rockbox/firmware/target/arm/as3525/pcm-as3525.c

345 lines
8.5 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright © 2008-2009 Rafaël Carré
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "system.h"
#include "audio.h"
#include "string.h"
#include "as3525.h"
#include "pl081.h"
#include "dma-target.h"
#include "clock-target.h"
#include "panic.h"
#include "as3514.h"
#include "audiohw.h"
#include "mmu-arm.h"
#define MAX_TRANSFER (4*((1<<11)-1)) /* maximum data we can transfer via DMA
* i.e. 32 bits at once (size of I2SO_DATA)
* and the number of 32bits words has to
* fit in 11 bits of DMA register */
static unsigned char *dma_start_addr;
static size_t dma_size; /* in 4*32 bits */
static void dma_callback(void);
static int locked = 0;
/* Mask the DMA interrupt */
void pcm_play_lock(void)
{
if(++locked == 1)
VIC_INT_EN_CLEAR = INTERRUPT_DMAC;
}
/* Unmask the DMA interrupt if enabled */
void pcm_play_unlock(void)
{
if(--locked == 0)
VIC_INT_ENABLE = INTERRUPT_DMAC;
}
static void play_start_pcm(void)
{
const unsigned char* addr = dma_start_addr;
size_t size = dma_size;
if(size > MAX_TRANSFER)
size = MAX_TRANSFER;
dma_size -= size;
dma_start_addr += size;
clean_dcache_range((void*)addr, size); /* force write back */
dma_enable_channel(1, (void*)addr, (void*)I2SOUT_DATA, DMA_PERI_I2SOUT,
DMAC_FLOWCTRL_DMAC_MEM_TO_PERI, true, false, size >> 2, DMA_S1,
dma_callback);
}
static void dma_callback(void)
{
if(!dma_size)
{
register pcm_more_callback_type get_more = pcm_callback_for_more;
if(get_more)
get_more(&dma_start_addr, &dma_size);
}
if(!dma_size)
{
pcm_play_dma_stop();
pcm_play_dma_stopped_callback();
}
else
play_start_pcm();
}
void pcm_play_dma_start(const void *addr, size_t size)
{
dma_size = size;
dma_start_addr = (unsigned char*)addr;
CGU_PERI |= CGU_I2SOUT_APB_CLOCK_ENABLE;
CGU_AUDIO |= (1<<11);
dma_retain();
play_start_pcm();
}
void pcm_play_dma_stop(void)
{
dma_disable_channel(1);
dma_size = 0;
dma_release();
CGU_PERI &= ~CGU_I2SOUT_APB_CLOCK_ENABLE;
CGU_AUDIO &= ~(1<<11);
}
void pcm_play_dma_pause(bool pause)
{
if(pause)
dma_disable_channel(1);
else
play_start_pcm();
}
void pcm_play_dma_init(void)
{
CGU_PERI |= CGU_I2SOUT_APB_CLOCK_ENABLE;
I2SOUT_CONTROL = (1<<6)|(1<<3) /* enable dma, stereo */;
audiohw_preinit();
}
void pcm_postinit(void)
{
audiohw_postinit();
}
void pcm_dma_apply_settings(void)
{
unsigned long frequency = pcm_sampr;
/* TODO : use a table ? */
const int divider = (((AS3525_PLLA_FREQ/128) + (frequency/2)) / frequency) - 1;
int cgu_audio = CGU_AUDIO; /* read register */
cgu_audio &= ~(511 << 2); /* clear i2sout divider */
cgu_audio |= divider << 2; /* set new i2sout divider */
CGU_AUDIO = cgu_audio; /* write back register */
}
size_t pcm_get_bytes_waiting(void)
{
return dma_size;
}
const void * pcm_play_dma_get_peak_buffer(int *count)
{
*count = dma_size >> 2;
return (const void*)dma_start_addr;
}
#ifdef HAVE_PCM_DMA_ADDRESS
void * pcm_dma_addr(void *addr)
{
if (addr != NULL)
addr = UNCACHED_ADDR(addr);
return addr;
}
#endif
/****************************************************************************
** Recording DMA transfer
**/
#ifdef HAVE_RECORDING
#define I2SIN_RECORDING_MASK ( I2SIN_MASK_POER | I2SIN_MASK_PUER | \
I2SIN_MASK_POHF | I2SIN_MASK_POAF | I2SIN_MASK_POF )
static int rec_locked = 0;
static unsigned int *rec_start_addr;
static size_t rec_size;
void pcm_rec_lock(void)
{
if(++rec_locked == 1) {
int vic_state = disable_irq_save();
VIC_INT_EN_CLEAR = INTERRUPT_I2SIN;
I2SIN_MASK = 0;
restore_irq( vic_state );
}
}
void pcm_rec_unlock(void)
{
if(--rec_locked == 0) {
int vic_state = disable_irq_save();
VIC_INT_ENABLE = INTERRUPT_I2SIN;
I2SIN_MASK = I2SIN_RECORDING_MASK;
restore_irq( vic_state );
}
}
void pcm_record_more(void *start, size_t size)
{
rec_start_addr = start;
rec_size = size;
}
void pcm_rec_dma_stop(void)
{
int vic_state = disable_irq_save();
VIC_INT_EN_CLEAR = INTERRUPT_I2SIN;
I2SIN_MASK = 0;
restore_irq( vic_state );
I2SOUT_CONTROL &= ~(1<<5); /* source = i2soutif fifo */
CGU_AUDIO &= ~((1<<23)|(1<<11));
CGU_PERI &= ~(CGU_I2SIN_APB_CLOCK_ENABLE|CGU_I2SOUT_APB_CLOCK_ENABLE);
}
void INT_I2SIN(void)
{
register int status;
register pcm_more_callback_type2 more_ready;
status = I2SIN_STATUS;
if ( status & ((1<<6)|(1<<0)) ) /* errors */
panicf("i2sin error: 0x%x = %s %s", status,
(status & (1<<6)) ? "push" : "",
(status & (1<<0)) ? "pop" : ""
);
/* called at half full so it's safe to pull 16 FIFO reads in one chunk */
if( rec_size >= 16*4 )
{
/* unrolled loop */
*rec_start_addr++ = *I2SIN_DATA;
*rec_start_addr++ = *I2SIN_DATA;
*rec_start_addr++ = *I2SIN_DATA;
*rec_start_addr++ = *I2SIN_DATA;
*rec_start_addr++ = *I2SIN_DATA;
*rec_start_addr++ = *I2SIN_DATA;
*rec_start_addr++ = *I2SIN_DATA;
*rec_start_addr++ = *I2SIN_DATA;
*rec_start_addr++ = *I2SIN_DATA;
*rec_start_addr++ = *I2SIN_DATA;
*rec_start_addr++ = *I2SIN_DATA;
*rec_start_addr++ = *I2SIN_DATA;
*rec_start_addr++ = *I2SIN_DATA;
*rec_start_addr++ = *I2SIN_DATA;
*rec_start_addr++ = *I2SIN_DATA;
*rec_start_addr++ = *I2SIN_DATA;
rec_size -= 16*4; /* 16x4byte reads */
}
/* read out any odd samples left */
while (((I2SIN_RAW_STATUS & (1<<5)) == 0) && rec_size)
{
/* 14 bits per sample = 1 32 bits word */
*rec_start_addr++ = *I2SIN_DATA;
rec_size -= 4;
}
I2SIN_CLEAR = status;
if(!rec_size)
{
more_ready = pcm_callback_more_ready;
if(!more_ready || more_ready(0) < 0)
{
/* Finished recording */
pcm_rec_dma_stop();
pcm_rec_dma_stopped_callback();
}
}
}
void pcm_rec_dma_start(void *addr, size_t size)
{
rec_start_addr = addr;
rec_size = size;
CGU_PERI |= CGU_I2SIN_APB_CLOCK_ENABLE|CGU_I2SOUT_APB_CLOCK_ENABLE;
CGU_AUDIO |= ((1<<23)|(1<<11));
I2SOUT_CONTROL |= 1<<5; /* source = loopback from i2sin fifo */
/* 14 bits samples, i2c clk src = I2SOUTIF, sdata src = AFE,
* data valid at positive edge of SCLK */
I2SIN_CONTROL = (1<<5) | (1<<2);
unsigned long tmp;
while ( ( I2SIN_RAW_STATUS & ( 1<<5 ) ) == 0 )
tmp = *I2SIN_DATA; /* FLUSH FIFO */
I2SIN_CLEAR = (1<<6)|(1<<0); /* push error, pop error */
I2SIN_MASK = I2SIN_RECORDING_MASK;
VIC_INT_ENABLE = INTERRUPT_I2SIN;
}
void pcm_rec_dma_close(void)
{
pcm_rec_dma_stop();
}
void pcm_rec_dma_init(void)
{
unsigned long frequency = pcm_sampr;
/* TODO : use a table ? */
const int divider = (((AS3525_PLLA_FREQ/128) + (frequency/2)) / frequency) - 1;
int cgu_audio = CGU_AUDIO; /* read register */
cgu_audio &= ~(3 << 12); /* clear i2sin clocksource */
cgu_audio |= (1 << 12); /* set to PLLA */
cgu_audio &= ~(511 << 14); /* clear i2sin divider */
cgu_audio |= divider << 14; /* set new i2sin divider */
CGU_AUDIO = cgu_audio; /* write back register */
}
const void * pcm_rec_dma_get_peak_buffer(int *count)
{
const void *peak_buffer;
pcm_rec_lock();
*count = rec_size >> 2;
peak_buffer = (const void*)rec_start_addr;
pcm_rec_unlock();
return peak_buffer;
}
#endif /* HAVE_RECORDING */