rockbox/firmware/drivers/rtc/rtc_s35380a.c

315 lines
8.1 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* adopted for HD300 by Marcin Bukat
* Copyright (C) 2009 by Bertrik Sikken
* Copyright (C) 2008 by Robert Kukla
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "rtc.h"
#include "i2c-coldfire.h"
#include "timefuncs.h"
/* Driver for the Seiko S35380A real-time clock chip with i2c interface
This driver was derived from rtc_s3539a.c and adapted for the MPIO HD300
*/
#define RTC_ADDR 0x60
#define STATUS_REG1 0
#define STATUS_REG2 1
#define REALTIME_DATA1 2
#define REALTIME_DATA2 3
#define INT1_REG 4
#define INT2_REG 5
#define CLOCK_CORR_REG 6
#define FREE_REG 7
/* STATUS_REG1 flags */
#define STATUS_REG1_POC 0x80
#define STATUS_REG1_BLD 0x40
#define STATUS_REG1_INT2 0x20
#define STATUS_REG1_INT1 0x10
#define STATUS_REG1_SC1 0x08
#define STATUS_REG1_SC0 0x04
#define STATUS_REG1_H1224 0x02
#define STATUS_REG1_RESET 0x01
/* STATUS_REG2 flags */
#define STATUS_REG2_TEST 0x80
#define STATUS_REG2_INT2AE 0x40
#define STATUS_REG2_INT2ME 0x20
#define STATUS_REG2_INT2FE 0x10
#define STATUS_REG2_32kE 0x08
#define STATUS_REG2_INT1AE 0x04
#define STATUS_REG2_INT1ME 0x02
#define STATUS_REG2_INT1FE 0x01
/* REALTIME_DATA register bytes */
#define TIME_YEAR 0
#define TIME_MONTH 1
#define TIME_DAY 2
#define TIME_WEEKDAY 3
#define TIME_HOUR 4
#define TIME_MINUTE 5
#define TIME_SECOND 6
#define TIME_REG_SIZE 7
/* INT1, INT2 register bytes */
#define ALARM_WEEKDAY 0
#define ALARM_HOUR 1
#define ALARM_MINUTE 2
#define ALARM_REG_SIZE 3
/* INT1, INT2 register bits */
#define A1WE 0x80
#define A1HE 0x80
#define A1mE 0x80
#define A2WE 0x80
#define A2HE 0x80
#define A2mE 0x80
#define AMPM 0x40
static bool int_flag;
/* s35380a chip has reversed bits order in byte
* This is little helper function to deal with
*/
static void reverse_bits(unsigned char* v, int size)
{
static const unsigned char flipnibble[] =
{0x00, 0x08, 0x04, 0x0C, 0x02, 0x0A, 0x06, 0x0E,
0x01, 0x09, 0x05, 0x0D, 0x03, 0x0B, 0x07, 0x0F};
int i;
for (i = 0; i < size; i++) {
v[i] = (flipnibble[v[i] & 0x0F] << 4) |
flipnibble[(v[i] >> 4) & 0x0F];
}
}
/* Read 'size' bytes from RTC 'reg' and put data in 'buf'
* bits are reversed in data bytes afterwards so they appear in regular order
* return i2c transfer code
*/
static int rtc_read(unsigned char reg, unsigned char *buf, int size)
{
int rc;
rc = i2c_read(I2C_IFACE_1, RTC_ADDR|(reg<<1), buf, size);
reverse_bits(buf, size);
return rc;
}
/* Write 'size' bytes to RTC 'reg' and put data in 'buf'
* bits are reversed in data bytes prior to sending them to RTC
* return i2c transfer code
*/
static int rtc_write(unsigned char reg, unsigned char *buf, int size)
{
int rc;
reverse_bits(buf, size);
rc = i2c_write(I2C_IFACE_1, RTC_ADDR|(reg<<1), buf, size);
return rc;
}
/* Reset RTC by writing '1' to RESET bit in STATUS_REG1 */
static inline void rtc_reset(void)
{
unsigned char reg = STATUS_REG1_RESET;
rtc_write(STATUS_REG1, &reg, 1);
}
/* Initialize RTC (according to scheme outlined in datasheet).
* Configure chip to 24h time format.
*/
void rtc_init(void)
{
unsigned char reg;
static bool initialized = false;
if ( initialized )
return;
rtc_read(STATUS_REG1, &reg, 1);
/* cache INT1, INT2 flags as reading the register seem to clear
* this bits (which is not described in datasheet)
*/
int_flag = ((reg & STATUS_REG1_INT1) || (reg & STATUS_REG1_INT2));
/* test POC and BLD flags */
if ( (reg & STATUS_REG1_POC) || (reg & STATUS_REG1_BLD))
rtc_reset();
rtc_read(STATUS_REG2, &reg, 1);
/* test TEST flag */
if ( reg & STATUS_REG2_TEST )
rtc_reset();
/* setup 24h time format */
reg = STATUS_REG1_H1224;
rtc_write(STATUS_REG1, &reg, 1);
initialized = true;
}
/* Read realtime data register */
int rtc_read_datetime(struct tm *tm)
{
unsigned char buf[TIME_REG_SIZE];
unsigned int i;
int ret;
ret = rtc_read(REALTIME_DATA1, buf, sizeof(buf));
buf[TIME_HOUR] &= 0x3f; /* mask out p.m. flag */
for (i = 0; i < sizeof(buf); i++)
buf[i] = BCD2DEC(buf[i]);
tm->tm_sec = buf[TIME_SECOND];
tm->tm_min = buf[TIME_MINUTE];
tm->tm_hour = buf[TIME_HOUR];
tm->tm_mday = buf[TIME_DAY];
tm->tm_mon = buf[TIME_MONTH] - 1;
tm->tm_year = buf[TIME_YEAR] + 100;
set_day_of_week(tm);
set_day_of_year(tm);
return ret;
}
/* Write to realtime data register */
int rtc_write_datetime(const struct tm *tm)
{
unsigned char buf[TIME_REG_SIZE];
unsigned int i;
int ret;
buf[TIME_SECOND] = tm->tm_sec;
buf[TIME_MINUTE] = tm->tm_min;
buf[TIME_HOUR] = tm->tm_hour;
buf[TIME_WEEKDAY] = tm->tm_wday;
buf[TIME_DAY] = tm->tm_mday;
buf[TIME_MONTH] = tm->tm_mon + 1;
buf[TIME_YEAR] = tm->tm_year - 100;
for (i = 0; i < sizeof(buf); i++)
buf[i] = DEC2BCD(buf[i]);
ret = rtc_write(REALTIME_DATA1, buf, sizeof(buf));
return ret;
}
#ifdef HAVE_RTC_ALARM
/* Set alarm (INT1) data register */
void rtc_set_alarm(int h, int m)
{
unsigned char buf[ALARM_REG_SIZE];
/* INT1 register can be accessed only when IN1AE flag is set */
rtc_enable_alarm(true);
/* A1mE, A1HE - validity flags */
buf[ALARM_MINUTE] = DEC2BCD(m) | A1mE;
buf[ALARM_HOUR] = DEC2BCD(h) | A1HE;
buf[ALARM_WEEKDAY] = 0;
/* AM/PM flag has to be set properly regardles of
* time format used (H1224 flag in STATUS_REG1)
* this is not described in datasheet for s35380a
* but is somehow described in datasheet for s35390a
*/
if ( h >= 12 )
buf[ALARM_HOUR] |= AMPM;
rtc_write(INT1_REG, buf, sizeof(buf));
}
/* Read alarm (INT1) data register */
void rtc_get_alarm(int *h, int *m)
{
unsigned char buf[ALARM_REG_SIZE];
/* INT1 alarm register can be accessed only when INT1AE is set */
rtc_enable_alarm(true);
/* read the content of INT1 register */
rtc_read(INT1_REG, buf, sizeof(buf));
*h = BCD2DEC(buf[ALARM_HOUR] & 0x3f); /* mask out A1HE and PM/AM bits */
*m = BCD2DEC(buf[ALARM_MINUTE] & 0x7f); /* mask out A1mE bit */
/* Disable alarm - this is not strictly needed in rockbox
* as after rtc_get_alarm() rtc_set_alarm() or rtc_enable_alarm(false)
* are called. I just found this weird that simple reading register
* changes alarm settings.
*/
rtc_enable_alarm(false);
}
/* Check if we just triggered alarm.
* We check both INT1 and INT2. Rockbox uses only INT1 but
* OF in MPIO HD300 uses both
*/
bool rtc_check_alarm_flag(void)
{
unsigned char reg;
rtc_read(STATUS_REG1, &reg, 1);
return ((reg & STATUS_REG1_INT1) || (reg & STATUS_REG1_INT2));
}
/* Enable/disable alarm function */
void rtc_enable_alarm(bool enable)
{
unsigned char reg = 0;
if (enable)
reg = STATUS_REG2_INT1AE;
rtc_write(STATUS_REG2, &reg, 1);
}
/* Return true if wakeup is due to RTC alarm */
bool rtc_check_alarm_started(bool release_alarm)
{
static bool run_before;
bool rc;
if (run_before)
{
rc = int_flag;
int_flag &= ~release_alarm;
}
else
{
rc = int_flag;
run_before = true;
}
return rc;
}
#endif