rockbox/firmware/target/arm/imx233/power-imx233.c

347 lines
12 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2011 by Amaury Pouly
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "system.h"
#include "power.h"
#include "string.h"
#include "usb.h"
#include "system-target.h"
#include "power-imx233.h"
#include "pinctrl-imx233.h"
#include "fmradio_i2c.h"
struct current_step_bit_t
{
unsigned current;
uint32_t bit;
};
/* in decreasing order */
static struct current_step_bit_t g_charger_current_bits[] =
{
{ 400, HW_POWER_CHARGE__BATTCHRG_I__400mA },
{ 200, HW_POWER_CHARGE__BATTCHRG_I__200mA },
{ 100, HW_POWER_CHARGE__BATTCHRG_I__100mA },
{ 50, HW_POWER_CHARGE__BATTCHRG_I__50mA },
{ 20, HW_POWER_CHARGE__BATTCHRG_I__20mA },
{ 10, HW_POWER_CHARGE__BATTCHRG_I__10mA }
};
/* in decreasing order */
static struct current_step_bit_t g_charger_stop_current_bits[] =
{
{ 100, HW_POWER_CHARGE__STOP_ILIMIT__100mA },
{ 50, HW_POWER_CHARGE__STOP_ILIMIT__50mA },
{ 20, HW_POWER_CHARGE__STOP_ILIMIT__20mA },
{ 10, HW_POWER_CHARGE__STOP_ILIMIT__10mA }
};
/* in decreasing order */
static struct current_step_bit_t g_4p2_charge_limit_bits[] =
{
{ 400, HW_POWER_5VCTRL__CHARGE_4P2_ILIMIT__400mA },
{ 200, HW_POWER_5VCTRL__CHARGE_4P2_ILIMIT__200mA },
{ 100, HW_POWER_5VCTRL__CHARGE_4P2_ILIMIT__100mA },
{ 50, HW_POWER_5VCTRL__CHARGE_4P2_ILIMIT__50mA },
{ 20, HW_POWER_5VCTRL__CHARGE_4P2_ILIMIT__20mA },
{ 10, HW_POWER_5VCTRL__CHARGE_4P2_ILIMIT__10mA }
};
void INT_VDD5V(void)
{
if(HW_POWER_CTRL & HW_POWER_CTRL__VBUSVALID_IRQ)
{
if(HW_POWER_STS & HW_POWER_STS__VBUSVALID)
usb_insert_int();
else
usb_remove_int();
/* reverse polarity */
__REG_TOG(HW_POWER_CTRL) = HW_POWER_CTRL__POLARITY_VBUSVALID;
/* enable int */
__REG_CLR(HW_POWER_CTRL) = HW_POWER_CTRL__VBUSVALID_IRQ;
}
}
void power_init(void)
{
/* setup vbusvalid parameters: set threshold to 4v and power up comparators */
__REG_CLR(HW_POWER_5VCTRL) = HW_POWER_5VCTRL__VBUSVALID_TRSH_BM;
__REG_SET(HW_POWER_5VCTRL) = HW_POWER_5VCTRL__VBUSVALID_TRSH_4V |
HW_POWER_5VCTRL__PWRUP_VBUS_CMPS;
/* enable vbusvalid detection method for the dcdc (improves efficiency) */
__REG_SET(HW_POWER_5VCTRL) = HW_POWER_5VCTRL__VBUSVALID_5VDETECT;
/* clear vbusvalid irq and set correct polarity */
__REG_CLR(HW_POWER_CTRL) = HW_POWER_CTRL__VBUSVALID_IRQ;
if(HW_POWER_STS & HW_POWER_STS__VBUSVALID)
__REG_CLR(HW_POWER_CTRL) = HW_POWER_CTRL__POLARITY_VBUSVALID;
else
__REG_SET(HW_POWER_CTRL) = HW_POWER_CTRL__POLARITY_VBUSVALID;
__REG_SET(HW_POWER_CTRL) = HW_POWER_CTRL__ENIRQ_VBUS_VALID;
imx233_icoll_enable_interrupt(INT_SRC_VDD5V, true);
/* setup linear regulator offsets to 25 mV below to prevent contention between
* linear regulators and DCDC */
__FIELD_SET(HW_POWER_VDDDCTRL, LINREG_OFFSET, 2);
__FIELD_SET(HW_POWER_VDDACTRL, LINREG_OFFSET, 2);
__FIELD_SET(HW_POWER_VDDIOCTRL, LINREG_OFFSET, 2);
/* enable a few bits controlling the DC-DC as recommended by Freescale */
__REG_SET(HW_POWER_LOOPCTRL) = HW_POWER_LOOPCTRL__TOGGLE_DIF |
HW_POWER_LOOPCTRL__EN_CM_HYST;
__FIELD_SET(HW_POWER_LOOPCTRL, EN_RCSCALE, HW_POWER_LOOPCTRL__EN_RCSCALE__2X);
}
void power_off(void)
{
/* wait a bit, useful for the user to stop touching anything */
sleep(HZ / 2);
#ifdef SANSA_FUZEPLUS
/* This pin seems to be important to shutdown the hardware properly */
imx233_pinctrl_acquire_pin(0, 9, "power off");
imx233_set_pin_function(0, 9, PINCTRL_FUNCTION_GPIO);
imx233_enable_gpio_output(0, 9, true);
imx233_set_gpio_output(0, 9, true);
#endif
/* power down */
HW_POWER_RESET = HW_POWER_RESET__UNLOCK | HW_POWER_RESET__PWD;
while(1);
}
unsigned int power_input_status(void)
{
return (usb_detect() == USB_INSERTED)
? POWER_INPUT_MAIN_CHARGER : POWER_INPUT_NONE;
}
bool charging_state(void)
{
return HW_POWER_STS & HW_POWER_STS__CHRGSTS;
}
void imx233_power_set_charge_current(unsigned current)
{
__REG_CLR(HW_POWER_CHARGE) = HW_POWER_CHARGE__BATTCHRG_I_BM;
/* find closest current LOWER THAN OR EQUAL TO the expected current */
for(unsigned i = 0; i < ARRAYLEN(g_charger_current_bits); i++)
if(current >= g_charger_current_bits[i].current)
{
current -= g_charger_current_bits[i].current;
__REG_SET(HW_POWER_CHARGE) = g_charger_current_bits[i].bit;
}
}
void imx233_power_set_stop_current(unsigned current)
{
__REG_CLR(HW_POWER_CHARGE) = HW_POWER_CHARGE__STOP_ILIMIT_BM;
/* find closest current GREATHER THAN OR EQUAL TO the expected current */
unsigned sum = 0;
for(unsigned i = 0; i < ARRAYLEN(g_charger_stop_current_bits); i++)
sum += g_charger_stop_current_bits[i].current;
for(unsigned i = 0; i < ARRAYLEN(g_charger_stop_current_bits); i++)
{
sum -= g_charger_stop_current_bits[i].current;
if(current > sum)
{
current -= g_charger_stop_current_bits[i].current;
__REG_SET(HW_POWER_CHARGE) = g_charger_stop_current_bits[i].bit;
}
}
}
/* regulator info */
#define HAS_BO (1 << 0)
#define HAS_LINREG (1 << 1)
#define HAS_LINREG_OFFSET (1 << 2)
static struct
{
unsigned min, step;
volatile uint32_t *reg;
uint32_t trg_bm, trg_bp; // bitmask and bitpos
unsigned flags;
uint32_t bo_bm, bo_bp; // bitmask and bitpos
uint32_t linreg_bm;
uint32_t linreg_offset_bm, linreg_offset_bp; // bitmask and bitpos
} regulator_info[] =
{
#define ADD_REGULATOR(name, mask) \
.min = HW_POWER_##name##CTRL__TRG_MIN, \
.step = HW_POWER_##name##CTRL__TRG_STEP, \
.reg = &HW_POWER_##name##CTRL, \
.trg_bm = HW_POWER_##name##CTRL__TRG_BM, \
.trg_bp = HW_POWER_##name##CTRL__TRG_BP, \
.flags = mask
#define ADD_REGULATOR_BO(name) \
.bo_bm = HW_POWER_##name##CTRL__BO_OFFSET_BM, \
.bo_bp = HW_POWER_##name##CTRL__BO_OFFSET_BP
#define ADD_REGULATOR_LINREG(name) \
.linreg_bm = HW_POWER_##name##CTRL__ENABLE_LINREG
#define ADD_REGULATOR_LINREG_OFFSET(name) \
.linreg_offset_bm = HW_POWER_##name##CTRL__LINREG_OFFSET_BM, \
.linreg_offset_bp = HW_POWER_##name##CTRL__LINREG_OFFSET_BP
[REGULATOR_VDDD] =
{
ADD_REGULATOR(VDDD, HAS_BO|HAS_LINREG|HAS_LINREG_OFFSET),
ADD_REGULATOR_BO(VDDD),
ADD_REGULATOR_LINREG(VDDD),
ADD_REGULATOR_LINREG_OFFSET(VDDD)
},
[REGULATOR_VDDA] =
{
ADD_REGULATOR(VDDA, HAS_BO|HAS_LINREG|HAS_LINREG_OFFSET),
ADD_REGULATOR_BO(VDDA),
ADD_REGULATOR_LINREG(VDDA),
ADD_REGULATOR_LINREG_OFFSET(VDDA)
},
[REGULATOR_VDDIO] =
{
ADD_REGULATOR(VDDIO, HAS_BO|HAS_LINREG_OFFSET),
ADD_REGULATOR_BO(VDDIO),
ADD_REGULATOR_LINREG_OFFSET(VDDIO)
},
[REGULATOR_VDDMEM] =
{
ADD_REGULATOR(VDDMEM, HAS_LINREG),
ADD_REGULATOR_LINREG(VDDMEM),
},
};
void imx233_power_get_regulator(enum imx233_regulator_t reg, unsigned *value_mv,
unsigned *brownout_mv)
{
uint32_t reg_val = *regulator_info[reg].reg;
/* read target value */
unsigned raw_val = (reg_val & regulator_info[reg].trg_bm) >> regulator_info[reg].trg_bp;
/* convert it to mv */
if(value_mv)
*value_mv = regulator_info[reg].min + regulator_info[reg].step * raw_val;
if(regulator_info[reg].flags & HAS_BO)
{
/* read brownout offset */
unsigned raw_bo = (reg_val & regulator_info[reg].bo_bm) >> regulator_info[reg].bo_bp;
/* convert it to mv */
if(brownout_mv)
*brownout_mv = regulator_info[reg].min + regulator_info[reg].step * (raw_val - raw_bo);
}
else if(brownout_mv)
*brownout_mv = 0;
}
void imx233_power_set_regulator(enum imx233_regulator_t reg, unsigned value_mv,
unsigned brownout_mv)
{
// compute raw values
unsigned raw_val = (value_mv - regulator_info[reg].min) / regulator_info[reg].step;
unsigned raw_bo_offset = (value_mv - brownout_mv) / regulator_info[reg].step;
// update
uint32_t reg_val = (*regulator_info[reg].reg) & ~regulator_info[reg].trg_bm;
reg_val |= raw_val << regulator_info[reg].trg_bp;
if(regulator_info[reg].flags & HAS_BO)
{
reg_val &= ~regulator_info[reg].bo_bm;
reg_val |= raw_bo_offset << regulator_info[reg].bo_bp;
}
*regulator_info[reg].reg = reg_val;
}
// offset is -1,0 or 1
void imx233_power_get_regulator_linreg(enum imx233_regulator_t reg,
bool *enabled, int *linreg_offset)
{
if(enabled && regulator_info[reg].flags & HAS_LINREG)
*enabled = !!(*regulator_info[reg].reg & regulator_info[reg].linreg_bm);
else if(enabled)
*enabled = true;
if(regulator_info[reg].flags & HAS_LINREG_OFFSET)
{
unsigned v = (*regulator_info[reg].reg & regulator_info[reg].linreg_offset_bm);
v >>= regulator_info[reg].linreg_offset_bp;
if(linreg_offset)
*linreg_offset = (v == 0) ? 0 : (v == 1) ? 1 : -1;
}
else if(linreg_offset)
*linreg_offset = 0;
}
// offset is -1,0 or 1
/*
void imx233_power_set_regulator_linreg(enum imx233_regulator_t reg,
bool enabled, int linreg_offset)
{
}
*/
struct imx233_power_info_t imx233_power_get_info(unsigned flags)
{
static int dcdc_freqsel[8] = {
[HW_POWER_MISC__FREQSEL__RES] = 0,
[HW_POWER_MISC__FREQSEL__20MHz] = 20000,
[HW_POWER_MISC__FREQSEL__24MHz] = 24000,
[HW_POWER_MISC__FREQSEL__19p2MHz] = 19200,
[HW_POWER_MISC__FREQSEL__14p4MHz] = 14200,
[HW_POWER_MISC__FREQSEL__18MHz] = 18000,
[HW_POWER_MISC__FREQSEL__21p6MHz] = 21600,
[HW_POWER_MISC__FREQSEL__17p28MHz] = 17280,
};
struct imx233_power_info_t s;
memset(&s, 0, sizeof(s));
if(flags & POWER_INFO_DCDC)
{
s.dcdc_sel_pllclk = HW_POWER_MISC & HW_POWER_MISC__SEL_PLLCLK;
s.dcdc_freqsel = dcdc_freqsel[__XTRACT(HW_POWER_MISC, FREQSEL)];
}
if(flags & POWER_INFO_CHARGE)
{
for(unsigned i = 0; i < ARRAYLEN(g_charger_current_bits); i++)
if(HW_POWER_CHARGE & g_charger_current_bits[i].bit)
s.charge_current += g_charger_current_bits[i].current;
for(unsigned i = 0; i < ARRAYLEN(g_charger_stop_current_bits); i++)
if(HW_POWER_CHARGE & g_charger_stop_current_bits[i].bit)
s.stop_current += g_charger_stop_current_bits[i].current;
s.charging = HW_POWER_STS & HW_POWER_STS__CHRGSTS;
s.batt_adj = HW_POWER_BATTMONITOR & HW_POWER_BATTMONITOR__ENBATADJ;
}
if(flags & POWER_INFO_4P2)
{
s._4p2_enable = HW_POWER_DCDC4P2 & HW_POWER_DCDC4P2__ENABLE_4P2;
s._4p2_dcdc = HW_POWER_DCDC4P2 & HW_POWER_DCDC4P2__ENABLE_DCDC;
s._4p2_cmptrip = __XTRACT(HW_POWER_DCDC4P2, CMPTRIP);
s._4p2_dropout = __XTRACT(HW_POWER_DCDC4P2, DROPOUT_CTRL);
}
if(flags & POWER_INFO_5V)
{
s._5v_pwd_charge_4p2 = HW_POWER_5VCTRL & HW_POWER_5VCTRL__PWD_CHARGE_4P2;
s._5v_dcdc_xfer = HW_POWER_5VCTRL & HW_POWER_5VCTRL__DCDC_XFER;
s._5v_enable_dcdc = HW_POWER_5VCTRL & HW_POWER_5VCTRL__ENABLE_DCDC;
for(unsigned i = 0; i < ARRAYLEN(g_4p2_charge_limit_bits); i++)
if(HW_POWER_5VCTRL & g_4p2_charge_limit_bits[i].bit)
s._5v_charge_4p2_limit += g_4p2_charge_limit_bits[i].current;
s._5v_vbusvalid_detect = HW_POWER_5VCTRL & HW_POWER_5VCTRL__VBUSVALID_5VDETECT;
s._5v_vbus_cmps = HW_POWER_5VCTRL & HW_POWER_5VCTRL__PWRUP_VBUS_CMPS;
s._5v_vbusvalid_thr =
__XTRACT(HW_POWER_5VCTRL, VBUSVALID_TRSH) == 0 ?
2900
: 3900 + __XTRACT(HW_POWER_5VCTRL, VBUSVALID_TRSH) * 100;
}
return s;
}