rockbox/firmware/target/arm/olympus/mrobe-100/lcd-mr100.c

277 lines
8.6 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2008 by Mark Arigo
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "cpu.h"
#include "lcd.h"
#include "kernel.h"
#include "system.h"
/* The m:robe 100 display has a register set that is very similar to the
Solomon SSD1815 */
/*** definitions ***/
#define LCD_SET_LOWER_COLUMN_ADDRESS ((char)0x00)
#define LCD_SET_HIGHER_COLUMN_ADDRESS ((char)0x10)
#define LCD_SET_INTERNAL_REGULATOR_RESISTOR_RATIO ((char)0x20)
#define LCD_SET_POWER_CONTROL_REGISTER ((char)0x28)
#define LCD_SET_DISPLAY_START_LINE ((char)0x40)
#define LCD_SET_CONTRAST_CONTROL_REGISTER ((char)0x81)
#define LCD_SET_SEGMENT_REMAP ((char)0xA0)
#define LCD_SET_LCD_BIAS ((char)0xA2)
#define LCD_SET_ENTIRE_DISPLAY_OFF ((char)0xA4)
#define LCD_SET_ENTIRE_DISPLAY_ON ((char)0xA5)
#define LCD_SET_NORMAL_DISPLAY ((char)0xA6)
#define LCD_SET_REVERSE_DISPLAY ((char)0xA7)
#define LCD_SET_MULTIPLEX_RATIO ((char)0xA8)
#define LCD_SET_BIAS_TC_OSC ((char)0xA9)
#define LCD_SET_1OVER4_BIAS_RATIO ((char)0xAA)
#define LCD_SET_INDICATOR_OFF ((char)0xAC)
#define LCD_SET_INDICATOR_ON ((char)0xAD)
#define LCD_SET_DISPLAY_OFF ((char)0xAE)
#define LCD_SET_DISPLAY_ON ((char)0xAF)
#define LCD_SET_PAGE_ADDRESS ((char)0xB0)
#define LCD_SET_COM_OUTPUT_SCAN_DIRECTION ((char)0xC0)
#define LCD_SET_TOTAL_FRAME_PHASES ((char)0xD2)
#define LCD_SET_DISPLAY_OFFSET ((char)0xD3)
#define LCD_SET_READ_MODIFY_WRITE_MODE ((char)0xE0)
#define LCD_SOFTWARE_RESET ((char)0xE2)
#define LCD_NOP ((char)0xE3)
#define LCD_SET_END_OF_READ_MODIFY_WRITE_MODE ((char)0xEE)
/* LCD command codes */
#define LCD_CNTL_RESET 0xe2 /* Software reset */
#define LCD_CNTL_POWER 0x2f /* Power control */
#define LCD_CNTL_CONTRAST 0x81 /* Contrast */
#define LCD_CNTL_OUTSCAN 0xc8 /* Output scan direction */
#define LCD_CNTL_SEGREMAP 0xa1 /* Segment remap */
#define LCD_CNTL_DISPON 0xaf /* Display on */
#define LCD_CNTL_PAGE 0xb0 /* Page address */
#define LCD_CNTL_HIGHCOL 0x10 /* Upper column address */
#define LCD_CNTL_LOWCOL 0x00 /* Lower column address */
/* send LCD command */
void lcd_write_command(int byte)
{
while (LCD1_CONTROL & LCD1_BUSY_MASK); /* wait for LCD */
LCD1_CMD = byte;
}
static int xoffset; /* needed for flip */
/*** hardware configuration ***/
int lcd_default_contrast(void)
{
return DEFAULT_CONTRAST_SETTING;
}
void lcd_set_contrast(int val)
{
lcd_write_command(LCD_CNTL_CONTRAST);
lcd_write_command(val);
}
void lcd_set_invert_display(bool yesno)
{
if (yesno)
lcd_write_command(LCD_SET_REVERSE_DISPLAY);
else
lcd_write_command(LCD_SET_NORMAL_DISPLAY);
}
/* turn the display upside down (call lcd_update() afterwards) */
void lcd_set_flip(bool yesno)
{
if (!yesno)
{
/* normal */
lcd_write_command(LCD_SET_COM_OUTPUT_SCAN_DIRECTION | 0xc);
xoffset = 240 - LCD_WIDTH; /* 240 colums minus the 160 we have */
}
else
{
/* upside-down */
lcd_write_command(LCD_SET_COM_OUTPUT_SCAN_DIRECTION);
xoffset = 0;
}
}
/* LCD init */
void lcd_init_device(void)
{
int i;
DEV_INIT1 &= ~0xfc000000;
i = DEV_INIT1;
DEV_INIT1 = i;
DEV_INIT2 &= ~0x400;
udelay(10000);
LCD1_CONTROL &= ~0x4;
udelay(15);
LCD1_CONTROL |= 0x4;
udelay(10);
LCD1_CONTROL = 0x0094;
/* OF just reads these */
LCD1_CONTROL;
inl(0x70003004);
LCD1_CMD;
inl(0x7000300c);
LCD1_CONTROL |= 0x1;
udelay(15000);
lcd_write_command(LCD_SOFTWARE_RESET); /* 0xE2 */
lcd_write_command(LCD_SET_POWER_CONTROL_REGISTER + 7); /* 0x2F */
/* power control register: op-amp=1, regulator=1, booster=1 */
lcd_write_command(LCD_SET_INTERNAL_REGULATOR_RESISTOR_RATIO + 6); /* 0x26 */
lcd_set_flip(false); /* 0xCC */
lcd_write_command(0xe8);
lcd_set_contrast(lcd_default_contrast()); /* 0x80, 0x00 */
lcd_write_command(LCD_SET_DISPLAY_START_LINE + 0); /* 0x40 */
lcd_write_command(LCD_SET_NORMAL_DISPLAY); /* 0xA6 */
lcd_write_command(0x88);
lcd_write_command(LCD_SET_PAGE_ADDRESS); /* 0xB0 */
lcd_write_command(LCD_SET_HIGHER_COLUMN_ADDRESS + 0); /* 0x10 */
lcd_write_command(LCD_SET_LOWER_COLUMN_ADDRESS + 0); /* 0x00 */
lcd_write_command(LCD_SET_DISPLAY_ON); /* 0xAF */
}
/*** update functions ***/
/* Performance function that works with an external buffer
note that by and bheight are in 8-pixel units! */
void lcd_blit_mono(const unsigned char* data, int x, int by, int width,
int bheight, int stride)
{
int cmd1, cmd2;
cmd1 = LCD_CNTL_HIGHCOL | (((x + xoffset) >> 4) & 0xf);
cmd2 = LCD_CNTL_LOWCOL | ((x + xoffset) & 0xf);
/* Copy display bitmap to hardware */
while (bheight--)
{
lcd_write_command(LCD_CNTL_PAGE | (by++ & 0xff));
lcd_write_command(cmd1);
lcd_write_command(cmd2);
lcd_write_data(data, width);
data += stride;
}
}
/* Helper function for lcd_grey_phase_blit(). */
void lcd_grey_data(unsigned char *values, unsigned char *phases, int count);
/* Performance function that works with an external buffer
note that by and bheight are in 8-pixel units! */
void lcd_blit_grey_phase(unsigned char *values, unsigned char *phases,
int x, int by, int width, int bheight, int stride)
{
int cmd1, cmd2;
stride <<= 3; /* 8 pixels per block */
cmd1 = LCD_CNTL_HIGHCOL | (((x + xoffset) >> 4) & 0xf);
cmd2 = LCD_CNTL_LOWCOL | ((x + xoffset) & 0xf);
while (bheight--)
{
lcd_write_command(LCD_CNTL_PAGE | (by++ & 0xff));
lcd_write_command(cmd1);
lcd_write_command(cmd2);
lcd_grey_data(values, phases, width);
values += stride;
phases += stride;
}
}
/* Update the display.
This must be called after all other LCD functions that change the display. */
void lcd_update(void) ICODE_ATTR;
void lcd_update(void)
{
int y, cmd1, cmd2;
cmd1 = LCD_CNTL_HIGHCOL | (((xoffset) >> 4) & 0xf);
cmd2 = LCD_CNTL_LOWCOL | ((xoffset) & 0xf);
/* Copy display bitmap to hardware */
for (y = 0; y < LCD_FBHEIGHT; y++)
{
lcd_write_command (LCD_CNTL_PAGE | (y & 0xf));
lcd_write_command(cmd1);
lcd_write_command(cmd2);
lcd_write_data (FBADDR(0, y), LCD_WIDTH);
}
}
/* Update a fraction of the display. */
void lcd_update_rect(int, int, int, int) ICODE_ATTR;
void lcd_update_rect(int x, int y, int width, int height)
{
int ymax, cmd1, cmd2;
/* The Y coordinates have to work on even 8 pixel rows */
ymax = (y + height - 1) >> 3;
y >>= 3;
if(x + width > LCD_WIDTH)
width = LCD_WIDTH - x;
if (width <= 0)
return; /* nothing left to do, 0 is harmful to lcd_write_data() */
if(ymax >= LCD_FBHEIGHT)
ymax = LCD_FBHEIGHT-1;
cmd1 = LCD_CNTL_HIGHCOL | (((x + xoffset) >> 4) & 0xf);
cmd2 = LCD_CNTL_LOWCOL | ((x + xoffset) & 0xf);
/* Copy specified rectange bitmap to hardware */
for (; y <= ymax; y++)
{
lcd_write_command(LCD_CNTL_PAGE | (y & 0xf));
lcd_write_command(cmd1);
lcd_write_command(cmd2);
lcd_write_data (FBADDR(x,y), width);
}
}