2012-07-26 12:38:32 +00:00
|
|
|
/* Copyright (c) 2002-2008 Jean-Marc Valin
|
|
|
|
Copyright (c) 2007-2008 CSIRO
|
|
|
|
Copyright (c) 2007-2009 Xiph.Org Foundation
|
|
|
|
Written by Jean-Marc Valin */
|
|
|
|
/**
|
|
|
|
@file mathops.h
|
|
|
|
@brief Various math functions
|
|
|
|
*/
|
|
|
|
/*
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
|
|
modification, are permitted provided that the following conditions
|
|
|
|
are met:
|
|
|
|
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
|
|
notice, this list of conditions and the following disclaimer in the
|
|
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
|
|
|
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifdef HAVE_CONFIG_H
|
2013-05-20 20:25:57 +00:00
|
|
|
#include "config.h"
|
2012-07-26 12:38:32 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "mathops.h"
|
|
|
|
|
|
|
|
/*Compute floor(sqrt(_val)) with exact arithmetic.
|
|
|
|
This has been tested on all possible 32-bit inputs.*/
|
|
|
|
unsigned isqrt32(opus_uint32 _val){
|
|
|
|
unsigned b;
|
|
|
|
unsigned g;
|
|
|
|
int bshift;
|
|
|
|
/*Uses the second method from
|
|
|
|
http://www.azillionmonkeys.com/qed/sqroot.html
|
|
|
|
The main idea is to search for the largest binary digit b such that
|
|
|
|
(g+b)*(g+b) <= _val, and add it to the solution g.*/
|
|
|
|
g=0;
|
|
|
|
bshift=(EC_ILOG(_val)-1)>>1;
|
|
|
|
b=1U<<bshift;
|
|
|
|
do{
|
|
|
|
opus_uint32 t;
|
|
|
|
t=(((opus_uint32)g<<1)+b)<<bshift;
|
|
|
|
if(t<=_val){
|
|
|
|
g+=b;
|
|
|
|
_val-=t;
|
|
|
|
}
|
|
|
|
b>>=1;
|
|
|
|
bshift--;
|
|
|
|
}
|
|
|
|
while(bshift>=0);
|
|
|
|
return g;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef FIXED_POINT
|
|
|
|
|
|
|
|
opus_val32 frac_div32(opus_val32 a, opus_val32 b)
|
|
|
|
{
|
|
|
|
opus_val16 rcp;
|
|
|
|
opus_val32 result, rem;
|
|
|
|
int shift = celt_ilog2(b)-29;
|
|
|
|
a = VSHR32(a,shift);
|
|
|
|
b = VSHR32(b,shift);
|
|
|
|
/* 16-bit reciprocal */
|
|
|
|
rcp = ROUND16(celt_rcp(ROUND16(b,16)),3);
|
|
|
|
result = MULT16_32_Q15(rcp, a);
|
|
|
|
rem = PSHR32(a,2)-MULT32_32_Q31(result, b);
|
|
|
|
result = ADD32(result, SHL32(MULT16_32_Q15(rcp, rem),2));
|
|
|
|
if (result >= 536870912) /* 2^29 */
|
|
|
|
return 2147483647; /* 2^31 - 1 */
|
|
|
|
else if (result <= -536870912) /* -2^29 */
|
|
|
|
return -2147483647; /* -2^31 */
|
|
|
|
else
|
|
|
|
return SHL32(result, 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Reciprocal sqrt approximation in the range [0.25,1) (Q16 in, Q14 out) */
|
|
|
|
opus_val16 celt_rsqrt_norm(opus_val32 x)
|
|
|
|
{
|
|
|
|
opus_val16 n;
|
|
|
|
opus_val16 r;
|
|
|
|
opus_val16 r2;
|
|
|
|
opus_val16 y;
|
|
|
|
/* Range of n is [-16384,32767] ([-0.5,1) in Q15). */
|
|
|
|
n = x-32768;
|
|
|
|
/* Get a rough initial guess for the root.
|
|
|
|
The optimal minimax quadratic approximation (using relative error) is
|
|
|
|
r = 1.437799046117536+n*(-0.823394375837328+n*0.4096419668459485).
|
|
|
|
Coefficients here, and the final result r, are Q14.*/
|
|
|
|
r = ADD16(23557, MULT16_16_Q15(n, ADD16(-13490, MULT16_16_Q15(n, 6713))));
|
|
|
|
/* We want y = x*r*r-1 in Q15, but x is 32-bit Q16 and r is Q14.
|
|
|
|
We can compute the result from n and r using Q15 multiplies with some
|
|
|
|
adjustment, carefully done to avoid overflow.
|
|
|
|
Range of y is [-1564,1594]. */
|
|
|
|
r2 = MULT16_16_Q15(r, r);
|
|
|
|
y = SHL16(SUB16(ADD16(MULT16_16_Q15(r2, n), r2), 16384), 1);
|
|
|
|
/* Apply a 2nd-order Householder iteration: r += r*y*(y*0.375-0.5).
|
|
|
|
This yields the Q14 reciprocal square root of the Q16 x, with a maximum
|
|
|
|
relative error of 1.04956E-4, a (relative) RMSE of 2.80979E-5, and a
|
|
|
|
peak absolute error of 2.26591/16384. */
|
|
|
|
return ADD16(r, MULT16_16_Q15(r, MULT16_16_Q15(y,
|
|
|
|
SUB16(MULT16_16_Q15(y, 12288), 16384))));
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Sqrt approximation (QX input, QX/2 output) */
|
|
|
|
opus_val32 celt_sqrt(opus_val32 x)
|
|
|
|
{
|
|
|
|
int k;
|
|
|
|
opus_val16 n;
|
|
|
|
opus_val32 rt;
|
|
|
|
static const opus_val16 C[5] = {23175, 11561, -3011, 1699, -664};
|
|
|
|
if (x==0)
|
|
|
|
return 0;
|
2013-05-20 20:25:57 +00:00
|
|
|
else if (x>=1073741824)
|
|
|
|
return 32767;
|
2012-07-26 12:38:32 +00:00
|
|
|
k = (celt_ilog2(x)>>1)-7;
|
|
|
|
x = VSHR32(x, 2*k);
|
|
|
|
n = x-32768;
|
|
|
|
rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2],
|
|
|
|
MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4])))))))));
|
|
|
|
rt = VSHR32(rt,7-k);
|
|
|
|
return rt;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define L1 32767
|
|
|
|
#define L2 -7651
|
|
|
|
#define L3 8277
|
|
|
|
#define L4 -626
|
|
|
|
|
|
|
|
static inline opus_val16 _celt_cos_pi_2(opus_val16 x)
|
|
|
|
{
|
|
|
|
opus_val16 x2;
|
|
|
|
|
|
|
|
x2 = MULT16_16_P15(x,x);
|
|
|
|
return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MULT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2
|
|
|
|
))))))));
|
|
|
|
}
|
|
|
|
|
|
|
|
#undef L1
|
|
|
|
#undef L2
|
|
|
|
#undef L3
|
|
|
|
#undef L4
|
|
|
|
|
|
|
|
opus_val16 celt_cos_norm(opus_val32 x)
|
|
|
|
{
|
|
|
|
x = x&0x0001ffff;
|
|
|
|
if (x>SHL32(EXTEND32(1), 16))
|
|
|
|
x = SUB32(SHL32(EXTEND32(1), 17),x);
|
|
|
|
if (x&0x00007fff)
|
|
|
|
{
|
|
|
|
if (x<SHL32(EXTEND32(1), 15))
|
|
|
|
{
|
|
|
|
return _celt_cos_pi_2(EXTRACT16(x));
|
|
|
|
} else {
|
|
|
|
return NEG32(_celt_cos_pi_2(EXTRACT16(65536-x)));
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (x&0x0000ffff)
|
|
|
|
return 0;
|
|
|
|
else if (x&0x0001ffff)
|
|
|
|
return -32767;
|
|
|
|
else
|
|
|
|
return 32767;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Reciprocal approximation (Q15 input, Q16 output) */
|
|
|
|
opus_val32 celt_rcp(opus_val32 x)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
opus_val16 n;
|
|
|
|
opus_val16 r;
|
|
|
|
celt_assert2(x>0, "celt_rcp() only defined for positive values");
|
|
|
|
i = celt_ilog2(x);
|
|
|
|
/* n is Q15 with range [0,1). */
|
|
|
|
n = VSHR32(x,i-15)-32768;
|
|
|
|
/* Start with a linear approximation:
|
|
|
|
r = 1.8823529411764706-0.9411764705882353*n.
|
|
|
|
The coefficients and the result are Q14 in the range [15420,30840].*/
|
|
|
|
r = ADD16(30840, MULT16_16_Q15(-15420, n));
|
|
|
|
/* Perform two Newton iterations:
|
|
|
|
r -= r*((r*n)-1.Q15)
|
|
|
|
= r*((r*n)+(r-1.Q15)). */
|
|
|
|
r = SUB16(r, MULT16_16_Q15(r,
|
|
|
|
ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768))));
|
|
|
|
/* We subtract an extra 1 in the second iteration to avoid overflow; it also
|
|
|
|
neatly compensates for truncation error in the rest of the process. */
|
|
|
|
r = SUB16(r, ADD16(1, MULT16_16_Q15(r,
|
|
|
|
ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768)))));
|
|
|
|
/* r is now the Q15 solution to 2/(n+1), with a maximum relative error
|
|
|
|
of 7.05346E-5, a (relative) RMSE of 2.14418E-5, and a peak absolute
|
|
|
|
error of 1.24665/32768. */
|
|
|
|
return VSHR32(EXTEND32(r),i-16);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|