rockbox/firmware/target/coldfire/iriver/h300/lcd-h300.c

503 lines
15 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2004 by Linus Nielsen Feltzing
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "cpu.h"
#include "lcd.h"
#include "kernel.h"
#include "thread.h"
#include <string.h>
#include <stdlib.h>
#include "file.h"
#include "debug.h"
#include "system.h"
#include "font.h"
#include "bidi.h"
#ifndef BOOTLOADER
#define LCD_MUTEX_INIT() mutex_init(&lcd_mtx)
#define LCD_MUTEX_LOCK() mutex_lock(&lcd_mtx)
#define LCD_MUTEX_UNLOCK() mutex_unlock(&lcd_mtx)
static struct mutex lcd_mtx; /* The update functions use DMA and yield */
unsigned long dma_addr IBSS_ATTR;
unsigned int dma_len IBSS_ATTR;
volatile int dma_count IBSS_ATTR;
#else
#define LCD_MUTEX_INIT()
#define LCD_MUTEX_LOCK()
#define LCD_MUTEX_UNLOCK()
#endif /* def BOOTLOADER */
static bool display_on = false; /* Is the display turned on? */
static bool display_flipped = false;
static int xoffset = 0; /* Needed for flip */
/* register defines */
#define R_START_OSC 0x00
#define R_DRV_OUTPUT_CONTROL 0x01
#define R_DRV_WAVEFORM_CONTROL 0x02
#define R_ENTRY_MODE 0x03
#define R_COMPARE_REG1 0x04
#define R_COMPARE_REG2 0x05
#define R_DISP_CONTROL1 0x07
#define R_DISP_CONTROL2 0x08
#define R_DISP_CONTROL3 0x09
#define R_FRAME_CYCLE_CONTROL 0x0b
#define R_EXT_DISP_IF_CONTROL 0x0c
#define R_POWER_CONTROL1 0x10
#define R_POWER_CONTROL2 0x11
#define R_POWER_CONTROL3 0x12
#define R_POWER_CONTROL4 0x13
#define R_RAM_ADDR_SET 0x21
#define R_WRITE_DATA_2_GRAM 0x22
#define R_GAMMA_FINE_ADJ_POS1 0x30
#define R_GAMMA_FINE_ADJ_POS2 0x31
#define R_GAMMA_FINE_ADJ_POS3 0x32
#define R_GAMMA_GRAD_ADJ_POS 0x33
#define R_GAMMA_FINE_ADJ_NEG1 0x34
#define R_GAMMA_FINE_ADJ_NEG2 0x35
#define R_GAMMA_FINE_ADJ_NEG3 0x36
#define R_GAMMA_GRAD_ADJ_NEG 0x37
#define R_GAMMA_AMP_ADJ_RES_POS 0x38
#define R_GAMMA_AMP_AVG_ADJ_RES_NEG 0x39
#define R_GATE_SCAN_POS 0x40
#define R_VERT_SCROLL_CONTROL 0x41
#define R_1ST_SCR_DRV_POS 0x42
#define R_2ND_SCR_DRV_POS 0x43
#define R_HORIZ_RAM_ADDR_POS 0x44
#define R_VERT_RAM_ADDR_POS 0x45
#define LCD_CMD (*(volatile unsigned short *)0xf0000000)
#define LCD_DATA (*(volatile unsigned short *)0xf0000002)
#define R_ENTRY_MODE_HORZ 0x7030
#define R_ENTRY_MODE_VERT 0x7038
/* called very frequently - inline! */
static inline void lcd_write_reg(int reg, int val)
{
LCD_CMD = reg;
LCD_DATA = val;
}
/* called very frequently - inline! */
static inline void lcd_begin_write_gram(void)
{
LCD_CMD = R_WRITE_DATA_2_GRAM;
}
/*** hardware configuration ***/
void lcd_set_contrast(int val)
{
(void)val;
}
void lcd_set_invert_display(bool yesno)
{
(void)yesno;
}
static void flip_lcd(bool yesno)
{
if (yesno)
{
lcd_write_reg(R_DRV_OUTPUT_CONTROL, 0x031b); /* 224 lines, GS=SS=1 */
lcd_write_reg(R_GATE_SCAN_POS, 0x0002); /* 16 lines offset */
lcd_write_reg(R_1ST_SCR_DRV_POS, 0xdf04); /* 4..223 */
}
else
{
lcd_write_reg(R_DRV_OUTPUT_CONTROL, 0x001b); /* 224 lines, GS=SS=0 */
lcd_write_reg(R_GATE_SCAN_POS, 0x0000);
lcd_write_reg(R_1ST_SCR_DRV_POS, 0xdb00); /* 0..219 */
}
}
/* turn the display upside down (call lcd_update() afterwards) */
void lcd_set_flip(bool yesno)
{
display_flipped = yesno;
xoffset = yesno ? 4 : 0;
if (display_on)
{
LCD_MUTEX_LOCK();
flip_lcd(yesno);
LCD_MUTEX_UNLOCK();
}
}
static void _display_on(void)
{
/** Sequence according to datasheet, p. 132 **/
lcd_write_reg(R_START_OSC, 0x0001); /* Start Oscilation */
sleep(1);
/* zero everything*/
lcd_write_reg(R_POWER_CONTROL1, 0x0000); /* STB = 0, SLP = 0 */
lcd_write_reg(R_DISP_CONTROL1, 0x0000); /* GON = 0, DTE = 0, D1-0 = 00b */
lcd_write_reg(R_POWER_CONTROL3, 0x0000); /* PON = 0 */
lcd_write_reg(R_POWER_CONTROL4, 0x0000); /* VCOMG = 0 */
sleep(1);
/* initialise power supply */
/* DC12-10 = 000b: Step-up1 = clock/8,
* DC02-00 = 000b: Step-up2 = clock/16,
* VC2-0 = 010b: VciOUT = 0.87 * VciLVL */
lcd_write_reg(R_POWER_CONTROL2, 0x0002);
/* VRH3-0 = 1000b: Vreg1OUT = REGP * 1.90 */
lcd_write_reg(R_POWER_CONTROL3, 0x0008);
/* VDV4-0 = 00110b: VcomA = Vreg1OUT * 0.76,
* VCM4-0 = 10000b: VcomH = Vreg1OUT * 0.70*/
lcd_write_reg(R_POWER_CONTROL4, 0x0610);
lcd_write_reg(R_POWER_CONTROL1, 0x0044); /* AP2-0 = 100b, DK = 1 */
lcd_write_reg(R_POWER_CONTROL3, 0x0018); /* PON = 1 */
sleep(4); /* Step-up circuit stabilising time */
/* start power supply */
lcd_write_reg(R_POWER_CONTROL1, 0x0540); /* BT2-0 = 101b, DK = 0 */
lcd_write_reg(R_POWER_CONTROL4, 0x2610); /* VCOMG = 1 */
/* other settings */
/* B/C = 1: n-line inversion form
* EOR = 1: polarity inversion occurs by applying an EOR to odd/even
* frame select signal and an n-line inversion signal.
* FLD = 01b: 1 field interlaced scan, external display iface */
lcd_write_reg(R_DRV_WAVEFORM_CONTROL, 0x0700);
/* Address counter updated in vertical direction; left to right;
* vertical increment horizontal increment.
* data format for 8bit transfer or spi = 65k (5,6,5)
* Reverse order of RGB to BGR for 18bit data written to GRAM
* Replace data on writing to GRAM */
lcd_write_reg(R_ENTRY_MODE, 0x7038);
flip_lcd(display_flipped);
lcd_write_reg(R_2ND_SCR_DRV_POS, 0x0000);
lcd_write_reg(R_VERT_SCROLL_CONTROL, 0x0000);
/* 19 clocks,no equalization */
lcd_write_reg(R_FRAME_CYCLE_CONTROL, 0x0002);
/* Transfer mode for RGB interface disabled
* internal clock operation;
* System interface/VSYNC interface */
lcd_write_reg(R_EXT_DISP_IF_CONTROL, 0x0003);
/* Front porch lines: 8; Back porch lines: 8; */
lcd_write_reg(R_DISP_CONTROL2, 0x0808);
/* Scan mode by the gate driver in the non-display area: disabled;
* Cycle of scan by the gate driver - set to 31frames(518ms),
* disabled by above setting */
lcd_write_reg(R_DISP_CONTROL3, 0x003f);
lcd_write_reg(R_GAMMA_FINE_ADJ_POS1, 0x0003);
lcd_write_reg(R_GAMMA_FINE_ADJ_POS2, 0x0707);
lcd_write_reg(R_GAMMA_FINE_ADJ_POS3, 0x0007);
lcd_write_reg(R_GAMMA_GRAD_ADJ_POS, 0x0705);
lcd_write_reg(R_GAMMA_FINE_ADJ_NEG1, 0x0007);
lcd_write_reg(R_GAMMA_FINE_ADJ_NEG2, 0x0000);
lcd_write_reg(R_GAMMA_FINE_ADJ_NEG3, 0x0407);
lcd_write_reg(R_GAMMA_GRAD_ADJ_NEG, 0x0507);
lcd_write_reg(R_GAMMA_AMP_ADJ_RES_POS, 0x1d09);
lcd_write_reg(R_GAMMA_AMP_AVG_ADJ_RES_NEG, 0x0303);
display_on=true; /* must be done before calling lcd_update() */
lcd_update();
sleep(4); /* op-amp stabilising time */
/** Sequence according to datasheet, p. 130 **/
lcd_write_reg(R_POWER_CONTROL1, 0x4540); /* SAP2-0=100, BT2-0=101, AP2-0=100 */
lcd_write_reg(R_DISP_CONTROL1, 0x0005); /* GON=0, DTE=0, REV=1, D1-0=01 */
sleep(2);
lcd_write_reg(R_DISP_CONTROL1, 0x0025); /* GON=1, DTE=0, REV=1, D1-0=01 */
lcd_write_reg(R_DISP_CONTROL1, 0x0027); /* GON=1, DTE=0, REV=1, D1-0=11 */
sleep(2);
lcd_write_reg(R_DISP_CONTROL1, 0x0037); /* GON=1, DTE=1, REV=1, D1-0=11 */
}
/* LCD init */
void lcd_init_device(void)
{
/* GPO46 is LCD RESET */
or_l(0x00004000, &GPIO1_OUT);
or_l(0x00004000, &GPIO1_ENABLE);
or_l(0x00004000, &GPIO1_FUNCTION);
/* Reset LCD */
and_l(~0x00004000, &GPIO1_OUT);
sleep(1);
or_l(0x00004000, &GPIO1_OUT);
sleep(1);
#ifndef BOOTLOADER
DAR3 = 0xf0000002; /* Configure DMA channel 3 */
DSR3 = 1; /* Clear all bits in the status register */
DIVR3 = 57; /* DMA3 is mapped into vector 57 in system.c */
ICR9 = (6 << 2); /* Enable DMA3 interrupt at level 6, priority 0 */
coldfire_imr_mod(0, 1 << 17);
#endif
LCD_MUTEX_INIT();
_display_on();
}
void lcd_enable(bool on)
{
if (display_on != on)
{
LCD_MUTEX_LOCK();
if (on)
{
_display_on();
send_event(LCD_EVENT_ACTIVATION, NULL);
}
else
{
/** Off sequence according to datasheet, p. 130 **/
lcd_write_reg(R_FRAME_CYCLE_CONTROL, 0x0002); /* EQ=0, 18 clks/line */
lcd_write_reg(R_DISP_CONTROL1, 0x0036); /* GON=1, DTE=1, REV=1, D1-0=10 */
sleep(2);
lcd_write_reg(R_DISP_CONTROL1, 0x0026); /* GON=1, DTE=0, REV=1, D1-0=10 */
sleep(2);
lcd_write_reg(R_DISP_CONTROL1, 0x0000); /* GON=0, DTE=0, D1-0=00 */
lcd_write_reg(R_POWER_CONTROL1, 0x0000); /* SAP2-0=000, AP2-0=000 */
lcd_write_reg(R_POWER_CONTROL3, 0x0000); /* PON=0 */
lcd_write_reg(R_POWER_CONTROL4, 0x0000); /* VCOMG=0 */
/* datasheet p. 131 */
lcd_write_reg(R_POWER_CONTROL1, 0x0001); /* STB=1: standby mode */
display_on=false;
}
LCD_MUTEX_UNLOCK();
}
}
bool lcd_active(void)
{
return display_on;
}
/*** update functions ***/
/* Line write helper function for lcd_yuv_blit. Write two lines of yuv420.
* y should have two lines of Y back to back, 2nd line first.
* c should contain the Cb and Cr data for the two lines of Y back to back.
* Needs EMAC set to saturated, signed integer mode.
*/
extern void lcd_write_yuv420_lines(const unsigned char *y,
const unsigned char *c, int cwidth);
/* Performance function to blit a YUV bitmap directly to the LCD
* src_x, src_y, width and height should be even
* x, y, width and height have to be within LCD bounds
*/
void lcd_blit_yuv(unsigned char * const src[3],
int src_x, int src_y, int stride,
int x, int y, int width, int height)
{
/* IRAM Y, Cb and Cb buffers. */
unsigned char y_ibuf[LCD_WIDTH*2];
unsigned char c_ibuf[LCD_WIDTH];
const unsigned char *ysrc, *usrc, *vsrc;
const unsigned char *ysrc_max;
if (!display_on)
return;
LCD_MUTEX_LOCK();
width &= ~1; /* stay on the safe side */
height &= ~1;
lcd_write_reg(R_ENTRY_MODE, R_ENTRY_MODE_HORZ);
/* Set start position and window */
lcd_write_reg(R_VERT_RAM_ADDR_POS, ((xoffset + 219) << 8) | xoffset);
ysrc = src[0] + src_y * stride + src_x;
usrc = src[1] + (src_y * stride >> 2) + (src_x >> 1);
vsrc = src[2] + (src_y * stride >> 2) + (src_x >> 1);
ysrc_max = ysrc + height * stride;
coldfire_set_macsr(EMAC_SATURATE);
do
{
lcd_write_reg(R_HORIZ_RAM_ADDR_POS, ((y + 1) << 8) | y);
lcd_write_reg(R_RAM_ADDR_SET, ((x+xoffset) << 8) | y);
lcd_begin_write_gram();
memcpy(y_ibuf + width, ysrc, width);
memcpy(y_ibuf, ysrc + stride, width);
memcpy(c_ibuf, usrc, width >> 1);
memcpy(c_ibuf + (width >> 1), vsrc, width >> 1);
lcd_write_yuv420_lines(y_ibuf, c_ibuf, width >> 1);
y += 2;
ysrc += 2 * stride;
usrc += stride >> 1;
vsrc += stride >> 1;
}
while (ysrc < ysrc_max)
;;
LCD_MUTEX_UNLOCK();
}
#ifndef BOOTLOADER
/* LCD DMA ISR */
void DMA3(void) __attribute__ ((interrupt_handler, section(".icode")));
void DMA3(void)
{
DSR3 = 1; /* Clear all bits in the status register */
if (--dma_count > 0)
{
dma_addr += LCD_WIDTH*sizeof(fb_data);
SAR3 = dma_addr;
BCR3 = dma_len;
DCR3 = DMA_INT | DMA_AA | DMA_BWC(1)
| DMA_SINC | DMA_SSIZE(DMA_SIZE_LINE)
| DMA_DSIZE(DMA_SIZE_WORD) | DMA_START;
}
}
#endif
/* Update the display.
This must be called after all other LCD functions that change the display. */
void lcd_update(void)
{
if (display_on)
{
LCD_MUTEX_LOCK();
lcd_write_reg(R_ENTRY_MODE, R_ENTRY_MODE_VERT);
/* set start position window */
lcd_write_reg(R_HORIZ_RAM_ADDR_POS, 175 << 8);
lcd_write_reg(R_VERT_RAM_ADDR_POS,((xoffset+219)<<8) | xoffset);
lcd_write_reg(R_RAM_ADDR_SET, xoffset << 8);
lcd_begin_write_gram();
#ifndef BOOTLOADER
dma_count = 1;
SAR3 = (unsigned long)FBADDR(0, 0);
BCR3 = LCD_WIDTH*LCD_HEIGHT*sizeof(fb_data);
DCR3 = DMA_INT | DMA_AA | DMA_BWC(1)
| DMA_SINC | DMA_SSIZE(DMA_SIZE_LINE)
| DMA_DSIZE(DMA_SIZE_WORD) | DMA_START;
while (dma_count > 0)
yield();
#else
DAR3 = 0xf0000002;
DSR3 = 1; /* Clear all bits in the status register */
SAR3 = (unsigned long)FBADDR(0, 0);
BCR3 = LCD_WIDTH*LCD_HEIGHT*sizeof(fb_data);
DCR3 = DMA_AA | DMA_BWC(1)
| DMA_SINC | DMA_SSIZE(DMA_SIZE_LINE)
| DMA_DSIZE(DMA_SIZE_WORD) | DMA_START;
while (!(DSR3 & 1))
;;
DSR3 = 1; /* Clear all bits in the status register */
#endif
LCD_MUTEX_UNLOCK();
}
}
/* Update a fraction of the display. */
void lcd_update_rect(int x, int y, int width, int height)
{
#ifdef BOOTLOADER
(void)x;
(void)y;
(void)width;
(void)height;
lcd_update(); /* in bootloader -- all or nothing */
#else
if (display_on)
{
if (x + width > LCD_WIDTH)
width = LCD_WIDTH - x;
if (y + height > LCD_HEIGHT)
height = LCD_HEIGHT - y;
if (width <= 0 || height <= 0) /* nothing to do */
return;
LCD_MUTEX_LOCK();
lcd_write_reg(R_ENTRY_MODE, R_ENTRY_MODE_VERT);
/* set update window */
lcd_write_reg(R_HORIZ_RAM_ADDR_POS, 175 << 8);
lcd_write_reg(R_VERT_RAM_ADDR_POS,((x+xoffset+width-1) << 8) | (x+xoffset));
lcd_write_reg(R_RAM_ADDR_SET, ((x+xoffset) << 8) | y);
lcd_begin_write_gram();
if (width == LCD_WIDTH)
{
dma_count = 1;
SAR3 = (unsigned long)FBADDR(0, y);
BCR3 = (LCD_WIDTH*sizeof(fb_data)) * height;
}
else
{
dma_count = height;
SAR3 = dma_addr = (unsigned long)FBADDR(x, y);
BCR3 = dma_len = width * sizeof(fb_data);
}
DCR3 = DMA_INT | DMA_AA | DMA_BWC(1)
| DMA_SINC | DMA_SSIZE(DMA_SIZE_LINE)
| DMA_DSIZE(DMA_SIZE_WORD) | DMA_START;
while (dma_count > 0)
yield();
LCD_MUTEX_UNLOCK();
}
#endif /* ndef BOOTLOADER */
}