rockbox/firmware/target/arm/imx233/sdmmc-imx233.c

875 lines
25 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2011 by Amaury Pouly
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "system.h"
#include "sd.h"
#include "sdmmc.h"
#include "ssp-imx233.h"
#include "pinctrl-imx233.h"
#include "partitions-imx233.h"
#include "button-target.h"
#include "fat.h"
#include "disk.h"
#include "usb.h"
#include "debug.h"
#include "string.h"
struct sdmmc_config_t
{
const char *name; /* name(for debug) */
int flags; /* flags */
int power_pin; /* power pin */
int power_delay; /* extra power up delay */
int ssp; /* associated ssp block */
int mode; /* mode (SD vs MMC) */
};
/* flags */
#define POWER_PIN (1 << 0)
#define POWER_INVERTED (1 << 1)
#define REMOVABLE (1 << 2)
#define DETECT_INVERTED (1 << 3)
#define POWER_DELAY (1 << 4)
#define WINDOW (1 << 5)
/* modes */
#define SD_MODE 0
#define MMC_MODE 1
#define PIN(bank,pin) ((bank) << 5 | (pin))
#define PIN2BANK(v) ((v) >> 5)
#define PIN2PIN(v) ((v) & 0x1f)
struct sdmmc_config_t sdmmc_config[] =
{
#ifdef SANSA_FUZEPLUS
/* The Fuze+ uses pin #B0P8 for power */
{
.name = "microSD",
.flags = POWER_PIN | POWER_INVERTED | REMOVABLE,
.power_pin = PIN(0, 8),
.ssp = 1,
.mode = SD_MODE,
},
/* The Fuze+ uses pin #B1P29 for power */
{
.name = "eMMC",
.flags = POWER_PIN | POWER_INVERTED | WINDOW | POWER_DELAY,
.power_pin = PIN(1, 29),
.power_delay = HZ / 5, /* extra delay, to ramp up voltage? */
.ssp = 2,
.mode = MMC_MODE,
},
#elif defined(CREATIVE_ZENXFI2)
/* The Zen X-Fi2 uses pin B1P29 for power*/
{
.name = "microSD",
.flags = POWER_PIN | REMOVABLE | DETECT_INVERTED,
.power_pin = PIN(1, 29),
.ssp = 1,
.mode = SD_MODE,
},
#elif defined(CREATIVE_ZENXFI3)
{
.name = "internal/SD",
.flags = WINDOW,
.ssp = 2,
.mode = SD_MODE,
},
/* The Zen X-Fi3 uses pin #B0P07 for power*/
{
.name = "microSD",
.flags = POWER_PIN | POWER_INVERTED | REMOVABLE | POWER_DELAY,
.power_pin = PIN(0, 7),
.power_delay = HZ / 10, /* extra delay, to ramp up voltage? */
.ssp = 1,
.mode = SD_MODE,
},
#else
#error You need to write the sd/mmc config!
#endif
};
#define SDMMC_NUM_DRIVES (sizeof(sdmmc_config) / sizeof(sdmmc_config[0]))
#define SDMMC_CONF(drive) sdmmc_config[drive]
#define SDMMC_FLAGS(drive) SDMMC_CONF(drive).flags
#define SDMMC_SSP(drive) SDMMC_CONF(drive).ssp
#define SDMMC_MODE(drive) SDMMC_CONF(drive).mode
/* common */
static unsigned window_start[SDMMC_NUM_DRIVES];
static unsigned window_end[SDMMC_NUM_DRIVES];
static uint8_t aligned_buffer[SDMMC_NUM_DRIVES][512] CACHEALIGN_ATTR;
static tCardInfo sdmmc_card_info[SDMMC_NUM_DRIVES];
#define SDMMC_INFO(drive) sdmmc_card_info[drive]
#define SDMMC_RCA(drive) SDMMC_INFO(drive).rca
/* sd only */
#if CONFIG_STORAGE & STORAGE_SD
static long sd_stack[(DEFAULT_STACK_SIZE*2 + 0x200)/sizeof(long)];
static struct mutex sd_mutex;
static const char sd_thread_name[] = "sd";
static struct event_queue sd_queue;
static int sd_first_drive;
static unsigned _sd_num_drives;
static int _sd_last_disk_activity;
static int sd_map[SDMMC_NUM_DRIVES]; /* sd->sdmmc map */
#endif
/* mmc only */
#if CONFIG_STORAGE & STORAGE_MMC
static int mmc_first_drive;
static unsigned _mmc_num_drives;
static int _mmc_last_disk_activity;
static int mmc_map[SDMMC_NUM_DRIVES]; /* mmc->sdmmc map */
#endif
/* WARNING NOTE BUG FIXME
* There are three numbering schemes involved in the driver:
* - the sdmmc indexes into sdmmc_config[]
* - the sd drive indexes
* - the mmc drive indexes
* By convention, [drive] refers to a sdmmc index whereas sd_drive/mmc_drive
* refer to sd/mmc drive indexes. We keep two maps sd->sdmmc and mmc->sdmmc
* to find the sdmmc index from the sd or mmc one */
static void sdmmc_detect_callback(int ssp)
{
/* This is called only if the state was stable for 300ms - check state
* and post appropriate event. */
if(imx233_ssp_sdmmc_detect(ssp))
queue_broadcast(SYS_HOTSWAP_INSERTED, 0);
else
queue_broadcast(SYS_HOTSWAP_EXTRACTED, 0);
imx233_ssp_sdmmc_setup_detect(ssp, true, sdmmc_detect_callback, false,
imx233_ssp_sdmmc_is_detect_inverted(ssp));
}
static void sdmmc_power(int drive, bool on)
{
/* power chip if needed */
if(SDMMC_FLAGS(drive) & POWER_PIN)
{
int bank = PIN2BANK(SDMMC_CONF(drive).power_pin);
int pin = PIN2PIN(SDMMC_CONF(drive).power_pin);
imx233_pinctrl_acquire_pin(bank, pin, "sd/mmc power");
imx233_set_pin_function(bank, pin, PINCTRL_FUNCTION_GPIO);
imx233_enable_gpio_output(bank, pin, true);
if(SDMMC_FLAGS(drive) & POWER_INVERTED)
imx233_set_gpio_output(bank, pin, !on);
else
imx233_set_gpio_output(bank, pin, on);
}
if(SDMMC_FLAGS(drive) & POWER_DELAY)
sleep(SDMMC_CONF(drive).power_delay);
/* setup pins, never use alternatives pin on SSP1 because no device use it
* but this could be made a flag */
int bus_width = SDMMC_MODE(drive) == MMC_MODE ? 8 : 4;
if(SDMMC_SSP(drive) == 1)
imx233_ssp_setup_ssp1_sd_mmc_pins(on, bus_width, PINCTRL_DRIVE_4mA, false);
else
imx233_ssp_setup_ssp2_sd_mmc_pins(on, bus_width, PINCTRL_DRIVE_4mA);
}
#define MCI_NO_RESP 0
#define MCI_RESP (1<<0)
#define MCI_LONG_RESP (1<<1)
#define MCI_ACMD (1<<2)
#define MCI_NOCRC (1<<3)
#define MCI_BUSY (1<<4)
static bool send_sd_cmd(int drive, uint8_t cmd, uint32_t arg, uint32_t flags, uint32_t *resp)
{
if((flags & MCI_ACMD) && !send_sd_cmd(drive, SD_APP_CMD, SDMMC_RCA(drive), MCI_RESP, resp))
return false;
enum imx233_ssp_resp_t resp_type = (flags & MCI_LONG_RESP) ? SSP_LONG_RESP :
(flags & MCI_RESP) ? SSP_SHORT_RESP : SSP_NO_RESP;
enum imx233_ssp_error_t ret = imx233_ssp_sd_mmc_transfer(SDMMC_SSP(drive), cmd,
arg, resp_type, NULL, 0, !!(flags & MCI_BUSY), false, resp);
if(resp_type == SSP_LONG_RESP)
{
/* Our SD codes assume most significant word first, so reverse resp */
uint32_t tmp = resp[0];
resp[0] = resp[3];
resp[3] = tmp;
tmp = resp[1];
resp[1] = resp[2];
resp[2] = tmp;
}
return ret == SSP_SUCCESS;
}
static int wait_for_sd_tran_state(int drive)
{
unsigned long response;
unsigned int timeout = current_tick + 5*HZ;
int cmd_retry = 10;
while (1)
{
while(!send_sd_cmd(drive, SD_SEND_STATUS, SDMMC_RCA(drive), MCI_RESP, &response) && cmd_retry > 0)
cmd_retry--;
if(cmd_retry <= 0)
return -1;
if(((response >> 9) & 0xf) == SD_TRAN)
return 0;
if(TIME_AFTER(current_tick, timeout))
return -10 * ((response >> 9) & 0xf);
_sd_last_disk_activity = current_tick;
}
return 0;
}
#if CONFIG_STORAGE & STORAGE_SD
static int sdmmc_init_sd_card(int drive)
{
int ssp = SDMMC_SSP(drive);
sdmmc_power(drive, false);
sdmmc_power(drive, true);
imx233_ssp_start(ssp);
imx233_ssp_softreset(ssp);
imx233_ssp_set_mode(ssp, HW_SSP_CTRL1__SSP_MODE__SD_MMC);
/* SSPCLK @ 96MHz
* gives bitrate of 96000 / 240 / 1 = 400kHz */
imx233_ssp_set_timings(ssp, 240, 0, 0xffff);
imx233_ssp_sd_mmc_power_up_sequence(ssp);
imx233_ssp_set_bus_width(ssp, 1);
imx233_ssp_set_block_size(ssp, 9);
SDMMC_RCA(drive) = 0;
bool sd_v2 = false;
uint32_t resp;
long init_timeout;
/* go to idle state */
if(!send_sd_cmd(drive, SD_GO_IDLE_STATE, 0, MCI_NO_RESP, NULL))
return -1;
/* CMD8 Check for v2 sd card. Must be sent before using ACMD41
Non v2 cards will not respond to this command */
if(send_sd_cmd(drive, SD_SEND_IF_COND, 0x1AA, MCI_RESP, &resp))
if((resp & 0xFFF) == 0x1AA)
sd_v2 = true;
/* timeout for initialization is 1sec, from SD Specification 2.00 */
init_timeout = current_tick + HZ;
do
{
/* this timeout is the only valid error for this loop*/
if(TIME_AFTER(current_tick, init_timeout))
return -2;
/* ACMD41 For v2 cards set HCS bit[30] & send host voltage range to all */
if(!send_sd_cmd(drive, SD_APP_OP_COND, (0x00FF8000 | (sd_v2 ? 1<<30 : 0)),
MCI_ACMD|MCI_NOCRC|MCI_RESP, &SDMMC_INFO(drive).ocr))
return -100;
} while(!(SDMMC_INFO(drive).ocr & (1<<31)));
/* CMD2 send CID */
if(!send_sd_cmd(drive, SD_ALL_SEND_CID, 0, MCI_RESP|MCI_LONG_RESP, SDMMC_INFO(drive).cid))
return -3;
/* CMD3 send RCA */
if(!send_sd_cmd(drive, SD_SEND_RELATIVE_ADDR, 0, MCI_RESP, &SDMMC_INFO(drive).rca))
return -4;
/* Try to switch V2 cards to HS timings, non HS seem to ignore this */
if(sd_v2)
{
/* CMD7 w/rca: Select card to put it in TRAN state */
if(!send_sd_cmd(drive, SD_SELECT_CARD, SDMMC_RCA(drive), MCI_RESP, NULL))
return -5;
if(wait_for_sd_tran_state(drive))
return -6;
/* CMD6 */
if(!send_sd_cmd(drive, SD_SWITCH_FUNC, 0x80fffff1, MCI_NO_RESP, NULL))
return -7;
sleep(HZ/10);
/* go back to STBY state so we can read csd */
/* CMD7 w/rca=0: Deselect card to put it in STBY state */
if(!send_sd_cmd(drive, SD_DESELECT_CARD, 0, MCI_NO_RESP, NULL))
return -8;
}
/* CMD9 send CSD */
if(!send_sd_cmd(drive, SD_SEND_CSD, SDMMC_RCA(drive), MCI_RESP|MCI_LONG_RESP,
SDMMC_INFO(drive).csd))
return -9;
sd_parse_csd(&SDMMC_INFO(drive));
window_start[drive] = 0;
window_end[drive] = SDMMC_INFO(drive).numblocks;
/* SSPCLK @ 96MHz
* gives bitrate of 96 / 4 / 1 = 24MHz */
imx233_ssp_set_timings(ssp, 4, 0, 0xffff);
/* CMD7 w/rca: Select card to put it in TRAN state */
if(!send_sd_cmd(drive, SD_SELECT_CARD, SDMMC_RCA(drive), MCI_RESP, &resp))
return -12;
if(wait_for_sd_tran_state(drive) < 0)
return -13;
/* ACMD6: set bus width to 4-bit */
if(!send_sd_cmd(drive, SD_SET_BUS_WIDTH, 2, MCI_RESP|MCI_ACMD, &resp))
return -15;
/* ACMD42: disconnect the pull-up resistor on CD/DAT3 */
if(!send_sd_cmd(drive, SD_SET_CLR_CARD_DETECT, 0, MCI_RESP|MCI_ACMD, &resp))
return -17;
/* Switch to 4-bit */
imx233_ssp_set_bus_width(ssp, 4);
SDMMC_INFO(drive).initialized = 1;
return 0;
}
static int transfer_sd_sectors(int drive, unsigned long start, int count, void *buf, bool read)
{
int ret = 0;
uint32_t resp;
_sd_last_disk_activity = current_tick;
mutex_lock(&sd_mutex);
if(SDMMC_INFO(drive).initialized <= 0)
{
ret = sdmmc_init_sd_card(drive);
if(SDMMC_INFO(drive).initialized <= 0)
goto Lend;
}
/* check window */
start += window_start[drive];
if((start + count) > window_end[drive])
{
ret = -201;
goto Lend;
}
if(!send_sd_cmd(drive, SD_SELECT_CARD, SDMMC_RCA(drive), MCI_NO_RESP, NULL))
{
ret = -20;
goto Lend;
}
ret = wait_for_sd_tran_state(drive);
if(ret < 0)
goto Ldeselect;
while(count != 0)
{
/* FIXME implement this_count > 1 by using a sub-buffer of [sub] that is
* cache-aligned and then moving the data when possible. This way we could
* transfer much greater amount of data at once */
int this_count = 1;
/* Set bank_start to the correct unit (blocks or bytes) */
int bank_start = start;
if(!(SDMMC_INFO(drive).ocr & (1<<30))) /* not SDHC */
bank_start *= SD_BLOCK_SIZE;
if(!read)
memcpy(aligned_buffer[drive], buf, 512);
ret = imx233_ssp_sd_mmc_transfer(SDMMC_SSP(drive),
read ? SD_READ_MULTIPLE_BLOCK : SD_WRITE_MULTIPLE_BLOCK,
bank_start, SSP_SHORT_RESP, aligned_buffer[drive], this_count, false, read, &resp);
if(ret != SSP_SUCCESS)
break;
if(!send_sd_cmd(drive, SD_STOP_TRANSMISSION, 0, MCI_RESP|MCI_BUSY, &resp))
{
ret = -15;
break;
}
if(read)
memcpy(buf, aligned_buffer[drive], 512);
count -= this_count;
start += this_count;
buf += this_count * 512;
}
Ldeselect:
/* CMD7 w/rca =0 : deselects card & puts it in STBY state */
if(!send_sd_cmd(drive, SD_DESELECT_CARD, 0, MCI_NO_RESP, NULL))
ret = -23;
Lend:
mutex_unlock(&sd_mutex);
return ret;
}
#endif
#if CONFIG_STORAGE & STORAGE_MMC
static int transfer_mmc_sectors(int drive, unsigned long start, int count, void *buf, bool read)
{
/* check window */
start += window_start[drive];
if((start + count) > window_end[drive])
return -201;
int ret = 0;
uint32_t resp;
_mmc_last_disk_activity = current_tick;
do
{
/* FIXME implement this_count > 1 by using a sub-buffer of [sub] that is
* cache-aligned and then moving the data when possible. This way we could
* transfer much greater amount of data at once */
int this_count = 1;
if(!read)
memcpy(aligned_buffer[drive], buf, 512);
ret = imx233_ssp_sd_mmc_transfer(SDMMC_SSP(drive), read ? 17 : 24, start,
SSP_SHORT_RESP, aligned_buffer[drive], this_count, false, read, &resp);
if(read)
memcpy(buf, aligned_buffer[drive], 512);
count -= this_count;
start += this_count;
buf += this_count * 512;
}while(count != 0 && ret == SSP_SUCCESS);
return ret;
}
static int sdmmc_init_mmc_drive(int drive)
{
int ssp = SDMMC_SSP(drive);
// we can choose the RCA of mmc cards: pick drive
SDMMC_RCA(drive) = drive;
sdmmc_power(drive, false);
sdmmc_power(drive, true);
imx233_ssp_start(ssp);
imx233_ssp_softreset(ssp);
imx233_ssp_set_mode(ssp, HW_SSP_CTRL1__SSP_MODE__SD_MMC);
/* SSPCLK @ 96MHz
* gives bitrate of 96000 / 240 / 1 = 400kHz */
imx233_ssp_set_timings(ssp, 240, 0, 0xffff);
imx233_ssp_sd_mmc_power_up_sequence(ssp);
imx233_ssp_set_bus_width(ssp, 1);
imx233_ssp_set_block_size(ssp, 9);
/* go to idle state */
int ret = imx233_ssp_sd_mmc_transfer(ssp, 0, 0, SSP_NO_RESP, NULL, 0, false, false, NULL);
if(ret != 0)
return -1;
/* send op cond until the card respond with busy bit set; it must complete within 1sec */
unsigned timeout = current_tick + HZ;
do
{
uint32_t ocr;
ret = imx233_ssp_sd_mmc_transfer(ssp, 1, 0x40ff8000, SSP_SHORT_RESP, NULL, 0, false, false, &ocr);
if(ret == 0 && ocr & (1 << 31))
break;
}while(!TIME_AFTER(current_tick, timeout));
if(ret != 0)
return -2;
/* get CID */
uint32_t cid[4];
ret = imx233_ssp_sd_mmc_transfer(ssp, 2, 0, SSP_LONG_RESP, NULL, 0, false, false, cid);
if(ret != 0)
return -3;
/* Set RCA */
uint32_t status;
ret = imx233_ssp_sd_mmc_transfer(ssp, 3, SDMMC_RCA(drive) << 16, SSP_SHORT_RESP, NULL, 0, false, false, &status);
if(ret != 0)
return -4;
/* Select card */
ret = imx233_ssp_sd_mmc_transfer(ssp, 7, SDMMC_RCA(drive) << 16, SSP_SHORT_RESP, NULL, 0, false, false, &status);
if(ret != 0)
return -5;
/* Check TRAN state */
ret = imx233_ssp_sd_mmc_transfer(ssp, 13, SDMMC_RCA(drive) << 16, SSP_SHORT_RESP, NULL, 0, false, false, &status);
if(ret != 0)
return -6;
if(((status >> 9) & 0xf) != 4)
return -7;
/* Switch to 8-bit bus */
ret = imx233_ssp_sd_mmc_transfer(ssp, 6, 0x3b70200, SSP_SHORT_RESP, NULL, 0, true, false, &status);
if(ret != 0)
return -8;
/* switch error ? */
if(status & 0x80)
return -9;
imx233_ssp_set_bus_width(ssp, 8);
/* Switch to high speed mode */
ret = imx233_ssp_sd_mmc_transfer(ssp, 6, 0x3b90100, SSP_SHORT_RESP, NULL, 0, true, false, &status);
if(ret != 0)
return -10;
/* switch error ?*/
if(status & 0x80)
return -11;
/* SSPCLK @ 96MHz
* gives bitrate of 96 / 2 / 1 = 48MHz */
imx233_ssp_set_timings(ssp, 2, 0, 0xffff);
/* read extended CSD */
{
uint8_t ext_csd[512];
ret = imx233_ssp_sd_mmc_transfer(ssp, 8, 0, SSP_SHORT_RESP, aligned_buffer[drive], 1, true, true, &status);
if(ret != 0)
return -12;
memcpy(ext_csd, aligned_buffer[drive], 512);
uint32_t *sec_count = (void *)&ext_csd[212];
window_start[drive] = 0;
window_end[drive] = *sec_count;
}
return 0;
}
#endif
static int sdmmc_read_sectors(int drive, unsigned long start, int count, void* buf)
{
switch(SDMMC_MODE(drive))
{
#if CONFIG_STORAGE & STORAGE_SD
case SD_MODE: return transfer_sd_sectors(drive, start, count, buf, true);
#endif
#if CONFIG_STORAGE & STORAGE_MMC
case MMC_MODE: return transfer_mmc_sectors(drive, start, count, buf, true);
#endif
default: return -1;
}
}
static int sdmmc_write_sectors(int drive, unsigned long start, int count, const void* buf)
{
switch(SDMMC_MODE(drive))
{
#if CONFIG_STORAGE & STORAGE_SD
case SD_MODE: return transfer_sd_sectors(drive, start, count, (void *)buf, false);
#endif
#if CONFIG_STORAGE & STORAGE_MMC
case MMC_MODE: return transfer_mmc_sectors(drive, start, count, (void *)buf, false);
#endif
default: return -1;
}
}
static int sdmmc_init_drive(int drive)
{
int ret;
switch(SDMMC_MODE(drive))
{
#if CONFIG_STORAGE & STORAGE_SD
case SD_MODE: ret = sdmmc_init_sd_card(drive); break;
#endif
#if CONFIG_STORAGE & STORAGE_MMC
case MMC_MODE: ret = sdmmc_init_mmc_drive(drive); break;
#endif
default: ret = 0;
}
if(ret < 0)
return ret;
/* compute window */
if((SDMMC_FLAGS(drive) & WINDOW) && imx233_partitions_is_window_enabled())
{
uint8_t mbr[512];
int ret = sdmmc_read_sectors(IF_MD2(drive,) 0, 1, mbr);
if(ret)
panicf("Cannot read MBR: %d", ret);
ret = imx233_partitions_compute_window(mbr, &window_start[drive],
&window_end[drive]);
if(ret)
panicf("cannot compute partitions window: %d", ret);
if(SDMMC_MODE(drive) == SD_MODE)
SDMMC_INFO(drive).numblocks = window_end[drive] - window_start[drive];
}
return 0;
}
static void sd_thread(void) NORETURN_ATTR;
static void sd_thread(void)
{
struct queue_event ev;
while (1)
{
queue_wait_w_tmo(&sd_queue, &ev, HZ);
switch(ev.id)
{
case SYS_HOTSWAP_INSERTED:
case SYS_HOTSWAP_EXTRACTED:
{
int microsd_init = 1;
/* lock-out FAT activity first -
* prevent deadlocking via disk_mount that
* would cause a reverse-order attempt with
* another thread */
fat_lock();
/* lock-out card activity - direct calls
* into driver that bypass the fat cache */
mutex_lock(&sd_mutex);
/* We now have exclusive control of fat cache and sd.
* Release "by force", ensure file
* descriptors aren't leaked and any busy
* ones are invalid if mounting. */
for(unsigned sd_drive = 0; sd_drive < _sd_num_drives; sd_drive++)
{
/* Skip non-removable drivers */
if(!sd_removable(sd_drive))
continue;
disk_unmount(sd_first_drive + sd_drive);
/* Force card init for new card, re-init for re-inserted one or
* clear if the last attempt to init failed with an error. */
SDMMC_INFO(sd_map[sd_drive]).initialized = 0;
if(ev.id == SYS_HOTSWAP_INSERTED)
{
microsd_init = sdmmc_init_drive(sd_map[sd_drive]);
if(microsd_init < 0) /* initialisation failed */
panicf("%s init failed : %d", SDMMC_CONF(sd_map[sd_drive]).name, microsd_init);
microsd_init = disk_mount(sd_first_drive + sd_drive); /* 0 if fail */
}
/*
* Mount succeeded, or this was an EXTRACTED event,
* in both cases notify the system about the changed filesystems
*/
if(microsd_init)
queue_broadcast(SYS_FS_CHANGED, 0);
}
/* Access is now safe */
mutex_unlock(&sd_mutex);
fat_unlock();
break;
}
case SYS_TIMEOUT:
if(!TIME_BEFORE(current_tick, _sd_last_disk_activity + 3 * HZ))
sd_enable(false);
break;
case SYS_USB_CONNECTED:
usb_acknowledge(SYS_USB_CONNECTED_ACK);
/* Wait until the USB cable is extracted again */
usb_wait_for_disconnect(&sd_queue);
break;
}
}
}
int sdmmc_init(void)
{
static int is_initialized = false;
if(is_initialized)
return 0;
is_initialized = true;
#if CONFIG_STORAGE & STORAGE_SD
mutex_init(&sd_mutex);
queue_init(&sd_queue, true);
create_thread(sd_thread, sd_stack, sizeof(sd_stack), 0,
sd_thread_name IF_PRIO(, PRIORITY_USER_INTERFACE) IF_COP(, CPU));
#endif
for(unsigned drive = 0; drive < SDMMC_NUM_DRIVES; drive++)
{
if(SDMMC_FLAGS(drive) & REMOVABLE)
imx233_ssp_sdmmc_setup_detect(SDMMC_SSP(drive), true, sdmmc_detect_callback,
false, SDMMC_FLAGS(drive) & DETECT_INVERTED);
}
return 0;
}
static int sdmmc_present(int drive)
{
if(SDMMC_FLAGS(drive) & REMOVABLE)
return imx233_ssp_sdmmc_detect(SDMMC_SSP(drive));
else
return true;
}
static inline int sdmmc_removable(int drive)
{
return SDMMC_FLAGS(drive) & REMOVABLE;
}
#if CONFIG_STORAGE & STORAGE_SD
int sd_init(void)
{
int ret = sdmmc_init();
if(ret < 0) return ret;
_sd_num_drives = 0;
for(unsigned drive = 0; drive < SDMMC_NUM_DRIVES; drive++)
if(SDMMC_MODE(drive) == SD_MODE)
sd_map[_sd_num_drives++] = drive;
return 0;
}
tCardInfo *card_get_info_target(int sd_card_no)
{
return &SDMMC_INFO(sd_map[sd_card_no]);
}
int sd_num_drives(int first_drive)
{
sd_first_drive = first_drive;
return _sd_num_drives;
}
bool sd_present(IF_MV_NONVOID(int sd_drive))
{
return sdmmc_present(sd_map[sd_drive]);
}
bool sd_removable(IF_MV_NONVOID(int sd_drive))
{
return sdmmc_removable(sd_map[sd_drive]);
}
long sd_last_disk_activity(void)
{
return _sd_last_disk_activity;
}
void sd_enable(bool on)
{
(void) on;
}
int sd_read_sectors(IF_MD2(int sd_drive,) unsigned long start, int count, void *buf)
{
return sdmmc_read_sectors(sd_map[sd_drive], start, count, buf);
}
int sd_write_sectors(IF_MD2(int sd_drive,) unsigned long start, int count, const void* buf)
{
return sdmmc_write_sectors(sd_map[sd_drive], start, count, buf);
}
#endif
#if CONFIG_STORAGE & STORAGE_MMC
int mmc_init(void)
{
int ret = sdmmc_init();
if(ret < 0) return ret;
_sd_num_drives = 0;
for(unsigned drive = 0; drive < SDMMC_NUM_DRIVES; drive++)
if(SDMMC_MODE(drive) == MMC_MODE)
{
mmc_map[_mmc_num_drives++] = drive;
sdmmc_init_drive(drive);
}
return 0;
}
void mmc_get_info(IF_MD2(int mmc_drive,) struct storage_info *info)
{
int drive = mmc_map[mmc_drive];
info->sector_size = 512;
info->num_sectors = window_end[drive] - window_start[drive];
info->vendor = "Rockbox";
info->product = "Internal Storage";
info->revision = "0.00";
}
int mmc_num_drives(int first_drive)
{
mmc_first_drive = first_drive;
return _mmc_num_drives;
}
bool mmc_present(IF_MV_NONVOID(int mmc_drive))
{
return sdmmc_present(mmc_map[mmc_drive]);
}
bool mmc_removable(IF_MV_NONVOID(int mmc_drive))
{
return sdmmc_removable(mmc_map[mmc_drive]);
}
long mmc_last_disk_activity(void)
{
return _mmc_last_disk_activity;
}
void mmc_enable(bool on)
{
(void) on;
}
void mmc_sleep(void)
{
}
void mmc_sleepnow(void)
{
}
bool mmc_disk_is_active(void)
{
return false;
}
bool mmc_usb_active(void)
{
return mmc_disk_is_active();
}
int mmc_soft_reset(void)
{
return 0;
}
int mmc_flush(void)
{
return 0;
}
void mmc_spin(void)
{
}
void mmc_spindown(int seconds)
{
(void) seconds;
}
int mmc_spinup_time(void)
{
return 0;
}
int mmc_read_sectors(IF_MD2(int mmc_drive,) unsigned long start, int count, void *buf)
{
return sdmmc_read_sectors(mmc_map[mmc_drive], start, count, buf);
}
int mmc_write_sectors(IF_MD2(int mmc_drive,) unsigned long start, int count, const void* buf)
{
return sdmmc_write_sectors(mmc_map[mmc_drive], start, count, buf);
}
#endif