rockbox/firmware/common/dircache.c

1347 lines
34 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2005 by Miika Pekkarinen
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
/* TODO:
- Allow cache live updating while transparent rebuild is running.
*/
#include "config.h"
#include <stdio.h>
#include <errno.h>
#include "string-extra.h"
#include <stdbool.h>
#include <stdlib.h>
#include "debug.h"
#include "system.h"
#include "logf.h"
#include "dircache.h"
#include "thread.h"
#include "kernel.h"
#include "usb.h"
#include "file.h"
#include "buffer.h"
#include "dir.h"
#include "storage.h"
#if CONFIG_RTC
#include "time.h"
#include "timefuncs.h"
#endif
#include "rbpaths.h"
/* Queue commands. */
#define DIRCACHE_BUILD 1
#define DIRCACHE_STOP 2
#if (MEMORYSIZE > 8)
#define MAX_OPEN_DIRS 12
#else
#define MAX_OPEN_DIRS 8
#endif
static DIR_CACHED opendirs[MAX_OPEN_DIRS];
static struct dircache_entry *fd_bindings[MAX_OPEN_FILES];
static struct dircache_entry *dircache_root;
#ifdef HAVE_MULTIVOLUME
static struct dircache_entry *append_position;
#endif
static bool dircache_initialized = false;
static bool dircache_initializing = false;
static bool thread_enabled = false;
static unsigned long allocated_size = DIRCACHE_LIMIT;
static unsigned long dircache_size = 0;
static unsigned long entry_count = 0;
static unsigned long reserve_used = 0;
static unsigned int cache_build_ticks = 0;
static unsigned long appflags = 0;
static struct event_queue dircache_queue SHAREDBSS_ATTR;
static long dircache_stack[(DEFAULT_STACK_SIZE + 0x400)/sizeof(long)];
static const char dircache_thread_name[] = "dircache";
static struct fdbind_queue fdbind_cache[MAX_PENDING_BINDINGS];
static int fdbind_idx = 0;
/* --- Internal cache structure control functions --- */
#ifdef HAVE_EEPROM_SETTINGS
/**
* Open the dircache file to save a snapshot on disk
*/
static int open_dircache_file(unsigned flags, int permissions)
{
if (permissions != 0)
return open(DIRCACHE_FILE, flags, permissions);
return open(DIRCACHE_FILE, flags);
}
/**
* Remove the snapshot file
*/
static int remove_dircache_file(void)
{
return remove(DIRCACHE_FILE);
}
#endif
/**
* Internal function to allocate a new dircache_entry from memory.
*/
static struct dircache_entry* allocate_entry(void)
{
struct dircache_entry *next_entry;
if (dircache_size > allocated_size - MAX_PATH*2)
{
logf("size limit reached");
return NULL;
}
next_entry = (struct dircache_entry *)((char *)dircache_root+dircache_size);
#ifdef ROCKBOX_STRICT_ALIGN
/* Make sure the entry is long aligned. */
if ((long)next_entry & 0x03)
{
dircache_size += 4 - ((long)next_entry & 0x03);
next_entry = (struct dircache_entry *)(((long)next_entry & ~0x03) + 0x04);
}
#endif
next_entry->d_name = NULL;
next_entry->up = NULL;
next_entry->down = NULL;
next_entry->next = NULL;
dircache_size += sizeof(struct dircache_entry);
return next_entry;
}
/**
* Internal function to allocate a dircache_entry and set
* ->next entry pointers.
*/
static struct dircache_entry* dircache_gen_next(struct dircache_entry *ce)
{
struct dircache_entry *next_entry;
if ( (next_entry = allocate_entry()) == NULL)
return NULL;
next_entry->up = ce->up;
ce->next = next_entry;
return next_entry;
}
/*
* Internal function to allocate a dircache_entry and set
* ->down entry pointers.
*/
static struct dircache_entry* dircache_gen_down(struct dircache_entry *ce)
{
struct dircache_entry *next_entry;
if ( (next_entry = allocate_entry()) == NULL)
return NULL;
next_entry->up = ce;
ce->down = next_entry;
return next_entry;
}
/**
* Returns true if there is an event waiting in the queue
* that requires the current operation to be aborted.
*/
static bool check_event_queue(void)
{
struct queue_event ev;
if(!queue_peek(&dircache_queue, &ev))
return false;
switch (ev.id)
{
case DIRCACHE_STOP:
case SYS_USB_CONNECTED:
#ifdef HAVE_HOTSWAP
case SYS_FS_CHANGED:
#endif
return true;
}
return false;
}
#if (CONFIG_PLATFORM & PLATFORM_NATIVE)
/* scan and build static data (avoid redundancy on stack) */
static struct
{
#ifdef HAVE_MULTIVOLUME
int volume;
#endif
struct fat_dir *dir;
struct fat_direntry *direntry;
}sab;
static int sab_process_dir(unsigned long startcluster, struct dircache_entry *ce)
{
/* normally, opendir expects a full fat_dir as parent but in our case,
* it's completely useless because we don't modify anything
* WARNING: this heavily relies on current FAT implementation ! */
/* those field are necessary to update the FAT entry in case of modification
here we don't touch anything so we put dummy values */
sab.dir->entry = 0;
sab.dir->entrycount = 0;
sab.dir->file.firstcluster = 0;
/* open directory */
int rc = fat_opendir(IF_MV2(sab.volume,) sab.dir, startcluster, sab.dir);
if(rc < 0)
{
logf("fat_opendir failed: %d", rc);
return rc;
}
/* first pass : read dir */
struct dircache_entry *first_ce = ce;
/* read through directory */
while((rc = fat_getnext(sab.dir, sab.direntry)) >= 0 && sab.direntry->name[0])
{
if(!strcmp(".", sab.direntry->name) ||
!strcmp("..", sab.direntry->name))
continue;
ce->d_name = ((char *)dircache_root + dircache_size);
ce->startcluster = sab.direntry->firstcluster;
ce->info.size = sab.direntry->filesize;
ce->info.attribute = sab.direntry->attr;
ce->info.wrtdate = sab.direntry->wrtdate;
ce->info.wrttime = sab.direntry->wrttime;
strcpy(ce->d_name, sab.direntry->name);
dircache_size += strlen(ce->d_name) + 1;
entry_count++;
if(ce->info.attribute & FAT_ATTR_DIRECTORY)
dircache_gen_down(ce);
ce = dircache_gen_next(ce);
if(ce == NULL)
return -5;
/* When simulator is used, it's only safe to yield here. */
if(thread_enabled)
{
/* Stop if we got an external signal. */
if(check_event_queue())
return -6;
yield();
}
}
/* add "." and ".." */
ce->d_name = ".";
ce->info.attribute = FAT_ATTR_DIRECTORY;
ce->startcluster = startcluster;
ce->info.size = 0;
ce->down = first_ce;
ce = dircache_gen_next(ce);
ce->d_name = "..";
ce->info.attribute = FAT_ATTR_DIRECTORY;
ce->startcluster = (first_ce->up ? first_ce->up->startcluster : 0);
ce->info.size = 0;
ce->down = first_ce->up;
/* second pass: recurse ! */
ce = first_ce;
while(rc >= 0 && ce)
{
if(ce->d_name != NULL && ce->down != NULL && strcmp(ce->d_name, ".")
&& strcmp(ce->d_name, ".."))
rc = sab_process_dir(ce->startcluster, ce->down);
ce = ce->next;
}
return rc;
}
/* used during the generation */
static struct fat_dir sab_fat_dir;
static int dircache_scan_and_build(IF_MV2(int volume,) struct dircache_entry *ce)
{
memset(ce, 0, sizeof(struct dircache_entry));
#ifdef HAVE_MULTIVOLUME
if (volume > 0)
{
ce->d_name = ((char *)dircache_root+dircache_size);
size_t len = snprintf(ce->d_name, VOL_ENUM_POS + 3, VOL_NAMES, volume)+1;
dircache_size += len;
ce->info.attribute = FAT_ATTR_DIRECTORY | FAT_ATTR_VOLUME;
ce->info.size = 0;
append_position = dircache_gen_next(ce);
ce = dircache_gen_down(ce);
}
#endif
struct fat_direntry direntry; /* ditto */
#ifdef HAVE_MULTIVOLUME
sab.volume = volume;
#endif
sab.dir = &sab_fat_dir;
sab.direntry = &direntry;
return sab_process_dir(0, ce);
}
#elif (CONFIG_PLATFORM & PLATFORM_HOSTED) /* PLATFORM_HOSTED */
static char sab_path[MAX_PATH];
static int sab_process_dir(struct dircache_entry *ce)
{
struct dirent_uncached *entry;
struct dircache_entry *first_ce = ce;
DIR_UNCACHED *dir = opendir_uncached(sab_path);
if(dir == NULL)
{
logf("Failed to opendir_uncached(%s)", sab_path);
return -1;
}
while((entry = readdir_uncached(dir)))
{
if(!strcmp(".", entry->d_name) ||
!strcmp("..", entry->d_name))
continue;
ce->d_name = ((char *)dircache_root + dircache_size);
ce->info = entry->info;
strcpy(ce->d_name, entry->d_name);
dircache_size += strlen(entry->d_name) + 1;
entry_count++;
if(entry->info.attribute & ATTR_DIRECTORY)
{
dircache_gen_down(ce);
if(ce->down == NULL)
{
closedir_uncached(dir);
return -1;
}
/* save current paths size */
int pathpos = strlen(sab_path);
/* append entry */
strlcpy(&sab_path[pathpos], "/", sizeof(sab_path) - pathpos);
strlcpy(&sab_path[pathpos+1], entry->d_name, sizeof(sab_path) - pathpos - 1);
int rc = sab_process_dir(ce->down);
/* restore path */
sab_path[pathpos] = '\0';
if(rc < 0)
{
closedir_uncached(dir);
return rc;
}
}
ce = dircache_gen_next(ce);
if(ce == NULL)
return -5;
/* When simulator is used, it's only safe to yield here. */
if(thread_enabled)
{
/* Stop if we got an external signal. */
if(check_event_queue())
return -1;
yield();
}
}
/* add "." and ".." */
ce->d_name = ".";
ce->info.attribute = ATTR_DIRECTORY;
ce->info.size = 0;
ce->down = first_ce;
ce = dircache_gen_next(ce);
ce->d_name = "..";
ce->info.attribute = ATTR_DIRECTORY;
ce->info.size = 0;
ce->down = first_ce->up;
closedir_uncached(dir);
return 0;
}
static int dircache_scan_and_build(IF_MV2(int volume,) struct dircache_entry *ce)
{
#ifdef HAVE_MULTIVOLUME
(void) volume;
#endif
memset(ce, 0, sizeof(struct dircache_entry));
strlcpy(sab_path, "/", sizeof sab_path);
return sab_process_dir(ce);
}
#endif /* PLATFORM_NATIVE */
/**
* Internal function to get a pointer to dircache_entry for a given filename.
* path: Absolute path to a file or directory (see comment)
* go_down: Returns the first entry of the directory given by the path (see comment)
*
* As a a special case, accept path="" as an alias for "/".
* Also if the path omits the first '/', it will be accepted.
*
* * If get_down=true:
* If path="/", the returned entry is the first of root directory (ie dircache_root)
* Otherwise, if 'entry' is the returned value when get_down=false,
* the functions returns entry->down (which can be NULL)
*
* * If get_down=false:
* If path="/chunk_1/chunk_2/.../chunk_n" then this functions returns the entry
* root_entry()->chunk_1->chunk_2->...->chunk_(n-1)
* Which means that
* dircache_get_entry(path)->d_name == chunk_n
*
* If path="/", the returned entry is NULL.
* If the entry doesn't exist, return NULL
*
* NOTE: this functions silently handles double '/'
*/
static struct dircache_entry* dircache_get_entry(const char *path, bool go_down)
{
char namecopy[MAX_PATH];
char* part;
char* end;
bool at_root = true;
struct dircache_entry *cache_entry = dircache_root;
strlcpy(namecopy, path, sizeof(namecopy));
for(part = strtok_r(namecopy, "/", &end); part; part = strtok_r(NULL, "/", &end))
{
/* If request another chunk, the current entry has to be directory
* and so cache_entry->down has to be non-NULL/
* Special case of root because it's already the first entry of the root directory
*
* NOTE: this is safe even if cache_entry->down is NULL */
if(!at_root)
cache_entry = cache_entry->down;
else
at_root = false;
/* scan dir for name */
while(cache_entry != NULL)
{
/* skip unused entries */
if(cache_entry->d_name == NULL)
{
cache_entry = cache_entry->next;
continue;
}
/* compare names */
if(!strcasecmp(part, cache_entry->d_name))
break;
/* go to next entry */
cache_entry = cache_entry->next;
}
/* handle not found case */
if(cache_entry == NULL)
return NULL;
}
/* NOTE: here cache_entry!=NULL so taking ->down is safe */
if(go_down)
return at_root ? cache_entry : cache_entry->down;
else
return at_root ? NULL : cache_entry;
}
#ifdef HAVE_EEPROM_SETTINGS
/**
* Function to load the internal cache structure from disk to initialize
* the dircache really fast and little disk access.
*/
int dircache_load(void)
{
struct dircache_maindata maindata;
int bytes_read;
int fd;
if (dircache_initialized)
return -1;
logf("Loading directory cache");
dircache_size = 0;
fd = open_dircache_file(O_RDONLY, 0);
if (fd < 0)
return -2;
bytes_read = read(fd, &maindata, sizeof(struct dircache_maindata));
if (bytes_read != sizeof(struct dircache_maindata)
|| maindata.size <= 0)
{
logf("Dircache file header error");
close(fd);
remove_dircache_file();
return -3;
}
dircache_root = buffer_alloc(0);
if ((long)maindata.root_entry != (long)dircache_root)
{
logf("Position missmatch");
close(fd);
remove_dircache_file();
return -4;
}
dircache_root = buffer_alloc(maindata.size + DIRCACHE_RESERVE);
entry_count = maindata.entry_count;
appflags = maindata.appflags;
bytes_read = read(fd, dircache_root, MIN(DIRCACHE_LIMIT, maindata.size));
close(fd);
remove_dircache_file();
if (bytes_read != maindata.size)
{
logf("Dircache read failed");
return -6;
}
/* Cache successfully loaded. */
dircache_size = maindata.size;
allocated_size = dircache_size + DIRCACHE_RESERVE;
reserve_used = 0;
logf("Done, %ld KiB used", dircache_size / 1024);
dircache_initialized = true;
memset(fd_bindings, 0, sizeof(fd_bindings));
return 0;
}
/**
* Function to save the internal cache stucture to disk for fast loading
* on boot.
*/
int dircache_save(void)
{
struct dircache_maindata maindata;
int fd;
unsigned long bytes_written;
remove_dircache_file();
if (!dircache_initialized)
return -1;
logf("Saving directory cache");
fd = open_dircache_file(O_WRONLY | O_CREAT | O_TRUNC, 0666);
maindata.magic = DIRCACHE_MAGIC;
maindata.size = dircache_size;
maindata.root_entry = dircache_root;
maindata.entry_count = entry_count;
maindata.appflags = appflags;
/* Save the info structure */
bytes_written = write(fd, &maindata, sizeof(struct dircache_maindata));
if (bytes_written != sizeof(struct dircache_maindata))
{
close(fd);
logf("dircache: write failed #1");
return -2;
}
/* Dump whole directory cache to disk */
bytes_written = write(fd, dircache_root, dircache_size);
close(fd);
if (bytes_written != dircache_size)
{
logf("dircache: write failed #2");
return -3;
}
return 0;
}
#endif /* HAVE_EEPROM_SETTINGS */
/**
* Internal function which scans the disk and creates the dircache structure.
*/
static int dircache_do_rebuild(void)
{
unsigned int start_tick;
int i;
/* Measure how long it takes build the cache. */
start_tick = current_tick;
dircache_initializing = true;
appflags = 0;
entry_count = 0;
dircache_size = sizeof(struct dircache_entry);
#ifdef HAVE_MULTIVOLUME
append_position = dircache_root;
for (i = NUM_VOLUMES; i >= 0; i--)
{
if (fat_ismounted(i))
{
#endif
cpu_boost(true);
#ifdef HAVE_MULTIVOLUME
if (dircache_scan_and_build(IF_MV2(i,) append_position) < 0)
#else
if (dircache_scan_and_build(IF_MV2(0,) dircache_root) < 0)
#endif /* HAVE_MULTIVOLUME */
{
logf("dircache_scan_and_build failed");
cpu_boost(false);
dircache_size = 0;
dircache_initializing = false;
return -2;
}
cpu_boost(false);
#ifdef HAVE_MULTIVOLUME
}
}
#endif
logf("Done, %ld KiB used", dircache_size / 1024);
dircache_initialized = true;
dircache_initializing = false;
cache_build_ticks = current_tick - start_tick;
/* Initialized fd bindings. */
memset(fd_bindings, 0, sizeof(fd_bindings));
for (i = 0; i < fdbind_idx; i++)
dircache_bind(fdbind_cache[i].fd, fdbind_cache[i].path);
fdbind_idx = 0;
if (thread_enabled)
{
if (allocated_size - dircache_size < DIRCACHE_RESERVE)
reserve_used = DIRCACHE_RESERVE - (allocated_size - dircache_size);
}
else
{
/* We have to long align the audiobuf to keep the buffer access fast. */
audiobuf += (long)((dircache_size & ~0x03) + 0x04);
audiobuf += DIRCACHE_RESERVE;
allocated_size = dircache_size + DIRCACHE_RESERVE;
reserve_used = 0;
}
return 1;
}
/**
* Internal thread that controls transparent cache building.
*/
static void dircache_thread(void)
{
struct queue_event ev;
while (1)
{
queue_wait(&dircache_queue, &ev);
switch (ev.id)
{
#ifdef HAVE_HOTSWAP
case SYS_FS_CHANGED:
if (!dircache_initialized)
break;
dircache_initialized = false;
#endif
case DIRCACHE_BUILD:
thread_enabled = true;
dircache_do_rebuild();
thread_enabled = false;
break ;
case DIRCACHE_STOP:
logf("Stopped the rebuilding.");
dircache_initialized = false;
break ;
#if (CONFIG_PLATFORM & PLATFORM_NATIVE)
case SYS_USB_CONNECTED:
usb_acknowledge(SYS_USB_CONNECTED_ACK);
usb_wait_for_disconnect(&dircache_queue);
break ;
#endif
}
}
}
/**
* Start scanning the disk to build the dircache.
* Either transparent or non-transparent build method is used.
*/
int dircache_build(int last_size)
{
if (dircache_initialized || thread_enabled)
return -3;
logf("Building directory cache");
#ifdef HAVE_EEPROM_SETTINGS
remove_dircache_file();
#endif
/* Background build, dircache has been previously allocated */
if (dircache_size > 0)
{
thread_enabled = true;
dircache_initializing = true;
queue_post(&dircache_queue, DIRCACHE_BUILD, 0);
return 2;
}
if (last_size > DIRCACHE_RESERVE && last_size < DIRCACHE_LIMIT )
{
allocated_size = last_size + DIRCACHE_RESERVE;
dircache_root = buffer_alloc(allocated_size);
thread_enabled = true;
/* Start a transparent rebuild. */
queue_post(&dircache_queue, DIRCACHE_BUILD, 0);
return 3;
}
dircache_root = (struct dircache_entry *)(((long)audiobuf & ~0x03) + 0x04);
/* Start a non-transparent rebuild. */
return dircache_do_rebuild();
}
/**
* Steal the allocated dircache buffer and disable dircache.
*/
void* dircache_steal_buffer(long *size)
{
dircache_disable();
if (dircache_size == 0)
{
*size = 0;
return NULL;
}
*size = dircache_size + (DIRCACHE_RESERVE-reserve_used);
return dircache_root;
}
/**
* Main initialization function that must be called before any other
* operations within the dircache.
*/
void dircache_init(void)
{
int i;
int thread_id __attribute__((unused));
dircache_initialized = false;
dircache_initializing = false;
memset(opendirs, 0, sizeof(opendirs));
for (i = 0; i < MAX_OPEN_DIRS; i++)
{
opendirs[i].theent.d_name = buffer_alloc(MAX_PATH);
}
queue_init(&dircache_queue, true);
thread_id = create_thread(dircache_thread, dircache_stack,
sizeof(dircache_stack), 0, dircache_thread_name
IF_PRIO(, PRIORITY_BACKGROUND)
IF_COP(, CPU));
#ifdef HAVE_IO_PRIORITY
thread_set_io_priority(thread_id,IO_PRIORITY_BACKGROUND);
#endif
}
/**
* Returns true if dircache has been initialized and is ready to be used.
*/
bool dircache_is_enabled(void)
{
return dircache_initialized;
}
/**
* Returns true if dircache is being initialized.
*/
bool dircache_is_initializing(void)
{
return dircache_initializing || thread_enabled;
}
/**
* Set application flags used to determine if dircache is still intact.
*/
void dircache_set_appflag(long mask)
{
appflags |= mask;
}
/**
* Get application flags used to determine if dircache is still intact.
*/
bool dircache_get_appflag(long mask)
{
return dircache_is_enabled() && (appflags & mask);
}
/**
* Returns the current number of entries (directories and files) in the cache.
*/
int dircache_get_entry_count(void)
{
return entry_count;
}
/**
* Returns the allocated space for dircache (without reserve space).
*/
int dircache_get_cache_size(void)
{
return dircache_is_enabled() ? dircache_size : 0;
}
/**
* Returns how many bytes of the reserve allocation for live cache
* updates have been used.
*/
int dircache_get_reserve_used(void)
{
return dircache_is_enabled() ? reserve_used : 0;
}
/**
* Returns the time in kernel ticks that took to build the cache.
*/
int dircache_get_build_ticks(void)
{
return dircache_is_enabled() ? cache_build_ticks : 0;
}
/**
* Disables the dircache. Usually called on shutdown or when
* accepting a usb connection.
*/
void dircache_disable(void)
{
int i;
bool cache_in_use;
if (thread_enabled)
queue_post(&dircache_queue, DIRCACHE_STOP, 0);
while (thread_enabled)
sleep(1);
dircache_initialized = false;
logf("Waiting for cached dirs to release");
do {
cache_in_use = false;
for (i = 0; i < MAX_OPEN_DIRS; i++) {
if (!opendirs[i].regulardir && opendirs[i].busy)
{
cache_in_use = true;
sleep(1);
break ;
}
}
} while (cache_in_use) ;
logf("Cache released");
entry_count = 0;
}
/**
* Usermode function to return dircache_entry pointer to the given path.
*/
const struct dircache_entry *dircache_get_entry_ptr(const char *filename)
{
if (!dircache_initialized || filename == NULL)
return NULL;
return dircache_get_entry(filename, false);
}
/**
* Function to copy the full absolute path from dircache to the given buffer
* using the given dircache_entry pointer.
*/
void dircache_copy_path(const struct dircache_entry *entry, char *buf, int size)
{
int path_size = 0;
int idx;
const struct dircache_entry *temp = entry;
if (size <= 0)
return ;
/* first compute the necessary size */
while(temp != NULL)
{
path_size += strlen(temp->d_name) + sizeof('/');
temp = temp->up;
}
/* now copy the path */
idx = path_size;
while(entry != NULL)
{
idx -= strlen(entry->d_name);
/* available size */
int rem = size - idx;
if(rem >= 1)
{
buf[idx] = '/';
strlcpy(buf + idx + 1, entry->d_name, rem - 1);
}
entry = entry->up;
}
}
/* --- Directory cache live updating functions --- */
static int block_until_ready(void)
{
/* Block until dircache has been built. */
while (!dircache_initialized && dircache_is_initializing())
sleep(1);
if (!dircache_initialized)
return -1;
return 0;
}
static struct dircache_entry* dircache_new_entry(const char *path, int attribute)
{
struct dircache_entry *entry;
char basedir[MAX_PATH*2];
char *new;
long last_cache_size = dircache_size;
strlcpy(basedir, path, sizeof(basedir));
new = strrchr(basedir, '/');
if (new == NULL)
{
logf("error occurred");
dircache_initialized = false;
return NULL;
}
*new = '\0';
new++;
entry = dircache_get_entry(basedir, true);
if (entry == NULL)
{
logf("basedir not found!");
logf("%s", basedir);
dircache_initialized = false;
return NULL;
}
if (reserve_used + 2*sizeof(struct dircache_entry) + strlen(new)+1
>= DIRCACHE_RESERVE)
{
logf("not enough space");
dircache_initialized = false;
return NULL;
}
while (entry->next != NULL)
entry = entry->next;
if (entry->d_name != NULL)
{
entry = dircache_gen_next(entry);
if (entry == NULL)
{
dircache_initialized = false;
return NULL;
}
}
entry->d_name = ((char *)dircache_root+dircache_size);
entry->startcluster = 0;
memset(&entry->info, 0, sizeof(entry->info));
entry->info.attribute = attribute;
strcpy(entry->d_name, new);
dircache_size += strlen(entry->d_name);
if (attribute & ATTR_DIRECTORY)
{
logf("gen_down");
dircache_gen_down(entry);
}
reserve_used += dircache_size - last_cache_size;
return entry;
}
void dircache_bind(int fd, const char *path)
{
struct dircache_entry *entry;
/* Queue requests until dircache has been built. */
if (!dircache_initialized && dircache_is_initializing())
{
if (fdbind_idx >= MAX_PENDING_BINDINGS)
return ;
strlcpy(fdbind_cache[fdbind_idx].path, path,
sizeof(fdbind_cache[fdbind_idx].path));
fdbind_cache[fdbind_idx].fd = fd;
fdbind_idx++;
return ;
}
if (!dircache_initialized)
return ;
logf("bind: %d/%s", fd, path);
entry = dircache_get_entry(path, false);
if (entry == NULL)
{
logf("not found!");
dircache_initialized = false;
return ;
}
fd_bindings[fd] = entry;
}
void dircache_update_filesize(int fd, long newsize, long startcluster)
{
if (!dircache_initialized || fd < 0)
return ;
if (fd_bindings[fd] == NULL)
{
logf("dircache fd(%d) access error", fd);
dircache_initialized = false;
return ;
}
fd_bindings[fd]->info.size = newsize;
fd_bindings[fd]->startcluster = startcluster;
}
void dircache_update_filetime(int fd)
{
#if CONFIG_RTC == 0
(void)fd;
#else
short year;
struct tm *now = get_time();
if (!dircache_initialized || fd < 0)
return ;
if (fd_bindings[fd] == NULL)
{
logf("dircache fd access error");
dircache_initialized = false;
return ;
}
year = now->tm_year+1900-1980;
fd_bindings[fd]->info.wrtdate = (((year)&0x7f)<<9) |
(((now->tm_mon+1)&0xf)<<5) |
(((now->tm_mday)&0x1f));
fd_bindings[fd]->info.wrttime = (((now->tm_hour)&0x1f)<<11) |
(((now->tm_min)&0x3f)<<5) |
(((now->tm_sec/2)&0x1f));
#endif
}
void dircache_mkdir(const char *path)
{ /* Test ok. */
if (block_until_ready())
return ;
logf("mkdir: %s", path);
dircache_new_entry(path, ATTR_DIRECTORY);
}
void dircache_rmdir(const char *path)
{ /* Test ok. */
struct dircache_entry *entry;
if (block_until_ready())
return ;
logf("rmdir: %s", path);
entry = dircache_get_entry(path, false);
if (entry == NULL || entry->down == NULL)
{
logf("not found or not a directory!");
dircache_initialized = false;
return ;
}
entry->down = NULL;
entry->d_name = NULL;
}
/* Remove a file from cache */
void dircache_remove(const char *name)
{ /* Test ok. */
struct dircache_entry *entry;
if (block_until_ready())
return ;
logf("remove: %s", name);
entry = dircache_get_entry(name, false);
if (entry == NULL)
{
logf("not found!");
dircache_initialized = false;
return ;
}
entry->d_name = NULL;
}
void dircache_rename(const char *oldpath, const char *newpath)
{ /* Test ok. */
struct dircache_entry *entry, *newentry;
struct dircache_entry oldentry;
char absolute_path[MAX_PATH*2];
char *p;
if (block_until_ready())
return ;
logf("rename: %s->%s", oldpath, newpath);
entry = dircache_get_entry(oldpath, false);
if (entry == NULL)
{
logf("not found!");
dircache_initialized = false;
return ;
}
/* Delete the old entry. */
entry->d_name = NULL;
/** If we rename the same filename twice in a row, we need to
* save the data, because the entry will be re-used. */
oldentry = *entry;
/* Generate the absolute path for destination if necessary. */
if (newpath[0] != '/')
{
strlcpy(absolute_path, oldpath, sizeof(absolute_path));
p = strrchr(absolute_path, '/');
if (!p)
{
logf("Invalid path");
dircache_initialized = false;
return ;
}
*p = '\0';
strlcpy(p, absolute_path, sizeof(absolute_path)-strlen(p));
newpath = absolute_path;
}
newentry = dircache_new_entry(newpath, entry->info.attribute);
if (newentry == NULL)
{
dircache_initialized = false;
return ;
}
newentry->down = oldentry.down;
newentry->startcluster = oldentry.startcluster;
newentry->info.size = oldentry.info.size;
newentry->info.wrtdate = oldentry.info.wrtdate;
newentry->info.wrttime = oldentry.info.wrttime;
}
void dircache_add_file(const char *path, long startcluster)
{
struct dircache_entry *entry;
if (block_until_ready())
return ;
logf("add file: %s", path);
entry = dircache_new_entry(path, 0);
if (entry == NULL)
return ;
entry->startcluster = startcluster;
}
static bool is_disable_msg_pending(void)
{
return check_event_queue();
}
DIR_CACHED* opendir_cached(const char* name)
{
int dd;
DIR_CACHED* pdir = opendirs;
if ( name[0] != '/' )
{
DEBUGF("Only absolute paths supported right now\n");
return NULL;
}
/* find a free dir descriptor */
for ( dd=0; dd<MAX_OPEN_DIRS; dd++, pdir++)
if ( !pdir->busy )
break;
if ( dd == MAX_OPEN_DIRS )
{
DEBUGF("Too many dirs open\n");
errno = EMFILE;
return NULL;
}
pdir->busy = true;
if (!dircache_initialized || is_disable_msg_pending())
{
pdir->internal_entry = NULL;
pdir->regulardir = opendir_uncached(name);
}
else
{
pdir->regulardir = NULL;
pdir->internal_entry = dircache_get_entry(name, true);
pdir->theent.info.attribute = -1; /* used to make readdir_cached aware of the first call */
}
if (pdir->internal_entry == NULL && pdir->regulardir == NULL)
{
pdir->busy = false;
return NULL;
}
return pdir;
}
struct dirent_cached* readdir_cached(DIR_CACHED* dir)
{
struct dircache_entry *ce = dir->internal_entry;
struct dirent_uncached *regentry;
if (!dir->busy)
return NULL;
if (dir->regulardir != NULL)
{
regentry = readdir_uncached(dir->regulardir);
if (regentry == NULL)
return NULL;
strlcpy(dir->theent.d_name, regentry->d_name, MAX_PATH);
dir->theent.startcluster = regentry->startcluster;
dir->theent.info = regentry->info;
return &dir->theent;
}
/* if theent.attribute=-1 then this is the first call */
/* otherwise, this is is not so we first take the entry's ->next */
/* NOTE: normal file can't have attribute=-1 */
if(dir->theent.info.attribute != -1)
ce = ce->next;
/* skip unused entries */
while(ce != NULL && ce->d_name == NULL)
ce = ce->next;
if (ce == NULL)
return NULL;
strlcpy(dir->theent.d_name, ce->d_name, MAX_PATH);
/* Can't do `dir->theent = *ce`
because that modifies the d_name pointer. */
dir->theent.startcluster = ce->startcluster;
dir->theent.info = ce->info;
dir->internal_entry = ce;
//logf("-> %s", ce->d_name);
return &dir->theent;
}
int closedir_cached(DIR_CACHED* dir)
{
if (!dir->busy)
return -1;
dir->busy=false;
if (dir->regulardir != NULL)
return closedir_uncached(dir->regulardir);
return 0;
}
int mkdir_cached(const char *name)
{
int rc=mkdir_uncached(name);
if (rc >= 0)
dircache_mkdir(name);
return(rc);
}
int rmdir_cached(const char* name)
{
int rc=rmdir_uncached(name);
if(rc >= 0)
dircache_rmdir(name);
return(rc);
}