1335 lines
46 KiB
C
1335 lines
46 KiB
C
|
/* inflate.c -- zlib decompression
|
||
|
* Copyright (C) 1995-2005 Mark Adler
|
||
|
* For conditions of distribution and use, see copyright notice in zlib.h
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Change history:
|
||
|
*
|
||
|
* 1.2.beta0 24 Nov 2002
|
||
|
* - First version -- complete rewrite of inflate to simplify code, avoid
|
||
|
* creation of window when not needed, minimize use of window when it is
|
||
|
* needed, make inffast.c even faster, implement gzip decoding, and to
|
||
|
* improve code readability and style over the previous zlib inflate code
|
||
|
*
|
||
|
* 1.2.beta1 25 Nov 2002
|
||
|
* - Use pointers for available input and output checking in inffast.c
|
||
|
* - Remove input and output counters in inffast.c
|
||
|
* - Change inffast.c entry and loop from avail_in >= 7 to >= 6
|
||
|
* - Remove unnecessary second byte pull from length extra in inffast.c
|
||
|
* - Unroll direct copy to three copies per loop in inffast.c
|
||
|
*
|
||
|
* 1.2.beta2 4 Dec 2002
|
||
|
* - Change external routine names to reduce potential conflicts
|
||
|
* - Correct filename to inffixed.h for fixed tables in inflate.c
|
||
|
* - Make hbuf[] unsigned char to match parameter type in inflate.c
|
||
|
* - Change strm->next_out[-state.offset] to *(strm->next_out - state.offset)
|
||
|
* to avoid negation problem on Alphas (64 bit) in inflate.c
|
||
|
*
|
||
|
* 1.2.beta3 22 Dec 2002
|
||
|
* - Add comments on state.bits assertion in inffast.c
|
||
|
* - Add comments on op field in inftrees.h
|
||
|
* - Fix bug in reuse of allocated window after inflateReset()
|
||
|
* - Remove bit fields--back to byte structure for speed
|
||
|
* - Remove distance extra == 0 check in inflate_fast()--only helps for lengths
|
||
|
* - Change post-increments to pre-increments in inflate_fast(), PPC biased?
|
||
|
* - Add compile time option, POSTINC, to use post-increments instead (Intel?)
|
||
|
* - Make MATCH copy in inflate() much faster for when inflate_fast() not used
|
||
|
* - Use local copies of stream next and avail values, as well as local bit
|
||
|
* buffer and bit count in inflate()--for speed when inflate_fast() not used
|
||
|
*
|
||
|
* 1.2.beta4 1 Jan 2003
|
||
|
* - Split ptr - 257 statements in inflate_table() to avoid compiler warnings
|
||
|
* - Move a comment on output buffer sizes from inffast.c to inflate.c
|
||
|
* - Add comments in inffast.c to introduce the inflate_fast() routine
|
||
|
* - Rearrange window copies in inflate_fast() for speed and simplification
|
||
|
* - Unroll last copy for window match in inflate_fast()
|
||
|
* - Use local copies of window variables in inflate_fast() for speed
|
||
|
* - Pull out common write == 0 case for speed in inflate_fast()
|
||
|
* - Make op and len in inflate_fast() unsigned for consistency
|
||
|
* - Add FAR to lcode and dcode declarations in inflate_fast()
|
||
|
* - Simplified bad distance check in inflate_fast()
|
||
|
* - Added inflateBackInit(), inflateBack(), and inflateBackEnd() in new
|
||
|
* source file infback.c to provide a call-back interface to inflate for
|
||
|
* programs like gzip and unzip -- uses window as output buffer to avoid
|
||
|
* window copying
|
||
|
*
|
||
|
* 1.2.beta5 1 Jan 2003
|
||
|
* - Improved inflateBack() interface to allow the caller to provide initial
|
||
|
* input in strm.
|
||
|
* - Fixed stored blocks bug in inflateBack()
|
||
|
*
|
||
|
* 1.2.beta6 4 Jan 2003
|
||
|
* - Added comments in inffast.c on effectiveness of POSTINC
|
||
|
* - Typecasting all around to reduce compiler warnings
|
||
|
* - Changed loops from while (1) or do {} while (1) to for (;;), again to
|
||
|
* make compilers happy
|
||
|
* - Changed type of window in inflateBackInit() to unsigned char *
|
||
|
*
|
||
|
* 1.2.beta7 27 Jan 2003
|
||
|
* - Changed many types to unsigned or unsigned short to avoid warnings
|
||
|
* - Added inflateCopy() function
|
||
|
*
|
||
|
* 1.2.0 9 Mar 2003
|
||
|
* - Changed inflateBack() interface to provide separate opaque descriptors
|
||
|
* for the in() and out() functions
|
||
|
* - Changed inflateBack() argument and in_func typedef to swap the length
|
||
|
* and buffer address return values for the input function
|
||
|
* - Check next_in and next_out for Z_NULL on entry to inflate()
|
||
|
*
|
||
|
* The history for versions after 1.2.0 are in ChangeLog in zlib distribution.
|
||
|
*/
|
||
|
|
||
|
#include "zutil.h"
|
||
|
#include "inftrees.h"
|
||
|
#include "inflate.h"
|
||
|
#include "inffast.h"
|
||
|
#include "plugin.h"
|
||
|
#include "png.h"
|
||
|
|
||
|
#ifdef MAKEFIXED
|
||
|
# ifndef BUILDFIXED
|
||
|
# define BUILDFIXED
|
||
|
# endif
|
||
|
#endif
|
||
|
|
||
|
struct inflate_state state;
|
||
|
|
||
|
/* function prototypes */
|
||
|
local void fixedtables OF((void));
|
||
|
local int updatewindow OF((z_streamp strm, unsigned out));
|
||
|
#ifdef BUILDFIXED
|
||
|
void makefixed OF((void));
|
||
|
#endif
|
||
|
local unsigned syncsearch OF((unsigned FAR *have, unsigned char FAR *buf,
|
||
|
unsigned len));
|
||
|
|
||
|
int ZEXPORT inflateReset(strm)
|
||
|
z_streamp strm;
|
||
|
{
|
||
|
//struct inflate_state FAR *state;
|
||
|
|
||
|
if (strm == Z_NULL) return Z_STREAM_ERROR;
|
||
|
//state = strm->state;
|
||
|
strm->total_in = strm->total_out = state.total = 0;
|
||
|
strm->msg = Z_NULL;
|
||
|
strm->adler = 1; /* to support ill-conceived Java test suite */
|
||
|
state.mode = HEAD;
|
||
|
state.last = 0;
|
||
|
state.havedict = 0;
|
||
|
state.dmax = 32768U;
|
||
|
state.head = Z_NULL;
|
||
|
state.wsize = 0;
|
||
|
state.whave = 0;
|
||
|
state.write = 0;
|
||
|
state.hold = 0;
|
||
|
state.bits = 0;
|
||
|
state.lencode = state.distcode = state.next = state.codes;
|
||
|
//DEBUGF("inflate: reset\n");
|
||
|
return Z_OK;
|
||
|
}
|
||
|
|
||
|
int ZEXPORT inflatePrime(strm, bits, value)
|
||
|
z_streamp strm;
|
||
|
int bits;
|
||
|
int value;
|
||
|
{
|
||
|
//struct inflate_state FAR *state;
|
||
|
|
||
|
if (strm == Z_NULL) return Z_STREAM_ERROR;
|
||
|
//state = (struct inflate_state FAR *)strm->state;
|
||
|
if (bits > 16 || state.bits + bits > 32) return Z_STREAM_ERROR;
|
||
|
value &= (1L << bits) - 1;
|
||
|
state.hold += value << state.bits;
|
||
|
state.bits += bits;
|
||
|
return Z_OK;
|
||
|
}
|
||
|
|
||
|
int ZEXPORT inflateInit2_(strm, windowBits, version, stream_size)
|
||
|
z_streamp strm;
|
||
|
int windowBits;
|
||
|
const char *version;
|
||
|
int stream_size;
|
||
|
{
|
||
|
//struct inflate_state FAR *state;
|
||
|
|
||
|
if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
|
||
|
stream_size != (int)(sizeof(z_stream)))
|
||
|
return Z_VERSION_ERROR;
|
||
|
if (strm == Z_NULL) return Z_STREAM_ERROR;
|
||
|
strm->msg = Z_NULL; /* in case we return an error */
|
||
|
//if (strm->zalloc == (alloc_func)0) {
|
||
|
// strm->zalloc = zcalloc;
|
||
|
// strm->opaque = (voidpf)0;
|
||
|
//}
|
||
|
//if (strm->zfree == (free_func)0) strm->zfree = zcfree;
|
||
|
//state = (struct inflate_state FAR *)
|
||
|
// ZALLOC(strm, 1, sizeof(struct inflate_state));
|
||
|
//if (state == Z_NULL) return Z_MEM_ERROR;
|
||
|
//DEBUGF("inflate: allocated\n");
|
||
|
//strm->state = (struct internal_state FAR *)state;
|
||
|
if (windowBits < 0) {
|
||
|
state.wrap = 0;
|
||
|
windowBits = -windowBits;
|
||
|
}
|
||
|
else {
|
||
|
state.wrap = (windowBits >> 4) + 1;
|
||
|
#ifdef GUNZIP
|
||
|
if (windowBits < 48) windowBits &= 15;
|
||
|
#endif
|
||
|
}
|
||
|
if (windowBits < 8 || windowBits > 15) {
|
||
|
//ZFREE(strm, state);
|
||
|
//strm->state = Z_NULL;
|
||
|
return Z_STREAM_ERROR;
|
||
|
}
|
||
|
state.wbits = (unsigned)windowBits;
|
||
|
state.window = Z_NULL;
|
||
|
return inflateReset(strm);
|
||
|
}
|
||
|
|
||
|
int ZEXPORT inflateInit_(strm, version, stream_size)
|
||
|
z_streamp strm;
|
||
|
const char *version;
|
||
|
int stream_size;
|
||
|
{
|
||
|
return inflateInit2_(strm, DEF_WBITS, version, stream_size);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Return state with length and distance decoding tables and index sizes set to
|
||
|
fixed code decoding. Normally this returns fixed tables from inffixed.h.
|
||
|
If BUILDFIXED is defined, then instead this routine builds the tables the
|
||
|
first time it's called, and returns those tables the first time and
|
||
|
thereafter. This reduces the size of the code by about 2K bytes, in
|
||
|
exchange for a little execution time. However, BUILDFIXED should not be
|
||
|
used for threaded applications, since the rewriting of the tables and virgin
|
||
|
may not be thread-safe.
|
||
|
*/
|
||
|
local void fixedtables(void)
|
||
|
//struct inflate_state FAR *state;
|
||
|
{
|
||
|
#ifdef BUILDFIXED
|
||
|
static int virgin = 1;
|
||
|
static code *lenfix, *distfix;
|
||
|
static code fixed[544];
|
||
|
|
||
|
/* build fixed huffman tables if first call (may not be thread safe) */
|
||
|
if (virgin) {
|
||
|
unsigned sym, bits;
|
||
|
static code *next;
|
||
|
|
||
|
/* literal/length table */
|
||
|
sym = 0;
|
||
|
while (sym < 144) state.lens[sym++] = 8;
|
||
|
while (sym < 256) state.lens[sym++] = 9;
|
||
|
while (sym < 280) state.lens[sym++] = 7;
|
||
|
while (sym < 288) state.lens[sym++] = 8;
|
||
|
next = fixed;
|
||
|
lenfix = next;
|
||
|
bits = 9;
|
||
|
inflate_table(LENS, state.lens, 288, &(next), &(bits), state.work);
|
||
|
|
||
|
/* distance table */
|
||
|
sym = 0;
|
||
|
while (sym < 32) state.lens[sym++] = 5;
|
||
|
distfix = next;
|
||
|
bits = 5;
|
||
|
inflate_table(DISTS, state.lens, 32, &(next), &(bits), state.work);
|
||
|
|
||
|
/* do this just once */
|
||
|
virgin = 0;
|
||
|
}
|
||
|
#else /* !BUILDFIXED */
|
||
|
# include "inffixed.h"
|
||
|
#endif /* BUILDFIXED */
|
||
|
state.lencode = lenfix;
|
||
|
state.lenbits = 9;
|
||
|
state.distcode = distfix;
|
||
|
state.distbits = 5;
|
||
|
}
|
||
|
|
||
|
#ifdef MAKEFIXED
|
||
|
#include <stdio.h>
|
||
|
|
||
|
/*
|
||
|
Write out the inffixed.h that is #include'd above. Defining MAKEFIXED also
|
||
|
defines BUILDFIXED, so the tables are built on the fly. makefixed() writes
|
||
|
those tables to stdout, which would be piped to inffixed.h. A small program
|
||
|
can simply call makefixed to do this:
|
||
|
|
||
|
void makefixed(void);
|
||
|
|
||
|
int main(void)
|
||
|
{
|
||
|
makefixed();
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
Then that can be linked with zlib built with MAKEFIXED defined and run:
|
||
|
|
||
|
a.out > inffixed.h
|
||
|
*/
|
||
|
void makefixed()
|
||
|
{
|
||
|
unsigned low, size;
|
||
|
struct inflate_state state;
|
||
|
|
||
|
fixedtables(&state);
|
||
|
puts(" /* inffixed.h -- table for decoding fixed codes");
|
||
|
puts(" * Generated automatically by makefixed().");
|
||
|
puts(" */");
|
||
|
puts("");
|
||
|
puts(" /* WARNING: this file should *not* be used by applications.");
|
||
|
puts(" It is part of the implementation of this library and is");
|
||
|
puts(" subject to change. Applications should only use zlib.h.");
|
||
|
puts(" */");
|
||
|
puts("");
|
||
|
size = 1U << 9;
|
||
|
printf(" static const code lenfix[%u] = {", size);
|
||
|
low = 0;
|
||
|
for (;;) {
|
||
|
if ((low % 7) == 0) printf("\n ");
|
||
|
printf("{%u,%u,%d}", state.lencode[low].op, state.lencode[low].bits,
|
||
|
state.lencode[low].val);
|
||
|
if (++low == size) break;
|
||
|
putchar(',');
|
||
|
}
|
||
|
puts("\n };");
|
||
|
size = 1U << 5;
|
||
|
printf("\n static const code distfix[%u] = {", size);
|
||
|
low = 0;
|
||
|
for (;;) {
|
||
|
if ((low % 6) == 0) printf("\n ");
|
||
|
printf("{%u,%u,%d}", state.distcode[low].op, state.distcode[low].bits,
|
||
|
state.distcode[low].val);
|
||
|
if (++low == size) break;
|
||
|
putchar(',');
|
||
|
}
|
||
|
puts("\n };");
|
||
|
}
|
||
|
#endif /* MAKEFIXED */
|
||
|
|
||
|
/*
|
||
|
Update the window with the last wsize (normally 32K) bytes written before
|
||
|
returning. If window does not exist yet, create it. This is only called
|
||
|
when a window is already in use, or when output has been written during this
|
||
|
inflate call, but the end of the deflate stream has not been reached yet.
|
||
|
It is also called to create a window for dictionary data when a dictionary
|
||
|
is loaded.
|
||
|
|
||
|
Providing output buffers larger than 32K to inflate() should provide a speed
|
||
|
advantage, since only the last 32K of output is copied to the sliding window
|
||
|
upon return from inflate(), and since all distances after the first 32K of
|
||
|
output will fall in the output data, making match copies simpler and faster.
|
||
|
The advantage may be dependent on the size of the processor's data caches.
|
||
|
*/
|
||
|
local int updatewindow(strm, out)
|
||
|
z_streamp strm;
|
||
|
unsigned out;
|
||
|
{
|
||
|
//struct inflate_state FAR *state;
|
||
|
unsigned copy, dist;
|
||
|
|
||
|
//state = (struct inflate_state FAR *)strm->state;
|
||
|
|
||
|
/* if it hasn't been done already, allocate space for the window */
|
||
|
if (state.window == Z_NULL) {
|
||
|
state.window = (unsigned char FAR *)
|
||
|
ZALLOC(strm, 1U << state.wbits,
|
||
|
sizeof(unsigned char));
|
||
|
if (state.window == Z_NULL) return 1;
|
||
|
}
|
||
|
|
||
|
/* if window not in use yet, initialize */
|
||
|
if (state.wsize == 0) {
|
||
|
state.wsize = 1U << state.wbits;
|
||
|
state.write = 0;
|
||
|
state.whave = 0;
|
||
|
}
|
||
|
|
||
|
/* copy state.wsize or less output bytes into the circular window */
|
||
|
copy = out - strm->avail_out;
|
||
|
if (copy >= state.wsize) {
|
||
|
zmemcpy(state.window, strm->next_out - state.wsize, state.wsize);
|
||
|
state.write = 0;
|
||
|
state.whave = state.wsize;
|
||
|
}
|
||
|
else {
|
||
|
dist = state.wsize - state.write;
|
||
|
if (dist > copy) dist = copy;
|
||
|
zmemcpy(state.window + state.write, strm->next_out - copy, dist);
|
||
|
copy -= dist;
|
||
|
if (copy) {
|
||
|
zmemcpy(state.window, strm->next_out - copy, copy);
|
||
|
state.write = copy;
|
||
|
state.whave = state.wsize;
|
||
|
}
|
||
|
else {
|
||
|
state.write += dist;
|
||
|
if (state.write == state.wsize) state.write = 0;
|
||
|
if (state.whave < state.wsize) state.whave += dist;
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Macros for inflate(): */
|
||
|
|
||
|
/* check function to use adler32() for zlib or crc32() for gzip */
|
||
|
#ifdef GUNZIP
|
||
|
# define UPDATE(check, buf, len) \
|
||
|
(state.flags ? crc32(check, buf, len) : adler32(check, buf, len))
|
||
|
#else
|
||
|
# define UPDATE(check, buf, len) adler32(check, buf, len)
|
||
|
#endif
|
||
|
|
||
|
/* check macros for header crc */
|
||
|
#ifdef GUNZIP
|
||
|
# define CRC2(check, word) \
|
||
|
do { \
|
||
|
hbuf[0] = (unsigned char)(word); \
|
||
|
hbuf[1] = (unsigned char)((word) >> 8); \
|
||
|
check = crc32(check, hbuf, 2); \
|
||
|
} while (0)
|
||
|
|
||
|
# define CRC4(check, word) \
|
||
|
do { \
|
||
|
hbuf[0] = (unsigned char)(word); \
|
||
|
hbuf[1] = (unsigned char)((word) >> 8); \
|
||
|
hbuf[2] = (unsigned char)((word) >> 16); \
|
||
|
hbuf[3] = (unsigned char)((word) >> 24); \
|
||
|
check = crc32(check, hbuf, 4); \
|
||
|
} while (0)
|
||
|
#endif
|
||
|
|
||
|
/* Load registers with state in inflate() for speed */
|
||
|
#define LOAD() \
|
||
|
do { \
|
||
|
put = strm->next_out; \
|
||
|
left = strm->avail_out; \
|
||
|
next = strm->next_in; \
|
||
|
have = strm->avail_in; \
|
||
|
hold = state.hold; \
|
||
|
bits = state.bits; \
|
||
|
} while (0)
|
||
|
|
||
|
/* Restore state from registers in inflate() */
|
||
|
#define RESTORE() \
|
||
|
do { \
|
||
|
strm->next_out = put; \
|
||
|
strm->avail_out = left; \
|
||
|
strm->next_in = next; \
|
||
|
strm->avail_in = have; \
|
||
|
state.hold = hold; \
|
||
|
state.bits = bits; \
|
||
|
} while (0)
|
||
|
|
||
|
/* Clear the input bit accumulator */
|
||
|
#define INITBITS() \
|
||
|
do { \
|
||
|
hold = 0; \
|
||
|
bits = 0; \
|
||
|
} while (0)
|
||
|
|
||
|
/* Get a byte of input into the bit accumulator, or return from inflate()
|
||
|
if there is no input available. */
|
||
|
#define PULLBYTE() \
|
||
|
do { \
|
||
|
if (have == 0) goto inf_leave; \
|
||
|
have--; \
|
||
|
hold += (unsigned long)(*next++) << bits; \
|
||
|
bits += 8; \
|
||
|
} while (0)
|
||
|
|
||
|
/* Assure that there are at least n bits in the bit accumulator. If there is
|
||
|
not enough available input to do that, then return from inflate(). */
|
||
|
#define NEEDBITS(n) \
|
||
|
do { \
|
||
|
while (bits < (unsigned)(n)) \
|
||
|
PULLBYTE(); \
|
||
|
} while (0)
|
||
|
|
||
|
/* Return the low n bits of the bit accumulator (n < 16) */
|
||
|
#define BITS(n) \
|
||
|
((unsigned)hold & ((1U << (n)) - 1))
|
||
|
|
||
|
/* Remove n bits from the bit accumulator */
|
||
|
#define DROPBITS(n) \
|
||
|
do { \
|
||
|
hold >>= (n); \
|
||
|
bits -= (unsigned)(n); \
|
||
|
} while (0)
|
||
|
|
||
|
/* Remove zero to seven bits as needed to go to a byte boundary */
|
||
|
#define BYTEBITS() \
|
||
|
do { \
|
||
|
hold >>= bits & 7; \
|
||
|
bits -= bits & 7; \
|
||
|
} while (0)
|
||
|
|
||
|
/* Reverse the bytes in a 32-bit value */
|
||
|
#define REVERSE(q) \
|
||
|
((((q) >> 24) & 0xff) + (((q) >> 8) & 0xff00) + \
|
||
|
(((q) & 0xff00) << 8) + (((q) & 0xff) << 24))
|
||
|
|
||
|
/*
|
||
|
inflate() uses a state machine to process as much input data and generate as
|
||
|
much output data as possible before returning. The state machine is
|
||
|
structured roughly as follows:
|
||
|
|
||
|
for (;;) switch (state) {
|
||
|
...
|
||
|
case STATEn:
|
||
|
if (not enough input data or output space to make progress)
|
||
|
return;
|
||
|
... make progress ...
|
||
|
state = STATEm;
|
||
|
break;
|
||
|
...
|
||
|
}
|
||
|
|
||
|
so when inflate() is called again, the same case is attempted again, and
|
||
|
if the appropriate resources are provided, the machine proceeds to the
|
||
|
next state. The NEEDBITS() macro is usually the way the state evaluates
|
||
|
whether it can proceed or should return. NEEDBITS() does the return if
|
||
|
the requested bits are not available. The typical use of the BITS macros
|
||
|
is:
|
||
|
|
||
|
NEEDBITS(n);
|
||
|
... do something with BITS(n) ...
|
||
|
DROPBITS(n);
|
||
|
|
||
|
where NEEDBITS(n) either returns from inflate() if there isn't enough
|
||
|
input left to load n bits into the accumulator, or it continues. BITS(n)
|
||
|
gives the low n bits in the accumulator. When done, DROPBITS(n) drops
|
||
|
the low n bits off the accumulator. INITBITS() clears the accumulator
|
||
|
and sets the number of available bits to zero. BYTEBITS() discards just
|
||
|
enough bits to put the accumulator on a byte boundary. After BYTEBITS()
|
||
|
and a NEEDBITS(8), then BITS(8) would return the next byte in the stream.
|
||
|
|
||
|
NEEDBITS(n) uses PULLBYTE() to get an available byte of input, or to return
|
||
|
if there is no input available. The decoding of variable length codes uses
|
||
|
PULLBYTE() directly in order to pull just enough bytes to decode the next
|
||
|
code, and no more.
|
||
|
|
||
|
Some states loop until they get enough input, making sure that enough
|
||
|
state information is maintained to continue the loop where it left off
|
||
|
if NEEDBITS() returns in the loop. For example, want, need, and keep
|
||
|
would all have to actually be part of the saved state in case NEEDBITS()
|
||
|
returns:
|
||
|
|
||
|
case STATEw:
|
||
|
while (want < need) {
|
||
|
NEEDBITS(n);
|
||
|
keep[want++] = BITS(n);
|
||
|
DROPBITS(n);
|
||
|
}
|
||
|
state = STATEx;
|
||
|
case STATEx:
|
||
|
|
||
|
As shown above, if the next state is also the next case, then the break
|
||
|
is omitted.
|
||
|
|
||
|
A state may also return if there is not enough output space available to
|
||
|
complete that state. Those states are copying stored data, writing a
|
||
|
literal byte, and copying a matching string.
|
||
|
|
||
|
When returning, a "goto inf_leave" is used to update the total counters,
|
||
|
update the check value, and determine whether any progress has been made
|
||
|
during that inflate() call in order to return the proper return code.
|
||
|
Progress is defined as a change in either strm->avail_in or strm->avail_out.
|
||
|
When there is a window, goto inf_leave will update the window with the last
|
||
|
output written. If a goto inf_leave occurs in the middle of decompression
|
||
|
and there is no window currently, goto inf_leave will create one and copy
|
||
|
output to the window for the next call of inflate().
|
||
|
|
||
|
In this implementation, the flush parameter of inflate() only affects the
|
||
|
return code (per zlib.h). inflate() always writes as much as possible to
|
||
|
strm->next_out, given the space available and the provided input--the effect
|
||
|
documented in zlib.h of Z_SYNC_FLUSH. Furthermore, inflate() always defers
|
||
|
the allocation of and copying into a sliding window until necessary, which
|
||
|
provides the effect documented in zlib.h for Z_FINISH when the entire input
|
||
|
stream available. So the only thing the flush parameter actually does is:
|
||
|
when flush is set to Z_FINISH, inflate() cannot return Z_OK. Instead it
|
||
|
will return Z_BUF_ERROR if it has not reached the end of the stream.
|
||
|
*/
|
||
|
|
||
|
extern void cb_progress(int current, int total);
|
||
|
|
||
|
int ZEXPORT inflate(strm, flush)
|
||
|
z_streamp strm;
|
||
|
int flush;
|
||
|
{
|
||
|
//struct inflate_state FAR *state;
|
||
|
unsigned char FAR *next; /* next input */
|
||
|
unsigned char FAR *put; /* next output */
|
||
|
unsigned have, left; /* available input and output */
|
||
|
unsigned long hold; /* bit buffer */
|
||
|
unsigned bits; /* bits in bit buffer */
|
||
|
unsigned in, out; /* save starting available input and output */
|
||
|
unsigned copy; /* number of stored or match bytes to copy */
|
||
|
unsigned char FAR *from; /* where to copy match bytes from */
|
||
|
code this; /* current decoding table entry */
|
||
|
code last; /* parent table entry */
|
||
|
unsigned len; /* length to copy for repeats, bits to drop */
|
||
|
int ret; /* return code */
|
||
|
#ifdef GUNZIP
|
||
|
unsigned char hbuf[4]; /* buffer for gzip header crc calculation */
|
||
|
#endif
|
||
|
static const unsigned short order[19] = /* permutation of code lengths */
|
||
|
{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
|
||
|
|
||
|
if (strm == Z_NULL || strm->next_out == Z_NULL ||
|
||
|
(strm->next_in == Z_NULL && strm->avail_in != 0))
|
||
|
return Z_STREAM_ERROR;
|
||
|
|
||
|
uInt insize = strm->avail_in;
|
||
|
|
||
|
//state = (struct inflate_state FAR *)strm->state;
|
||
|
if (state.mode == TYPE) state.mode = TYPEDO; /* skip check */
|
||
|
LOAD();
|
||
|
in = have;
|
||
|
out = left;
|
||
|
ret = Z_OK;
|
||
|
for (;;) {
|
||
|
switch (state.mode) {
|
||
|
case HEAD:
|
||
|
if (state.wrap == 0) {
|
||
|
state.mode = TYPEDO;
|
||
|
break;
|
||
|
}
|
||
|
NEEDBITS(16);
|
||
|
#ifdef GUNZIP
|
||
|
if ((state.wrap & 2) && hold == 0x8b1f) { /* gzip header */
|
||
|
state.check = crc32(0L, Z_NULL, 0);
|
||
|
CRC2(state.check, hold);
|
||
|
INITBITS();
|
||
|
state.mode = FLAGS;
|
||
|
break;
|
||
|
}
|
||
|
state.flags = 0; /* expect zlib header */
|
||
|
if (state.head != Z_NULL)
|
||
|
state.head->done = -1;
|
||
|
if (!(state.wrap & 1) || /* check if zlib header allowed */
|
||
|
#else
|
||
|
if (
|
||
|
#endif
|
||
|
((BITS(8) << 8) + (hold >> 8)) % 31) {
|
||
|
strm->msg = (char *)"incorrect header check";
|
||
|
state.mode = BAD;
|
||
|
break;
|
||
|
}
|
||
|
if (BITS(4) != Z_DEFLATED) {
|
||
|
strm->msg = (char *)"unknown compression method";
|
||
|
state.mode = BAD;
|
||
|
break;
|
||
|
}
|
||
|
DROPBITS(4);
|
||
|
len = BITS(4) + 8;
|
||
|
if (len > state.wbits) {
|
||
|
strm->msg = (char *)"invalid window size";
|
||
|
state.mode = BAD;
|
||
|
break;
|
||
|
}
|
||
|
state.dmax = 1U << len;
|
||
|
//DEBUGF("inflate: zlib header ok\n");
|
||
|
strm->adler = state.check = adler32(0L, Z_NULL, 0);
|
||
|
state.mode = hold & 0x200 ? DICTID : TYPE;
|
||
|
INITBITS();
|
||
|
break;
|
||
|
#ifdef GUNZIP
|
||
|
case FLAGS:
|
||
|
NEEDBITS(16);
|
||
|
state.flags = (int)(hold);
|
||
|
if ((state.flags & 0xff) != Z_DEFLATED) {
|
||
|
strm->msg = (char *)"unknown compression method";
|
||
|
state.mode = BAD;
|
||
|
break;
|
||
|
}
|
||
|
if (state.flags & 0xe000) {
|
||
|
strm->msg = (char *)"unknown header flags set";
|
||
|
state.mode = BAD;
|
||
|
break;
|
||
|
}
|
||
|
if (state.head != Z_NULL)
|
||
|
state.head->text = (int)((hold >> 8) & 1);
|
||
|
if (state.flags & 0x0200) CRC2(state.check, hold);
|
||
|
INITBITS();
|
||
|
state.mode = TIME;
|
||
|
case TIME:
|
||
|
NEEDBITS(32);
|
||
|
if (state.head != Z_NULL)
|
||
|
state.head->time = hold;
|
||
|
if (state.flags & 0x0200) CRC4(state.check, hold);
|
||
|
INITBITS();
|
||
|
state.mode = OS;
|
||
|
case OS:
|
||
|
NEEDBITS(16);
|
||
|
if (state.head != Z_NULL) {
|
||
|
state.head->xflags = (int)(hold & 0xff);
|
||
|
state.head->os = (int)(hold >> 8);
|
||
|
}
|
||
|
if (state.flags & 0x0200) CRC2(state.check, hold);
|
||
|
INITBITS();
|
||
|
state.mode = EXLEN;
|
||
|
case EXLEN:
|
||
|
if (state.flags & 0x0400) {
|
||
|
NEEDBITS(16);
|
||
|
state.length = (unsigned)(hold);
|
||
|
if (state.head != Z_NULL)
|
||
|
state.head->extra_len = (unsigned)hold;
|
||
|
if (state.flags & 0x0200) CRC2(state.check, hold);
|
||
|
INITBITS();
|
||
|
}
|
||
|
else if (state.head != Z_NULL)
|
||
|
state.head->extra = Z_NULL;
|
||
|
state.mode = EXTRA;
|
||
|
case EXTRA:
|
||
|
if (state.flags & 0x0400) {
|
||
|
copy = state.length;
|
||
|
if (copy > have) copy = have;
|
||
|
if (copy) {
|
||
|
if (state.head != Z_NULL &&
|
||
|
state.head->extra != Z_NULL) {
|
||
|
len = state.head->extra_len - state.length;
|
||
|
zmemcpy(state.head->extra + len, next,
|
||
|
len + copy > state.head->extra_max ?
|
||
|
state.head->extra_max - len : copy);
|
||
|
}
|
||
|
if (state.flags & 0x0200)
|
||
|
state.check = crc32(state.check, next, copy);
|
||
|
have -= copy;
|
||
|
next += copy;
|
||
|
state.length -= copy;
|
||
|
}
|
||
|
if (state.length) goto inf_leave;
|
||
|
}
|
||
|
state.length = 0;
|
||
|
state.mode = NAME;
|
||
|
case NAME:
|
||
|
if (state.flags & 0x0800) {
|
||
|
if (have == 0) goto inf_leave;
|
||
|
copy = 0;
|
||
|
do {
|
||
|
len = (unsigned)(next[copy++]);
|
||
|
if (state.head != Z_NULL &&
|
||
|
state.head->name != Z_NULL &&
|
||
|
state.length < state.head->name_max)
|
||
|
state.head->name[state.length++] = len;
|
||
|
} while (len && copy < have);
|
||
|
if (state.flags & 0x0200)
|
||
|
state.check = crc32(state.check, next, copy);
|
||
|
have -= copy;
|
||
|
next += copy;
|
||
|
if (len) goto inf_leave;
|
||
|
}
|
||
|
else if (state.head != Z_NULL)
|
||
|
state.head->name = Z_NULL;
|
||
|
state.length = 0;
|
||
|
state.mode = COMMENT;
|
||
|
case COMMENT:
|
||
|
if (state.flags & 0x1000) {
|
||
|
if (have == 0) goto inf_leave;
|
||
|
copy = 0;
|
||
|
do {
|
||
|
len = (unsigned)(next[copy++]);
|
||
|
if (state.head != Z_NULL &&
|
||
|
state.head->comment != Z_NULL &&
|
||
|
state.length < state.head->comm_max)
|
||
|
state.head->comment[state.length++] = len;
|
||
|
} while (len && copy < have);
|
||
|
if (state.flags & 0x0200)
|
||
|
state.check = crc32(state.check, next, copy);
|
||
|
have -= copy;
|
||
|
next += copy;
|
||
|
if (len) goto inf_leave;
|
||
|
}
|
||
|
else if (state.head != Z_NULL)
|
||
|
state.head->comment = Z_NULL;
|
||
|
state.mode = HCRC;
|
||
|
case HCRC:
|
||
|
if (state.flags & 0x0200) {
|
||
|
NEEDBITS(16);
|
||
|
if (hold != (state.check & 0xffff)) {
|
||
|
strm->msg = (char *)"header crc mismatch";
|
||
|
state.mode = BAD;
|
||
|
break;
|
||
|
}
|
||
|
INITBITS();
|
||
|
}
|
||
|
if (state.head != Z_NULL) {
|
||
|
state.head->hcrc = (int)((state.flags >> 9) & 1);
|
||
|
state.head->done = 1;
|
||
|
}
|
||
|
strm->adler = state.check = crc32(0L, Z_NULL, 0);
|
||
|
state.mode = TYPE;
|
||
|
break;
|
||
|
#endif
|
||
|
case DICTID:
|
||
|
NEEDBITS(32);
|
||
|
strm->adler = state.check = REVERSE(hold);
|
||
|
INITBITS();
|
||
|
state.mode = DICT;
|
||
|
case DICT:
|
||
|
if (state.havedict == 0) {
|
||
|
RESTORE();
|
||
|
return Z_NEED_DICT;
|
||
|
}
|
||
|
strm->adler = state.check = adler32(0L, Z_NULL, 0);
|
||
|
state.mode = TYPE;
|
||
|
case TYPE:
|
||
|
if (flush == Z_BLOCK) goto inf_leave;
|
||
|
case TYPEDO:
|
||
|
if (state.last) {
|
||
|
BYTEBITS();
|
||
|
state.mode = CHECK;
|
||
|
break;
|
||
|
}
|
||
|
NEEDBITS(3);
|
||
|
state.last = BITS(1);
|
||
|
DROPBITS(1);
|
||
|
switch (BITS(2)) {
|
||
|
case 0: /* stored block */
|
||
|
//DEBUGF("inflate: stored block%s\n",
|
||
|
//state.last ? " (last)" : "");
|
||
|
state.mode = STORED;
|
||
|
break;
|
||
|
case 1: /* fixed block */
|
||
|
fixedtables();
|
||
|
//DEBUGF("inflate: fixed codes block%s\n",
|
||
|
//state.last ? " (last)" : "");
|
||
|
state.mode = LEN; /* decode codes */
|
||
|
break;
|
||
|
case 2: /* dynamic block */
|
||
|
//DEBUGF("inflate: dynamic codes block%s\n",
|
||
|
//state.last ? " (last)" : "");
|
||
|
state.mode = TABLE;
|
||
|
break;
|
||
|
case 3:
|
||
|
strm->msg = (char *)"invalid block type";
|
||
|
state.mode = BAD;
|
||
|
}
|
||
|
DROPBITS(2);
|
||
|
break;
|
||
|
case STORED:
|
||
|
BYTEBITS(); /* go to byte boundary */
|
||
|
NEEDBITS(32);
|
||
|
if ((hold & 0xffff) != ((hold >> 16) ^ 0xffff)) {
|
||
|
strm->msg = (char *)"invalid stored block lengths";
|
||
|
state.mode = BAD;
|
||
|
break;
|
||
|
}
|
||
|
state.length = (unsigned)hold & 0xffff;
|
||
|
//DEBUGF("inflate: stored length %u\n",
|
||
|
//state.length);
|
||
|
INITBITS();
|
||
|
state.mode = COPY;
|
||
|
case COPY:
|
||
|
copy = state.length;
|
||
|
if (copy) {
|
||
|
if (copy > have) copy = have;
|
||
|
if (copy > left) copy = left;
|
||
|
if (copy == 0) goto inf_leave;
|
||
|
zmemcpy(put, next, copy);
|
||
|
have -= copy;
|
||
|
next += copy;
|
||
|
left -= copy;
|
||
|
put += copy;
|
||
|
state.length -= copy;
|
||
|
break;
|
||
|
}
|
||
|
//DEBUGF("inflate: stored end\n");
|
||
|
state.mode = TYPE;
|
||
|
break;
|
||
|
case TABLE:
|
||
|
NEEDBITS(14);
|
||
|
state.nlen = BITS(5) + 257;
|
||
|
DROPBITS(5);
|
||
|
state.ndist = BITS(5) + 1;
|
||
|
DROPBITS(5);
|
||
|
state.ncode = BITS(4) + 4;
|
||
|
DROPBITS(4);
|
||
|
#ifndef PKZIP_BUG_WORKAROUND
|
||
|
if (state.nlen > 286 || state.ndist > 30) {
|
||
|
strm->msg = (char *)"too many length or distance symbols";
|
||
|
state.mode = BAD;
|
||
|
break;
|
||
|
}
|
||
|
#endif
|
||
|
//DEBUGF("inflate: table sizes ok\n");
|
||
|
state.have = 0;
|
||
|
state.mode = LENLENS;
|
||
|
case LENLENS:
|
||
|
while (state.have < state.ncode) {
|
||
|
NEEDBITS(3);
|
||
|
state.lens[order[state.have++]] = (unsigned short)BITS(3);
|
||
|
DROPBITS(3);
|
||
|
}
|
||
|
while (state.have < 19)
|
||
|
state.lens[order[state.have++]] = 0;
|
||
|
state.next = state.codes;
|
||
|
state.lencode = (code const FAR *)(state.next);
|
||
|
state.lenbits = 7;
|
||
|
ret = inflate_table(CODES, state.lens, 19, &(state.next),
|
||
|
&(state.lenbits), state.work);
|
||
|
if (ret) {
|
||
|
strm->msg = (char *)"invalid code lengths set";
|
||
|
state.mode = BAD;
|
||
|
break;
|
||
|
}
|
||
|
//DEBUGF("inflate: code lengths ok\n");
|
||
|
state.have = 0;
|
||
|
state.mode = CODELENS;
|
||
|
case CODELENS:
|
||
|
while (state.have < state.nlen + state.ndist) {
|
||
|
for (;;) {
|
||
|
this = state.lencode[BITS(state.lenbits)];
|
||
|
if ((unsigned)(this.bits) <= bits) break;
|
||
|
PULLBYTE();
|
||
|
}
|
||
|
if (this.val < 16) {
|
||
|
NEEDBITS(this.bits);
|
||
|
DROPBITS(this.bits);
|
||
|
state.lens[state.have++] = this.val;
|
||
|
}
|
||
|
else {
|
||
|
if (this.val == 16) {
|
||
|
NEEDBITS(this.bits + 2);
|
||
|
DROPBITS(this.bits);
|
||
|
if (state.have == 0) {
|
||
|
strm->msg = (char *)"invalid bit length repeat";
|
||
|
state.mode = BAD;
|
||
|
break;
|
||
|
}
|
||
|
len = state.lens[state.have - 1];
|
||
|
copy = 3 + BITS(2);
|
||
|
DROPBITS(2);
|
||
|
}
|
||
|
else if (this.val == 17) {
|
||
|
NEEDBITS(this.bits + 3);
|
||
|
DROPBITS(this.bits);
|
||
|
len = 0;
|
||
|
copy = 3 + BITS(3);
|
||
|
DROPBITS(3);
|
||
|
}
|
||
|
else {
|
||
|
NEEDBITS(this.bits + 7);
|
||
|
DROPBITS(this.bits);
|
||
|
len = 0;
|
||
|
copy = 11 + BITS(7);
|
||
|
DROPBITS(7);
|
||
|
}
|
||
|
if (state.have + copy > state.nlen + state.ndist) {
|
||
|
strm->msg = (char *)"invalid bit length repeat";
|
||
|
state.mode = BAD;
|
||
|
break;
|
||
|
}
|
||
|
while (copy--)
|
||
|
state.lens[state.have++] = (unsigned short)len;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* handle error breaks in while */
|
||
|
if (state.mode == BAD) break;
|
||
|
|
||
|
/* build code tables */
|
||
|
state.next = state.codes;
|
||
|
state.lencode = (code const FAR *)(state.next);
|
||
|
state.lenbits = 9;
|
||
|
ret = inflate_table(LENS, state.lens, state.nlen, &(state.next),
|
||
|
&(state.lenbits), state.work);
|
||
|
if (ret) {
|
||
|
strm->msg = (char *)"invalid literal/lengths set";
|
||
|
state.mode = BAD;
|
||
|
break;
|
||
|
}
|
||
|
state.distcode = (code const FAR *)(state.next);
|
||
|
state.distbits = 6;
|
||
|
ret = inflate_table(DISTS, state.lens + state.nlen, state.ndist,
|
||
|
&(state.next), &(state.distbits), state.work);
|
||
|
if (ret) {
|
||
|
strm->msg = (char *)"invalid distances set";
|
||
|
state.mode = BAD;
|
||
|
break;
|
||
|
}
|
||
|
//DEBUGF("inflate: codes ok\n");
|
||
|
state.mode = LEN;
|
||
|
case LEN:
|
||
|
if (have >= 6 && left >= 258) {
|
||
|
RESTORE();
|
||
|
inflate_fast(strm, out);
|
||
|
LOAD();
|
||
|
break;
|
||
|
}
|
||
|
for (;;) {
|
||
|
this = state.lencode[BITS(state.lenbits)];
|
||
|
if ((unsigned)(this.bits) <= bits) break;
|
||
|
PULLBYTE();
|
||
|
}
|
||
|
if (this.op && (this.op & 0xf0) == 0) {
|
||
|
last = this;
|
||
|
for (;;) {
|
||
|
this = state.lencode[last.val +
|
||
|
(BITS(last.bits + last.op) >> last.bits)];
|
||
|
if ((unsigned)(last.bits + this.bits) <= bits) break;
|
||
|
PULLBYTE();
|
||
|
}
|
||
|
DROPBITS(last.bits);
|
||
|
}
|
||
|
DROPBITS(this.bits);
|
||
|
state.length = (unsigned)this.val;
|
||
|
if ((int)(this.op) == 0) {
|
||
|
//DEBUGF(this.val >= 0x20 && this.val < 0x7f ?
|
||
|
//"inflate: literal '%c'\n" :
|
||
|
//"inflate: literal 0x%02x\n", this.val);
|
||
|
state.mode = LIT;
|
||
|
break;
|
||
|
}
|
||
|
if (this.op & 32) {
|
||
|
//DEBUGF("inflate: end of block\n");
|
||
|
state.mode = TYPE;
|
||
|
break;
|
||
|
}
|
||
|
if (this.op & 64) {
|
||
|
strm->msg = (char *)"invalid literal/length code";
|
||
|
state.mode = BAD;
|
||
|
break;
|
||
|
}
|
||
|
state.extra = (unsigned)(this.op) & 15;
|
||
|
state.mode = LENEXT;
|
||
|
case LENEXT:
|
||
|
if (state.extra) {
|
||
|
NEEDBITS(state.extra);
|
||
|
state.length += BITS(state.extra);
|
||
|
DROPBITS(state.extra);
|
||
|
}
|
||
|
//DEBUGF("inflate: length %u\n", state.length);
|
||
|
state.mode = DIST;
|
||
|
case DIST:
|
||
|
for (;;) {
|
||
|
this = state.distcode[BITS(state.distbits)];
|
||
|
if ((unsigned)(this.bits) <= bits) break;
|
||
|
PULLBYTE();
|
||
|
}
|
||
|
if ((this.op & 0xf0) == 0) {
|
||
|
last = this;
|
||
|
for (;;) {
|
||
|
this = state.distcode[last.val +
|
||
|
(BITS(last.bits + last.op) >> last.bits)];
|
||
|
if ((unsigned)(last.bits + this.bits) <= bits) break;
|
||
|
PULLBYTE();
|
||
|
}
|
||
|
DROPBITS(last.bits);
|
||
|
}
|
||
|
DROPBITS(this.bits);
|
||
|
if (this.op & 64) {
|
||
|
strm->msg = (char *)"invalid distance code";
|
||
|
state.mode = BAD;
|
||
|
break;
|
||
|
}
|
||
|
state.offset = (unsigned)this.val;
|
||
|
state.extra = (unsigned)(this.op) & 15;
|
||
|
state.mode = DISTEXT;
|
||
|
case DISTEXT:
|
||
|
if (state.extra) {
|
||
|
NEEDBITS(state.extra);
|
||
|
state.offset += BITS(state.extra);
|
||
|
DROPBITS(state.extra);
|
||
|
}
|
||
|
#ifdef INFLATE_STRICT
|
||
|
if (state.offset > state.dmax) {
|
||
|
strm->msg = (char *)"invalid distance too far back";
|
||
|
state.mode = BAD;
|
||
|
break;
|
||
|
}
|
||
|
#endif
|
||
|
if (state.offset > state.whave + out - left) {
|
||
|
strm->msg = (char *)"invalid distance too far back";
|
||
|
state.mode = BAD;
|
||
|
break;
|
||
|
}
|
||
|
//DEBUGF("inflate: distance %u\n", state.offset);
|
||
|
state.mode = MATCH;
|
||
|
case MATCH:
|
||
|
if (left == 0) goto inf_leave;
|
||
|
copy = out - left;
|
||
|
if (state.offset > copy) { /* copy from window */
|
||
|
copy = state.offset - copy;
|
||
|
if (copy > state.write) {
|
||
|
copy -= state.write;
|
||
|
from = state.window + (state.wsize - copy);
|
||
|
}
|
||
|
else
|
||
|
from = state.window + (state.write - copy);
|
||
|
if (copy > state.length) copy = state.length;
|
||
|
}
|
||
|
else { /* copy from output */
|
||
|
from = put - state.offset;
|
||
|
copy = state.length;
|
||
|
}
|
||
|
if (copy > left) copy = left;
|
||
|
left -= copy;
|
||
|
state.length -= copy;
|
||
|
do {
|
||
|
*put++ = *from++;
|
||
|
} while (--copy);
|
||
|
if (state.length == 0) state.mode = LEN;
|
||
|
break;
|
||
|
case LIT:
|
||
|
if (left == 0) goto inf_leave;
|
||
|
*put++ = (unsigned char)(state.length);
|
||
|
left--;
|
||
|
state.mode = LEN;
|
||
|
break;
|
||
|
case CHECK:
|
||
|
if (state.wrap) {
|
||
|
NEEDBITS(32);
|
||
|
out -= left;
|
||
|
strm->total_out += out;
|
||
|
state.total += out;
|
||
|
if (out)
|
||
|
strm->adler = state.check =
|
||
|
UPDATE(state.check, put - out, out);
|
||
|
out = left;
|
||
|
if ((
|
||
|
#ifdef GUNZIP
|
||
|
state.flags ? hold :
|
||
|
#endif
|
||
|
REVERSE(hold)) != state.check) {
|
||
|
strm->msg = (char *)"incorrect data check";
|
||
|
state.mode = BAD;
|
||
|
break;
|
||
|
}
|
||
|
INITBITS();
|
||
|
//DEBUGF("inflate: check matches trailer\n");
|
||
|
}
|
||
|
#ifdef GUNZIP
|
||
|
state.mode = LENGTH;
|
||
|
case LENGTH:
|
||
|
if (state.wrap && state.flags) {
|
||
|
NEEDBITS(32);
|
||
|
if (hold != (state.total & 0xffffffffUL)) {
|
||
|
strm->msg = (char *)"incorrect length check";
|
||
|
state.mode = BAD;
|
||
|
break;
|
||
|
}
|
||
|
INITBITS();
|
||
|
Tracev((stderr, "inflate: length matches trailer\n"));
|
||
|
}
|
||
|
#endif
|
||
|
state.mode = DONE;
|
||
|
case DONE:
|
||
|
ret = Z_STREAM_END;
|
||
|
goto inf_leave;
|
||
|
case BAD:
|
||
|
ret = Z_DATA_ERROR;
|
||
|
goto inf_leave;
|
||
|
case ZMEM:
|
||
|
return Z_MEM_ERROR;
|
||
|
case SYNC:
|
||
|
default:
|
||
|
return Z_STREAM_ERROR;
|
||
|
}
|
||
|
//DEBUGF("%d / %d\n", strm->total_in, strm->avail_in);
|
||
|
if (rb->button_get(false) == PNG_MENU)
|
||
|
return PLUGIN_ABORT;
|
||
|
else cb_progress(insize - strm->avail_in, insize);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Return from inflate(), updating the total counts and the check value.
|
||
|
If there was no progress during the inflate() call, return a buffer
|
||
|
error. Call updatewindow() to create and/or update the window state.
|
||
|
Note: a memory error from inflate() is non-recoverable.
|
||
|
*/
|
||
|
inf_leave:
|
||
|
RESTORE();
|
||
|
if (state.wsize || (state.mode < CHECK && out != strm->avail_out))
|
||
|
if (updatewindow(strm, out)) {
|
||
|
state.mode = ZMEM;
|
||
|
return Z_MEM_ERROR;
|
||
|
}
|
||
|
in -= strm->avail_in;
|
||
|
out -= strm->avail_out;
|
||
|
strm->total_in += in;
|
||
|
strm->total_out += out;
|
||
|
state.total += out;
|
||
|
if (state.wrap && out)
|
||
|
strm->adler = state.check =
|
||
|
UPDATE(state.check, strm->next_out - out, out);
|
||
|
strm->data_type = state.bits + (state.last ? 64 : 0) +
|
||
|
(state.mode == TYPE ? 128 : 0);
|
||
|
if (((in == 0 && out == 0) || flush == Z_FINISH) && ret == Z_OK)
|
||
|
ret = Z_BUF_ERROR;
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int ZEXPORT inflateEnd(strm)
|
||
|
z_streamp strm;
|
||
|
{
|
||
|
//struct inflate_state FAR *state;
|
||
|
if (strm == Z_NULL /*|| strm->zfree == (free_func)0*/)
|
||
|
return Z_STREAM_ERROR;
|
||
|
//state = (struct inflate_state FAR *)strm->state;
|
||
|
//if (state.window != Z_NULL) ZFREE(strm, state.window);
|
||
|
//ZFREE(strm, strm->state);
|
||
|
//strm->state = Z_NULL;
|
||
|
//DEBUGF("inflate: end\n");
|
||
|
return Z_OK;
|
||
|
}
|
||
|
|
||
|
int ZEXPORT inflateSetDictionary(strm, dictionary, dictLength)
|
||
|
z_streamp strm;
|
||
|
const Bytef *dictionary;
|
||
|
uInt dictLength;
|
||
|
{
|
||
|
//struct inflate_state FAR *state;
|
||
|
unsigned long id;
|
||
|
|
||
|
/* check state */
|
||
|
if (strm == Z_NULL) return Z_STREAM_ERROR;
|
||
|
//state = (struct inflate_state FAR *)strm->state;
|
||
|
if (state.wrap != 0 && state.mode != DICT)
|
||
|
return Z_STREAM_ERROR;
|
||
|
|
||
|
/* check for correct dictionary id */
|
||
|
if (state.mode == DICT) {
|
||
|
id = adler32(0L, Z_NULL, 0);
|
||
|
id = adler32(id, dictionary, dictLength);
|
||
|
if (id != state.check)
|
||
|
return Z_DATA_ERROR;
|
||
|
}
|
||
|
|
||
|
/* copy dictionary to window */
|
||
|
if (updatewindow(strm, strm->avail_out)) {
|
||
|
state.mode = ZMEM;
|
||
|
return Z_MEM_ERROR;
|
||
|
}
|
||
|
if (dictLength > state.wsize) {
|
||
|
zmemcpy(state.window, dictionary + dictLength - state.wsize,
|
||
|
state.wsize);
|
||
|
state.whave = state.wsize;
|
||
|
}
|
||
|
else {
|
||
|
zmemcpy(state.window + state.wsize - dictLength, dictionary,
|
||
|
dictLength);
|
||
|
state.whave = dictLength;
|
||
|
}
|
||
|
state.havedict = 1;
|
||
|
//DEBUGF("inflate: dictionary set\n");
|
||
|
return Z_OK;
|
||
|
}
|
||
|
|
||
|
int ZEXPORT inflateGetHeader(strm, head)
|
||
|
z_streamp strm;
|
||
|
gz_headerp head;
|
||
|
{
|
||
|
//struct inflate_state FAR *state;
|
||
|
|
||
|
/* check state */
|
||
|
if (strm == Z_NULL) return Z_STREAM_ERROR;
|
||
|
//state = (struct inflate_state FAR *)strm->state;
|
||
|
if ((state.wrap & 2) == 0) return Z_STREAM_ERROR;
|
||
|
|
||
|
/* save header structure */
|
||
|
state.head = head;
|
||
|
head->done = 0;
|
||
|
return Z_OK;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Search buf[0..len-1] for the pattern: 0, 0, 0xff, 0xff. Return when found
|
||
|
or when out of input. When called, *have is the number of pattern bytes
|
||
|
found in order so far, in 0..3. On return *have is updated to the new
|
||
|
state. If on return *have equals four, then the pattern was found and the
|
||
|
return value is how many bytes were read including the last byte of the
|
||
|
pattern. If *have is less than four, then the pattern has not been found
|
||
|
yet and the return value is len. In the latter case, syncsearch() can be
|
||
|
called again with more data and the *have state. *have is initialized to
|
||
|
zero for the first call.
|
||
|
*/
|
||
|
local unsigned syncsearch(have, buf, len)
|
||
|
unsigned FAR *have;
|
||
|
unsigned char FAR *buf;
|
||
|
unsigned len;
|
||
|
{
|
||
|
unsigned got;
|
||
|
unsigned next;
|
||
|
|
||
|
got = *have;
|
||
|
next = 0;
|
||
|
while (next < len && got < 4) {
|
||
|
if ((int)(buf[next]) == (got < 2 ? 0 : 0xff))
|
||
|
got++;
|
||
|
else if (buf[next])
|
||
|
got = 0;
|
||
|
else
|
||
|
got = 4 - got;
|
||
|
next++;
|
||
|
}
|
||
|
*have = got;
|
||
|
return next;
|
||
|
}
|
||
|
|
||
|
int ZEXPORT inflateSync(strm)
|
||
|
z_streamp strm;
|
||
|
{
|
||
|
unsigned len; /* number of bytes to look at or looked at */
|
||
|
unsigned long in, out; /* temporary to save total_in and total_out */
|
||
|
unsigned char buf[4]; /* to restore bit buffer to byte string */
|
||
|
//struct inflate_state FAR *state;
|
||
|
|
||
|
/* check parameters */
|
||
|
if (strm == Z_NULL) return Z_STREAM_ERROR;
|
||
|
//state = (struct inflate_state FAR *)strm->state;
|
||
|
if (strm->avail_in == 0 && state.bits < 8) return Z_BUF_ERROR;
|
||
|
|
||
|
/* if first time, start search in bit buffer */
|
||
|
if (state.mode != SYNC) {
|
||
|
state.mode = SYNC;
|
||
|
state.hold <<= state.bits & 7;
|
||
|
state.bits -= state.bits & 7;
|
||
|
len = 0;
|
||
|
while (state.bits >= 8) {
|
||
|
buf[len++] = (unsigned char)(state.hold);
|
||
|
state.hold >>= 8;
|
||
|
state.bits -= 8;
|
||
|
}
|
||
|
state.have = 0;
|
||
|
syncsearch(&(state.have), buf, len);
|
||
|
}
|
||
|
|
||
|
/* search available input */
|
||
|
len = syncsearch(&(state.have), strm->next_in, strm->avail_in);
|
||
|
strm->avail_in -= len;
|
||
|
strm->next_in += len;
|
||
|
strm->total_in += len;
|
||
|
|
||
|
/* return no joy or set up to restart inflate() on a new block */
|
||
|
if (state.have != 4) return Z_DATA_ERROR;
|
||
|
in = strm->total_in; out = strm->total_out;
|
||
|
inflateReset(strm);
|
||
|
strm->total_in = in; strm->total_out = out;
|
||
|
state.mode = TYPE;
|
||
|
return Z_OK;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Returns true if inflate is currently at the end of a block generated by
|
||
|
Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by one PPP
|
||
|
implementation to provide an additional safety check. PPP uses
|
||
|
Z_SYNC_FLUSH but removes the length bytes of the resulting empty stored
|
||
|
block. When decompressing, PPP checks that at the end of input packet,
|
||
|
inflate is waiting for these length bytes.
|
||
|
*/
|
||
|
int ZEXPORT inflateSyncPoint(strm)
|
||
|
z_streamp strm;
|
||
|
{
|
||
|
//struct inflate_state FAR *state;
|
||
|
|
||
|
if (strm == Z_NULL) return Z_STREAM_ERROR;
|
||
|
//state = (struct inflate_state FAR *)strm->state;
|
||
|
return state.mode == STORED && state.bits == 0;
|
||
|
}
|