}
}
}
return retVal;
}
/**
* Increases the length of the specified worm by marking
* that it may grow by len pixels. Note that the worm has
* to move to make the growing happen.
* @param worm *w The worm that is to be altered.
* @param int len A positive value specifying the amount of
* pixels the worm may grow.
*/
static void add_growing(struct worm *w, int len) {
w->growing += len;
}
/**
* Determins the worm that is at the coordinates x, y. The parameter
* w is a switch parameter that changes the functionality of worm_collision.
* If w is specified and x,y hits the head of w NULL is returned.
* This is a useful way to determine wether the head of w hits
* any worm but including itself but excluding its own head.
* (It hits always its own head ;))
* If w is set to NULL worm_collision returns any worm including all heads
* that is at position of x,y.
* @param struct worm *w The worm of which the head should be excluded in
* the test. w may be set to NULL.
* @param int x The x coordinate that is checked
* @param int y The y coordinate that is checkec
* @return struct worm* The worm that has been hit by x,y. If no worm
* was at the position NULL is returned.
*/
static struct worm* worm_collision(struct worm *w, int x, int y)
{
struct worm *retVal = NULL;
int i;
for (i = 0; (i < worm_count) && (retVal == NULL); i++) {
int collision_at = specific_worm_collision(&worms[i], x, y);
if (collision_at != -1) {
if (!(w == &worms[i] && collision_at == w->head)){
retVal = &worms[i];
}
}
}
return retVal;
}
/**
* Returns true if the head of the worm just has
* crossed the field boundaries.
* @return bool true if the worm just has wrapped.
*/
static bool field_collision(struct worm *w)
{
bool retVal = false;
if ((w->x[w->head] >= FIELD_RECT_WIDTH) ||
(w->y[w->head] >= FIELD_RECT_HEIGHT) ||
(w->x[w->head] < 0) ||
(w->y[w->head] < 0))
{
retVal = true;
}
return retVal;
}
/**
* Returns true if the specified coordinates are within the
* field specified by the FIELD_RECT_XXX constants.
* @param int x The x coordinate of the point that is investigated
* @param int y The y coordinate of the point that is investigated
* @return bool Returns false if x,y specifies a point outside the
* field of worms.
*/
static bool is_in_field_rect(int x, int y)
{
bool retVal = false;
retVal = (x >= 0 && x < FIELD_RECT_WIDTH &&
y >= 0 && y < FIELD_RECT_HEIGHT);
return retVal;
}
/**
* Checks and returns wether the head of the w
* is colliding with something currently.
* @return int One of the values:
* COLLISION_NONE
* COLLISION_w
* COLLISION_FOOD
* COLLISION_ARGH
* COLLISION_FIELD
*/
static int check_collision(struct worm *w)
{
int retVal = COLLISION_NONE;
if (worm_collision(w, w->x[w->head], w->y[w->head]) != NULL)
retVal = COLLISION_WORM;
if (food_collision(w->x[w->head], w->y[w->head]) >= 0)
retVal = COLLISION_FOOD;
if (argh_collision(w->x[w->head], w->y[w->head]) >= 0)
retVal = COLLISION_ARGH;
if (field_collision(w))
retVal = COLLISION_FIELD;
return retVal;
}
/**
* Returns the index of the food that is closest to the point
* specified by x, y. This index may be used in the foodx and
* foody arrays.
* @param int x The x coordinate of the point
* @param int y The y coordinate of the point
* @return int A value usable as index in foodx and foody.
*/
static int get_nearest_food(int x, int y)
{
int nearestfood = 0;
int olddistance = FIELD_RECT_WIDTH + FIELD_RECT_HEIGHT;
int deltax = 0;
int deltay = 0;
int foodindex;
for (foodindex = 0; foodindex < MAX_FOOD; foodindex++) {
int distance;
deltax = foodx[foodindex] - x;
deltay = foody[foodindex] - y;
deltax = deltax > 0 ? deltax : deltax * (-1);
deltay = deltay > 0 ? deltay : deltay * (-1);
distance = deltax + deltay;
if (distance < olddistance) {
olddistance = distance;
nearestfood = foodindex;
}
}
return nearestfood;
}
/**
* Returns wether the specified position is next to the worm
* and in the direction the worm looks. Use this method to
* test wether this position would be hit with the next move of
* the worm unless the worm changes its direction.
* @param struct worm *w - The worm to be investigated
* @param int x - The x coordinate of the position to test.
* @param int y - The y coordinate of the position to test.
* @return Returns true if the worm will hit the position unless
* it change its direction before the next move.
*/
static bool is_in_front_of_worm(struct worm *w, int x, int y)
{
bool infront = false;
int deltax = x - w->x[w->head];
int deltay = y - w->y[w->head];
if (w->dirx == 0) {
infront = (w->diry * deltay) > 0;
} else {
infront = (w->dirx * deltax) > 0;
}
return infront;
}
/**
* Returns true if the worm will collide with the next move unless
* it changes its direction.
* @param struct worm *w - The worm to be investigated.
* @return Returns true if the worm will collide with the next move
* unless it changes its direction.
*/
static bool will_worm_collide(struct worm *w)
{
int x = w->x[w->head] + w->dirx;
int y = w->y[w->head] + w->diry;
bool retVal = !is_in_field_rect(x, y);
if (!retVal) {
retVal = (argh_collision(x, y) != -1);
}
if (!retVal) {
retVal = (worm_collision(w, x, y) != NULL);
}
return retVal;
}
/**
* This function
* may be used to be stored in worm.fetch_worm_direction for
* worms that are not controlled by humans but by artificial stupidity.
* A direction is searched that doesn't lead to collision but to the nearest
* food - but not very intelligent. The direction is written to the specified
* worm.
* @param struct worm *w - The worm of which the direction
* is altered.
*/
static void virtual_player(struct worm *w)
{
bool isright;
int plana, planb, planc;
/* find the next lunch */
int nearestfood = get_nearest_food(w->x[w->head], w->y[w->head]);
/* determine in which direction it is */
/* in front of me? */
bool infront = is_in_front_of_worm(w, foodx[nearestfood], foody[nearestfood]);
/* left right of me? */
int olddir = get_worm_dir(w);
set_worm_dir(w, (olddir + 1) % 4);
isright = is_in_front_of_worm(w, foodx[nearestfood], foody[nearestfood]);
set_worm_dir(w, olddir);
/* detect situation, set strategy */
if (infront) {
if (isright) {
plana = olddir;
planb = (olddir + 1) % 4;
planc = (olddir + 3) % 4;
} else {
plana = olddir;
planb = (olddir + 3) % 4;
planc = (olddir + 1) % 4;
}
} else {
if (isright) {
plana = (olddir + 1) % 4;
planb = olddir;
planc = (olddir + 3) % 4;
} else {
plana = (olddir + 3) % 4;
planb = olddir;
planc = (olddir + 1) % 4;
}
}
/* test for collision */
set_worm_dir(w, plana);
if (will_worm_collide(w)){
/* plan b */
set_worm_dir(w, planb);
/* test for collision */
if (will_worm_collide(w)) {
/* plan c */
set_worm_dir(w, planc);
}
}
}
/**
* prints out the score board with all the status information
* about the game.
*/
static void score_board(void)
{
char buf[15];
char* buf2 = NULL;
int i;
int y = 0;
rb->lcd_set_drawmode(DRMODE_SOLID|DRMODE_INVERSEVID);
rb->lcd_fillrect(FIELD_RECT_WIDTH + 2, 0,
LCD_WIDTH - FIELD_RECT_WIDTH - 2, LCD_HEIGHT);
rb->lcd_set_drawmode(DRMODE_SOLID);
for (i = 0; i < worm_count; i++) {
int score = get_score(&worms[i]);
/* high score */
if (worms[i].fetch_worm_direction != virtual_player){
if (highscore < score) {
highscore = score;
}
}
/* length */
rb->snprintf(buf, sizeof (buf),"Len:%d", score);
/* worm state */
switch (check_collision(&worms[i])) {
case COLLISION_NONE:
if (worms[i].growing > 0)
buf2 = "Growing";
else {
if (worms[i].alive)
buf2 = "Hungry";
else
buf2 = "Wormed";
}
break;
case COLLISION_WORM:
buf2 = "Wormed";
break;
case COLLISION_FOOD:
buf2 = "Growing";
break;
case COLLISION_ARGH:
buf2 = "Argh";
break;
case COLLISION_FIELD:
buf2 = "Crashed";
break;
}
rb->lcd_putsxy(FIELD_RECT_WIDTH + 3, y , buf);
rb->lcd_putsxy(FIELD_RECT_WIDTH + 3, y+8, buf2);
if (!worms[i].alive){
rb->lcd_set_drawmode(DRMODE_COMPLEMENT);
rb->lcd_fillrect(FIELD_RECT_WIDTH + 2, y,
LCD_WIDTH - FIELD_RECT_WIDTH - 2, 17);
rb->lcd_set_drawmode(DRMODE_SOLID);
}
y += 19;
}
rb->snprintf(buf , sizeof(buf), "Hs: %d", highscore);
#ifndef DEBUG_WORMLET
rb->lcd_putsxy(FIELD_RECT_WIDTH + 3, LCD_HEIGHT - 8, buf);
#else
rb->lcd_putsxy(FIELD_RECT_WIDTH + 3, LCD_HEIGHT - 8, debugout);
#endif
}
/**
* Checks for collisions of the worm and its environment and
* takes appropriate actions like growing the worm or killing it.
* @return bool Returns true if the worm is dead. Returns
* false if the worm is healthy, up and creeping.
*/
static bool process_collisions(struct worm *w)
{
int index = -1;
w->alive &= !field_collision(w);
if (w->alive) {
/* check if food was eaten */
index = food_collision(w->x[w->head], w->y[w->head]);
if (index != -1){
int i;
clear_food(index);
make_food(index);
draw_food(index);
for (i = 0; i < arghs_per_food; i++) {
argh_count++;
if (argh_count > MAX_ARGH)
argh_count = MAX_ARGH;
make_argh(argh_count - 1);
draw_argh(argh_count - 1);
}
add_growing(w, worm_food);
draw_worm(w);
}
/* check if argh was eaten */
else {
index = argh_collision(w->x[w->head], w->y[w->head]);
if (index != -1) {
w->alive = false;
}
else {
if (worm_collision(w, w->x[w->head], w->y[w->head]) != NULL) {
w->alive = false;
}
}
}
}
return !w->alive;
}
/**
* The main loop of the game.
* @return bool Returns true if the game ended
* with a dead worm. Returns false if the user
* aborted the game manually.
*/
static int run(void)
{
int button = 0;
int wormDead = false;
bool paused = false;
/* ticks are counted to compensate speed variations */
long cycle_start = 0, cycle_end = 0;
#ifdef DEBUG_WORMLET
int ticks_to_max_cycle_reset = 20;
long max_cycle = 0;
char buf[20];
#endif
/* initialize the board and so on */
init_wormlet();
cycle_start = *rb->current_tick;
/* change the direction of the worm */
while (!wormDead)
{
int i;
long cycle_duration=0;
#ifdef HAS_BUTTON_HOLD
if (rb->button_hold())
paused = true;
#endif
switch (button) {
case BTN_STARTPAUSE:
paused = !paused;
break;
case BTN_STOPRESET:
if (paused)
return 1; /* restart game */
else
paused = true;
break;
#ifdef BTN_RC_QUIT
case BTN_RC_QUIT:
#endif
case BTN_QUIT:
return 2; /* back to menu */
break;
}
if (!paused)
{
switch (button) {
case BTN_DIR_UP:
if (players == 1 && !use_remote) {
player1_dir = NORTH;
}
break;
case BTN_DIR_DOWN:
if (players == 1 && !use_remote) {
player1_dir = SOUTH;
}
break;
case BTN_DIR_LEFT:
if (players != 1 || use_remote) {
player1_dir = (player1_dir + 3) % 4;
} else {
player1_dir = WEST;
}
break;
case BTN_DIR_RIGHT:
if (players != 1 || use_remote) {
player1_dir = (player1_dir + 1) % 4;
} else {
player1_dir = EAST;
}
break;
#ifdef MULTIPLAYER
case BTN_PLAYER2_DIR1:
player2_dir = (player2_dir + 3) % 4;
break;
case BTN_PLAYER2_DIR2:
player2_dir = (player2_dir + 1) % 4;
break;
#endif
#ifdef REMOTE
case BTN_RC_UP:
player3_dir = (player3_dir + 1) % 4;
break;
case BTN_RC_DOWN:
player3_dir = (player3_dir + 3) % 4;
break;
#endif
}
for (i = 0; i < worm_count; i++) {
worms[i].fetch_worm_direction(&worms[i]);
}
wormDead = true;
for (i = 0; i < worm_count; i++){
struct worm *w = &worms[i];
move_worm(w);
wormDead &= process_collisions(w);
draw_worm(w);
}
score_board();
rb->lcd_update();
if (button == BTN_STOPRESET) {
wormDead = true;
}
/* here the wormlet game cycle ends
thus the current tick is stored
as end time */
cycle_end = *rb->current_tick;
/* The duration of the game cycle */
cycle_duration = cycle_end - cycle_start;
cycle_duration = MAX(0, cycle_duration);
cycle_duration = MIN(speed -1, cycle_duration);
#ifdef DEBUG_WORMLET
ticks_to_max_cycle_reset--;
if (ticks_to_max_cycle_reset <= 0) {
max_cycle = 0;
}
if (max_cycle < cycle_duration) {
max_cycle = cycle_duration;
ticks_to_max_cycle_reset = 20;
}
rb->snprintf(buf, sizeof buf, "ticks %d", max_cycle);
set_debug_out(buf);
#endif
}
/* adjust the number of ticks to wait for a button.
This ensures that a complete game cycle including
user input runs in constant time */
button = rb->button_get_w_tmo(speed - cycle_duration);
cycle_start = *rb->current_tick;
}
rb->splash(HZ*2, "Game Over!");
return 2; /* back to menu */
}
#ifdef DEBUG_WORMLET
/**
* Just a test routine that checks that worm_food_collision works
* in some typical situations.
*/
static void test_worm_food_collision(void)
{
int collision_count = 0;
int i;
rb->lcd_clear_display();
init_worm(&worms[0], 10, 10);
add_growing(&worms[0], 10);
set_worm_dir(&worms[0], EAST);
for (i = 0; i < 10; i++) {
move_worm(&worms[0]);
draw_worm(&worms[0]);
}
set_worm_dir(&worms[0], SOUTH);
for (i = 0; i < 10; i++) {
move_worm(&worms[0]);
draw_worm(&worms[0]);
}
foodx[0] = 15;
foody[0] = 12;
for (foody[0] = 20; foody[0] > 0; foody[0] --) {
char buf[20];
bool collision;
draw_worm(&worms[0]);
draw_food(0);
collision = worm_food_collision(&worms[0], 0);
if (collision) {
collision_count++;
}
rb->snprintf(buf, sizeof buf, "collisions: %d", collision_count);
rb->lcd_putsxy(0, LCD_HEIGHT -8, buf);
rb->lcd_update();
}
if (collision_count != food_size) {
rb->button_get(true);
}
foody[0] = 15;
for (foodx[0] = 30; foodx[0] > 0; foodx[0] --) {
char buf[20];
bool collision;
draw_worm(&worms[0]);
draw_food(0);
collision = worm_food_collision(&worms[0], 0);
if (collision) {
collision_count ++;
}
rb->snprintf(buf, sizeof buf, "collisions: %d", collision_count);
rb->lcd_putsxy(0, LCD_HEIGHT -8, buf);
rb->lcd_update();
}
if (collision_count != food_size * 2) {
rb->button_get(true);
}
}
static bool expensive_worm_in_rect(struct worm *w, int rx, int ry, int rw, int rh)
{
int x, y;
bool retVal = false;
for (x = rx; x < rx + rw; x++){
for (y = ry; y < ry + rh; y++) {
if (specific_worm_collision(w, x, y) != -1) {
retVal = true;
}
}
}
return retVal;
}
static void test_worm_argh_collision(void)
{
int i;
int dir;
int collision_count = 0;
rb->lcd_clear_display();
init_worm(&worms[0], 10, 10);
add_growing(&worms[0], 40);
for (dir = 0; dir < 4; dir++) {
set_worm_dir(&worms[0], (EAST + dir) % 4);
for (i = 0; i < 10; i++) {
move_worm(&worms[0]);
draw_worm(&worms[0]);
}
}
arghx[0] = 12;
for (arghy[0] = 0; arghy[0] < FIELD_RECT_HEIGHT - argh_size; arghy[0]++){
char buf[20];
bool collision;
draw_argh(0);
collision = worm_argh_collision(&worms[0], 0);
if (collision) {
collision_count ++;
}
rb->snprintf(buf, sizeof buf, "collisions: %d", collision_count);
rb->lcd_putsxy(0, LCD_HEIGHT -8, buf);
rb->lcd_update();
}
if (collision_count != argh_size * 2) {
rb->button_get(true);
}
arghy[0] = 12;
for (arghx[0] = 0; arghx[0] < FIELD_RECT_HEIGHT - argh_size; arghx[0]++){
char buf[20];
bool collision;
draw_argh(0);
collision = worm_argh_collision(&worms[0], 0);
if (collision) {
collision_count ++;
}
rb->snprintf(buf, sizeof buf, "collisions: %d", collision_count);
rb->lcd_putsxy(0, LCD_HEIGHT -8, buf);
rb->lcd_update();
}
if (collision_count != argh_size * 4) {
rb->button_get(true);
}
}
static int testline_in_rect(void)
{
int testfailed = -1;
int rx = 10;
int ry = 15;
int rw = 20;
int rh = 25;
/* Test 1 */
int x1 = 12;
int y1 = 8;
int x2 = 12;
int y2 = 42;
if (!line_in_rect(x1, y1, x2, y2, rx, ry, rw, rh) &&
!line_in_rect(x2, y2, x1, y1, rx, ry, rw, rh)) {
rb->lcd_drawrect(rx, ry, rw, rh);
rb->lcd_drawline(x1, y1, x2, y2);
rb->lcd_update();
rb->lcd_putsxy(0, 0, "failed 1");
rb->button_get(true);
testfailed = 1;
}
/* test 2 */
y2 = 20;
if (!line_in_rect(x1, y1, x2, y2, rx, ry, rw, rh) &&
!line_in_rect(x2, y2, x1, y1, rx, ry, rw, rh)) {
rb->lcd_drawrect(rx, ry, rw, rh);
rb->lcd_drawline(x1, y1, x2, y2);
rb->lcd_putsxy(0, 0, "failed 2");
rb->lcd_update();
rb->button_get(true);
testfailed = 2;
}
/* test 3 */
y1 = 30;
if (!line_in_rect(x1, y1, x2, y2, rx, ry, rw, rh) &&
!line_in_rect(x2, y2, x1, y1, rx, ry, rw, rh)) {
rb->lcd_drawrect(rx, ry, rw, rh);
rb->lcd_drawline(x1, y1, x2, y2);
rb->lcd_putsxy(0, 0, "failed 3");
rb->lcd_update();
rb->button_get(true);
testfailed = 3;
}
/* test 4 */
y2 = 45;
if (!line_in_rect(x1, y1, x2, y2, rx, ry, rw, rh) &&
!line_in_rect(x2, y2, x1, y1, rx, ry, rw, rh)) {
rb->lcd_drawrect(rx, ry, rw, rh);
rb->lcd_drawline(x1, y1, x2, y2);
rb->lcd_putsxy(0, 0, "failed 4");
rb->lcd_update();
rb->button_get(true);
testfailed = 4;
}
/* test 5 */
y1 = 50;
if (line_in_rect(x1, y1, x2, y2, rx, ry, rw, rh) ||
line_in_rect(x2, y2, x1, y1, rx, ry, rw, rh)) {
rb->lcd_drawrect(rx, ry, rw, rh);
rb->lcd_drawline(x1, y1, x2, y2);
rb->lcd_putsxy(0, 0, "failed 5");
rb->lcd_update();
rb->button_get(true);
testfailed = 5;
}
/* test 6 */
y1 = 5;
y2 = 7;
if (line_in_rect(x1, y1, x2, y2, rx, ry, rw, rh) ||
line_in_rect(x2, y2, x1, y1, rx, ry, rw, rh)) {
rb->lcd_drawrect(rx, ry, rw, rh);
rb->lcd_drawline(x1, y1, x2, y2);
rb->lcd_putsxy(0, 0, "failed 6");
rb->lcd_update();
rb->button_get(true);
testfailed = 6;
}
/* test 7 */
x1 = 8;
y1 = 20;
x2 = 35;
y2 = 20;
if (!line_in_rect(x1, y1, x2, y2, rx, ry, rw, rh) &&
!line_in_rect(x2, y2, x1, y1, rx, ry, rw, rh)) {
rb->lcd_drawrect(rx, ry, rw, rh);
rb->lcd_drawline(x1, y1, x2, y2);
rb->lcd_putsxy(0, 0, "failed 7");
rb->lcd_update();
rb->button_get(true);
testfailed = 7;
}
/* test 8 */
x2 = 12;
if (!line_in_rect(x1, y1, x2, y2, rx, ry, rw, rh) &&
!line_in_rect(x2, y2, x1, y1, rx, ry, rw, rh)) {
rb->lcd_drawrect(rx, ry, rw, rh);
rb->lcd_drawline(x1, y1, x2, y2);
rb->lcd_putsxy(0, 0, "failed 8");
rb->lcd_update();
rb->button_get(true);
testfailed = 8;
}
/* test 9 */
x1 = 25;
if (!line_in_rect(x1, y1, x2, y2, rx, ry, rw, rh) &&
!line_in_rect(x2, y2, x1, y1, rx, ry, rw, rh)) {
rb->lcd_drawrect(rx, ry, rw, rh);
rb->lcd_drawline(x1, y1, x2, y2);
rb->lcd_putsxy(0, 0, "failed 9");
rb->lcd_update();
rb->button_get(true);
testfailed = 9;
}
/* test 10 */
x2 = 37;
if (!line_in_rect(x1, y1, x2, y2, rx, ry, rw, rh) &&
!line_in_rect(x2, y2, x1, y1, rx, ry, rw, rh)) {
rb->lcd_drawrect(rx, ry, rw, rh);
rb->lcd_drawline(x1, y1, x2, y2);
rb->lcd_putsxy(0, 0, "failed 10");
rb->lcd_update();
rb->button_get(true);
testfailed = 10;
}
/* test 11 */
x1 = 42;
if (line_in_rect(x1, y1, x2, y2, rx, ry, rw, rh) ||
line_in_rect(x2, y2, x1, y1, rx, ry, rw, rh)) {
rb->lcd_drawrect(rx, ry, rw, rh);
rb->lcd_drawline(x1, y1, x2, y2);
rb->lcd_putsxy(0, 0, "failed 11");
rb->lcd_update();
rb->button_get(true);
testfailed = 11;
}
/* test 12 */
x1 = 5;
x2 = 7;
if (line_in_rect(x1, y1, x2, y2, rx, ry, rw, rh) ||
line_in_rect(x2, y2, x1, y1, rx, ry, rw, rh)) {
rb->lcd_drawrect(rx, ry, rw, rh);
rb->lcd_drawline(x1, y1, x2, y2);
rb->lcd_putsxy(0, 0, "failed 12");
rb->lcd_update();
rb->button_get(true);
testfailed = 12;
}
/* test 13 */
rx = 9;
ry = 15;
rw = food_size;
rh = food_size;
x1 = 10;
y1 = 10;
x2 = 10;
y2 = 20;
if (!(line_in_rect(x1, y1, x2, y2, rx, ry, rw, rh) &&
line_in_rect(x2, y2, x1, y1, rx, ry, rw, rh))) {
rb->lcd_drawrect(rx, ry, rw, rh);
rb->lcd_drawline(x1, y1, x2, y2);
rb->lcd_putsxy(0, 0, "failed 13");
rb->lcd_update();
rb->button_get(true);
testfailed = 13;
}
/* test 14 */
rx = 9;
ry = 15;
rw = 4;
rh = 4;
x1 = 10;
y1 = 10;
x2 = 10;
y2 = 19;
if (!(line_in_rect(x1, y1, x2, y2, rx, ry, rw, rh) &&
line_in_rect(x2, y2, x1, y1, rx, ry, rw, rh))) {
rb->lcd_drawline(x1, y1, x2, y2);
rb->lcd_invertrect(rx, ry, rw, rh);
rb->lcd_putsxy(0, 0, "failed 14");
rb->lcd_update();
rb->button_get(true);
testfailed = 14;
}
rb->lcd_clear_display();
return testfailed;
}
/**
* Just a test routine to test wether specific_worm_collision might work properly
*/
static int test_specific_worm_collision(void)
{
int collisions = 0;
int dir;
int x = 0;
int y = 0;
char buf[20];
rb->lcd_clear_display();
init_worm(&worms[0], 10, 20);
add_growing(&worms[0], 20 - INITIAL_WORM_LENGTH);
for (dir = EAST; dir < EAST + 4; dir++) {
int i;
set_worm_dir(&worms[0], dir % 4);
for (i = 0; i < 5; i++) {
if (!(dir % 4 == NORTH && i == 9)) {
move_worm(&worms[0]);
draw_worm(&worms[0]);
}
}
}
for (y = 15; y < 30; y ++){
for (x = 5; x < 20; x++) {
if (specific_worm_collision(&worms[0], x, y) != -1) {
collisions ++;
}
rb->lcd_invertpixel(x + FIELD_RECT_X, y + FIELD_RECT_Y);
rb->snprintf(buf, sizeof buf, "collisions %d", collisions);
rb->lcd_putsxy(0, LCD_HEIGHT - 8, buf);
rb->lcd_update();
}
}
if (collisions != 21) {
rb->button_get(true);
}
return collisions;
}
static void test_make_argh(void)
{
int dir;
int seed = 0;
int hit = 0;
int failures = 0;
int last_failures = 0;
int i, worm_idx;
rb->lcd_clear_display();
worm_count = 3;
for (worm_idx = 0; worm_idx < worm_count; worm_idx++) {
init_worm(&worms[worm_idx], 10 + worm_idx * 20, 20);
add_growing(&worms[worm_idx], 40 - INITIAL_WORM_LENGTH);
}
for (dir = EAST; dir < EAST + 4; dir++) {
for (worm_idx = 0; worm_idx < worm_count; worm_idx++) {
set_worm_dir(&worms[worm_idx], dir % 4);
for (i = 0; i < 10; i++) {
if (!(dir % 4 == NORTH && i == 9)) {
move_worm(&worms[worm_idx]);
draw_worm(&worms[worm_idx]);
}
}
}
}
rb->lcd_update();
for (seed = 0; hit < 20; seed += 2) {
char buf[20];
int x, y;
rb->srand(seed);
x = rb->rand() % (FIELD_RECT_WIDTH - argh_size);
y = rb->rand() % (FIELD_RECT_HEIGHT - argh_size);
for (worm_idx = 0; worm_idx < worm_count; worm_idx++){
if (expensive_worm_in_rect(&worms[worm_idx], x, y, argh_size, argh_size)) {
int tries = 0;
rb->srand(seed);
tries = make_argh(0);
if ((x == arghx[0] && y == arghy[0]) || tries < 2) {
failures ++;
}
rb->snprintf(buf, sizeof buf, "(%d;%d) fail%d try%d",
x, y, failures, tries);
rb->lcd_putsxy(0, LCD_HEIGHT - 8, buf);
rb->lcd_update();
rb->lcd_invertrect(x + FIELD_RECT_X, y+ FIELD_RECT_Y,
argh_size, argh_size);
rb->lcd_update();
draw_argh(0);
rb->lcd_update();
rb->lcd_invertrect(x + FIELD_RECT_X, y + FIELD_RECT_Y,
argh_size, argh_size);
rb->lcd_clearrect(arghx[0] + FIELD_RECT_X, arghy[0] + FIELD_RECT_Y,
argh_size, argh_size);
if (failures > last_failures) {
rb->button_get(true);
}
last_failures = failures;
hit ++;
}
}
}
}
static void test_worm_argh_collision_in_moves(void) {
int hit_count = 0;
int i;
rb->lcd_clear_display();
init_worm(&worms[0], 10, 20);
arghx[0] = 20;
arghy[0] = 18;
draw_argh(0);
set_worm_dir(&worms[0], EAST);
for (i = 0; i < 20; i++) {
char buf[20];
move_worm(&worms[0]);
draw_worm(&worms[0]);
if (worm_argh_collision_in_moves(&worms[0], 0, 5)){
hit_count ++;
}
rb->snprintf(buf, sizeof buf, "in 5 moves hits: %d", hit_count);
rb->lcd_putsxy(0, LCD_HEIGHT - 8, buf);
rb->lcd_update();
}
if (hit_count != argh_size + 5) {
rb->button_get(true);
}
}
#endif /* DEBUG_WORMLET */
/*
* Reverts default settings
*/
static void default_settings(void)
{
arghs_per_food = ARGHS_PER_FOOD;
argh_size = ARGH_SIZE;
food_size = FOOD_SIZE;
speed = SPEED;
worm_food = WORM_PER_FOOD;
players = 1;
worm_count = MAX_WORMS;
use_remote = false;
return;
}
/*
* Launches the wormlet game
*/
static bool launch_wormlet(void)
{
int game_result = 1;
rb->lcd_clear_display();
/* Turn off backlight timeout */
backlight_force_on(); /* backlight control in lib/helper.c */
/* start the game */
while (game_result == 1)
game_result = run();
switch (game_result)
{
case 2:
/* Turn on backlight timeout (revert to settings) */
backlight_use_settings(); /* backlight control in lib/helper.c */
return false;
break;
}
return false;
}
/**
* Main entry point
*/
enum plugin_status plugin_start(const void* parameter)
{
int result;
int menu_quit = 0;
int new_setting;
(void)(parameter);
default_settings();
if (configfile_load(SETTINGS_FILENAME, config,
sizeof(config)/sizeof(*config),
SETTINGS_MIN_VERSION ) < 0)
{
/* If the loading failed, save a new config file (as the disk is
already spinning) */
configfile_save(SETTINGS_FILENAME, config,
sizeof(config)/sizeof(*config),
SETTINGS_VERSION);
}
#ifdef HAVE_LCD_COLOR
rb->lcd_set_foreground(COLOR_FG);
rb->lcd_set_background(COLOR_BG);
#endif
#if LCD_DEPTH > 1
rb->lcd_set_backdrop(NULL);
#endif
#ifdef DEBUG_WORMLET
testline_in_rect();
test_worm_argh_collision_in_moves();
test_make_argh();
test_worm_food_collision();
test_worm_argh_collision();
test_specific_worm_collision();
#endif
/* Setup screen */
static const struct opt_items noyes[2] = {
{ "No", -1 },
{ "Yes", -1 },
};
static const struct opt_items remoteonly_option[1] = {
{ "Remote Control", -1 }
};
static const struct opt_items key24_option[2] = {
{ "4 Key Control", -1 },
{ "2 Key Control", -1 }
};
#ifdef REMOTE
static const struct opt_items remote_option[2] = {
{ "Remote Control", -1 },
{ "No Rem. Control", -1 }
};
#else
static const struct opt_items key2_option[1] = {
{ "2 Key Control", -1 }
};
#endif
static const struct opt_items nokey_option[1] = {
{ "Out of Control", -1 }
};
MENUITEM_STRINGLIST(menu, "Wormlet Menu", NULL, "Play Wormlet!",
"Number of Worms", "Number of Players", "Control Style",
"Worm Growth Per Food","Worm Speed","Arghs Per Food",
"Argh Size","Food Size","Revert to Default Settings",
"Playback Control", "Quit");
rb->button_clear_queue();
while (!menu_quit) {
switch(rb->do_menu(&menu, &result, NULL, false))
{
case 0:
rb->lcd_setfont(FONT_SYSFIXED);
launch_wormlet();
break;
case 1:
rb->set_int("Number of Worms", "", UNIT_INT, &worm_count, NULL,
1, 1, 3, NULL);
if (worm_count < players) {
worm_count = players;
}
break;
case 2:
#ifdef MULTIPLAYER
rb->set_int("Number of Players", "", UNIT_INT, &players, NULL,
1, 0, 4, NULL);
#else
rb->set_int("Number of Players", "", UNIT_INT, &players, NULL,
1, 0, 2, NULL);
#endif
if (players > worm_count) {
worm_count = players;
}
if (players > 2) {
use_remote = true;
}
break;
case 3:
switch(players) {
case 0:
rb->set_option("Control Style",&use_remote,INT,
nokey_option, 1, NULL);
break;
case 1:
rb->set_option("Control Style",&use_remote,INT,
key24_option, 2, NULL);
break;
case 2:
#ifdef REMOTE
rb->set_option("Control Style",&use_remote,INT,
remote_option, 2, NULL);
#else
rb->set_option("Control Style",&use_remote,INT,
key2_option, 1, NULL);
#endif
break;
case 3:
rb->set_option("Control Style",&use_remote,INT,
remoteonly_option, 1, NULL);
break;
}
break;
case 4:
rb->set_int("Worm Growth Per Food", "", UNIT_INT, &worm_food,
NULL, 1, 0, 15, NULL);
break;
case 5:
new_setting = 20 - speed;
rb->set_int("Worm Speed", "", UNIT_INT, &new_setting,
NULL, 1, 0, 20, NULL);
speed = 20 - new_setting;
break;
case 6:
rb->set_int("Arghs Per Food", "", UNIT_INT, &arghs_per_food,
NULL, 1, 0, 8, NULL);
break;
case 7:
rb->set_int("Argh Size", "", UNIT_INT, &argh_size,
NULL, 1, 2, 10, NULL);
break;
case 8:
rb->set_int("Food Size", "", UNIT_INT, &food_size,
NULL, 1, 2, 10, NULL);
break;
case 9:
new_setting = 0;
rb->set_option("Reset Settings?", &new_setting, INT, noyes , 2, NULL);
if (new_setting == 1)
default_settings();
break;
case 10:
playback_control(NULL);
break;
default:
menu_quit=1;
break;
}
}
configfile_save(SETTINGS_FILENAME, config,
sizeof(config)/sizeof(*config),
SETTINGS_VERSION);
return PLUGIN_OK;
}