626 lines
21 KiB
C
626 lines
21 KiB
C
|
/* Copyright (C) 2007 Jean-Marc Valin
|
||
|
|
||
|
File: resample.c
|
||
|
Arbitrary resampling code
|
||
|
|
||
|
Redistribution and use in source and binary forms, with or without
|
||
|
modification, are permitted provided that the following conditions are
|
||
|
met:
|
||
|
|
||
|
1. Redistributions of source code must retain the above copyright notice,
|
||
|
this list of conditions and the following disclaimer.
|
||
|
|
||
|
2. Redistributions in binary form must reproduce the above copyright
|
||
|
notice, this list of conditions and the following disclaimer in the
|
||
|
documentation and/or other materials provided with the distribution.
|
||
|
|
||
|
3. The name of the author may not be used to endorse or promote products
|
||
|
derived from this software without specific prior written permission.
|
||
|
|
||
|
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||
|
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||
|
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||
|
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
|
||
|
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||
|
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||
|
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
|
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
The design goals of this code are:
|
||
|
- Very fast algorithm
|
||
|
- SIMD-friendly algorithm
|
||
|
- Low memory requirement
|
||
|
- Good *perceptual* quality (and not best SNR)
|
||
|
|
||
|
The code is working, but it's in a very early stage, so it may have
|
||
|
artifacts, noise or subliminal messages from satan. Also, the API
|
||
|
isn't stable and I can actually promise that I *will* change the API
|
||
|
some time in the future.
|
||
|
|
||
|
TODO list:
|
||
|
- Variable calculation resolution depending on quality setting
|
||
|
- Single vs double in float mode
|
||
|
- 16-bit vs 32-bit (sinc only) in fixed-point mode
|
||
|
- Make sure the filter update works even when changing params
|
||
|
after only a few samples procesed
|
||
|
*/
|
||
|
|
||
|
#ifdef HAVE_CONFIG_H
|
||
|
#include "config.h"
|
||
|
#endif
|
||
|
|
||
|
#ifdef OUTSIDE_SPEEX
|
||
|
#include <stdlib.h>
|
||
|
void *speex_alloc (int size) {return calloc(size,1);}
|
||
|
void *speex_realloc (void *ptr, int size) {return realloc(ptr, size);}
|
||
|
void speex_free (void *ptr) {free(ptr);}
|
||
|
#else
|
||
|
#include "misc.h"
|
||
|
#endif
|
||
|
|
||
|
#include <math.h>
|
||
|
#include "speex/speex_resampler.h"
|
||
|
|
||
|
#ifndef M_PI
|
||
|
#define M_PI 3.14159263
|
||
|
#endif
|
||
|
|
||
|
#ifdef FIXED_POINT
|
||
|
#define WORD2INT(x) ((x) < -32767 ? -32768 : ((x) > 32766 ? 32767 : (x)))
|
||
|
#else
|
||
|
#define WORD2INT(x) ((x) < -32767.5f ? -32768 : ((x) > 32766.5f ? 32767 : floor(.5+(x))))
|
||
|
#endif
|
||
|
|
||
|
/*#define float double*/
|
||
|
#define FILTER_SIZE 64
|
||
|
#define OVERSAMPLE 8
|
||
|
|
||
|
#define IMAX(a,b) ((a) > (b) ? (a) : (b))
|
||
|
|
||
|
struct QualityMapping {
|
||
|
int base_length;
|
||
|
int oversample;
|
||
|
float downsample_bandwidth;
|
||
|
float upsample_bandwidth;
|
||
|
};
|
||
|
|
||
|
/* This table maps conversion quality to internal parameters. There are two
|
||
|
reasons that explain why the up-sampling bandwidth is larger than the
|
||
|
down-sampling bandwidth:
|
||
|
1) When up-sampling, we can assume that the spectrum is already attenuated
|
||
|
close to the Nyquist rate (from an A/D or a previous resampling filter)
|
||
|
2) Any aliasing that occurs very close to the Nyquist rate will be masked
|
||
|
by the sinusoids/noise just below the Nyquist rate (guaranteed only for
|
||
|
up-sampling).
|
||
|
*/
|
||
|
const struct QualityMapping quality_map[11] = {
|
||
|
{ 8, 4, 0.70f, 0.80f}, /* 0 */
|
||
|
{ 16, 4, 0.74f, 0.83f}, /* 1 */
|
||
|
{ 32, 4, 0.77f, 0.87f}, /* 2 */
|
||
|
{ 48, 8, 0.84f, 0.90f}, /* 3 */
|
||
|
{ 64, 8, 0.88f, 0.92f}, /* 4 */
|
||
|
{ 80, 8, 0.90f, 0.94f}, /* 5 */
|
||
|
{ 96, 8, 0.91f, 0.94f}, /* 6 */
|
||
|
{128, 16, 0.93f, 0.95f}, /* 7 */
|
||
|
{160, 16, 0.94f, 0.96f}, /* 8 */
|
||
|
{192, 16, 0.95f, 0.96f}, /* 9 */
|
||
|
{256, 16, 0.96f, 0.97f}, /* 10 */
|
||
|
};
|
||
|
|
||
|
typedef enum {SPEEX_RESAMPLER_DIRECT_SINGLE=0, SPEEX_RESAMPLER_INTERPOLATE_SINGLE=1} SpeexSincType;
|
||
|
|
||
|
typedef int (*resampler_basic_func)(SpeexResamplerState *, int , const spx_word16_t *, int *, spx_word16_t *, int *);
|
||
|
|
||
|
struct SpeexResamplerState_ {
|
||
|
int in_rate;
|
||
|
int out_rate;
|
||
|
int num_rate;
|
||
|
int den_rate;
|
||
|
|
||
|
int quality;
|
||
|
int nb_channels;
|
||
|
int filt_len;
|
||
|
int mem_alloc_size;
|
||
|
int int_advance;
|
||
|
int frac_advance;
|
||
|
float cutoff;
|
||
|
int oversample;
|
||
|
int initialised;
|
||
|
int started;
|
||
|
|
||
|
/* These are per-channel */
|
||
|
int *last_sample;
|
||
|
int *samp_frac_num;
|
||
|
int *magic_samples;
|
||
|
|
||
|
spx_word16_t *mem;
|
||
|
spx_word16_t *sinc_table;
|
||
|
int sinc_table_length;
|
||
|
resampler_basic_func resampler_ptr;
|
||
|
|
||
|
int in_stride;
|
||
|
int out_stride;
|
||
|
SpeexSincType type;
|
||
|
} ;
|
||
|
|
||
|
#ifdef FIXED_POINT
|
||
|
/* The slow way of computing a sinc for the table. Should improve that some day */
|
||
|
static spx_word16_t sinc(float cutoff, float x, int N)
|
||
|
{
|
||
|
/*fprintf (stderr, "%f ", x);*/
|
||
|
x *= cutoff;
|
||
|
if (fabs(x)<1e-6f)
|
||
|
return WORD2INT(32768.*cutoff);
|
||
|
else if (fabs(x) > .5f*N)
|
||
|
return 0;
|
||
|
/*FIXME: Can it really be any slower than this? */
|
||
|
return WORD2INT(32768.*cutoff*sin(M_PI*x)/(M_PI*x) * (.42+.5*cos(2*x*M_PI/N)+.08*cos(4*x*M_PI/N)));
|
||
|
}
|
||
|
#else
|
||
|
/* The slow way of computing a sinc for the table. Should improve that some day */
|
||
|
static spx_word16_t sinc(float cutoff, float x, int N)
|
||
|
{
|
||
|
/*fprintf (stderr, "%f ", x);*/
|
||
|
x *= cutoff;
|
||
|
if (fabs(x)<1e-6)
|
||
|
return cutoff;
|
||
|
else if (fabs(x) > .5*N)
|
||
|
return 0;
|
||
|
/*FIXME: Can it really be any slower than this? */
|
||
|
return cutoff*sin(M_PI*x)/(M_PI*x) * (.42+.5*cos(2*x*M_PI/N)+.08*cos(4*x*M_PI/N));
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static int resampler_basic_direct_single(SpeexResamplerState *st, int channel_index, const spx_word16_t *in, int *in_len, spx_word16_t *out, int *out_len)
|
||
|
{
|
||
|
int N = st->filt_len;
|
||
|
int out_sample = 0;
|
||
|
spx_word16_t *mem;
|
||
|
int last_sample = st->last_sample[channel_index];
|
||
|
int samp_frac_num = st->samp_frac_num[channel_index];
|
||
|
mem = st->mem + channel_index * st->mem_alloc_size;
|
||
|
while (!(last_sample >= *in_len || out_sample >= *out_len))
|
||
|
{
|
||
|
int j;
|
||
|
spx_word32_t sum=0;
|
||
|
|
||
|
/* We already have all the filter coefficients pre-computed in the table */
|
||
|
const spx_word16_t *ptr;
|
||
|
/* Do the memory part */
|
||
|
for (j=0;last_sample-N+1+j < 0;j++)
|
||
|
{
|
||
|
sum += MULT16_16(mem[last_sample+j],st->sinc_table[samp_frac_num*st->filt_len+j]);
|
||
|
}
|
||
|
|
||
|
/* Do the new part */
|
||
|
ptr = in+st->in_stride*(last_sample-N+1+j);
|
||
|
for (;j<N;j++)
|
||
|
{
|
||
|
sum += MULT16_16(*ptr,st->sinc_table[samp_frac_num*st->filt_len+j]);
|
||
|
ptr += st->in_stride;
|
||
|
}
|
||
|
|
||
|
*out = PSHR32(sum,15);
|
||
|
out += st->out_stride;
|
||
|
out_sample++;
|
||
|
last_sample += st->int_advance;
|
||
|
samp_frac_num += st->frac_advance;
|
||
|
if (samp_frac_num >= st->den_rate)
|
||
|
{
|
||
|
samp_frac_num -= st->den_rate;
|
||
|
last_sample++;
|
||
|
}
|
||
|
}
|
||
|
st->last_sample[channel_index] = last_sample;
|
||
|
st->samp_frac_num[channel_index] = samp_frac_num;
|
||
|
return out_sample;
|
||
|
}
|
||
|
|
||
|
static int resampler_basic_interpolate_single(SpeexResamplerState *st, int channel_index, const spx_word16_t *in, int *in_len, spx_word16_t *out, int *out_len)
|
||
|
{
|
||
|
int N = st->filt_len;
|
||
|
int out_sample = 0;
|
||
|
spx_word16_t *mem;
|
||
|
int last_sample = st->last_sample[channel_index];
|
||
|
int samp_frac_num = st->samp_frac_num[channel_index];
|
||
|
mem = st->mem + channel_index * st->mem_alloc_size;
|
||
|
while (!(last_sample >= *in_len || out_sample >= *out_len))
|
||
|
{
|
||
|
int j;
|
||
|
spx_word32_t sum=0;
|
||
|
|
||
|
/* We need to interpolate the sinc filter */
|
||
|
spx_word32_t accum[4] = {0.f,0.f, 0.f, 0.f};
|
||
|
float interp[4];
|
||
|
const spx_word16_t *ptr;
|
||
|
float alpha = ((float)samp_frac_num)/st->den_rate;
|
||
|
int offset = samp_frac_num*st->oversample/st->den_rate;
|
||
|
float frac = alpha*st->oversample - offset;
|
||
|
/* This code is written like this to make it easy to optimise with SIMD.
|
||
|
For most DSPs, it would be best to split the loops in two because most DSPs
|
||
|
have only two accumulators */
|
||
|
for (j=0;last_sample-N+1+j < 0;j++)
|
||
|
{
|
||
|
spx_word16_t curr_mem = mem[last_sample+j];
|
||
|
accum[0] += MULT16_16(curr_mem,st->sinc_table[4+(j+1)*st->oversample-offset-2]);
|
||
|
accum[1] += MULT16_16(curr_mem,st->sinc_table[4+(j+1)*st->oversample-offset-1]);
|
||
|
accum[2] += MULT16_16(curr_mem,st->sinc_table[4+(j+1)*st->oversample-offset]);
|
||
|
accum[3] += MULT16_16(curr_mem,st->sinc_table[4+(j+1)*st->oversample-offset+1]);
|
||
|
}
|
||
|
ptr = in+st->in_stride*(last_sample-N+1+j);
|
||
|
/* Do the new part */
|
||
|
for (;j<N;j++)
|
||
|
{
|
||
|
spx_word16_t curr_in = *ptr;
|
||
|
ptr += st->in_stride;
|
||
|
accum[0] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-2]);
|
||
|
accum[1] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-1]);
|
||
|
accum[2] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset]);
|
||
|
accum[3] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset+1]);
|
||
|
}
|
||
|
/* Compute interpolation coefficients. I'm not sure whether this corresponds to cubic interpolation
|
||
|
but I know it's MMSE-optimal on a sinc */
|
||
|
interp[0] = -0.16667f*frac + 0.16667f*frac*frac*frac;
|
||
|
interp[1] = frac + 0.5f*frac*frac - 0.5f*frac*frac*frac;
|
||
|
/*interp[2] = 1.f - 0.5f*frac - frac*frac + 0.5f*frac*frac*frac;*/
|
||
|
interp[3] = -0.33333f*frac + 0.5f*frac*frac - 0.16667f*frac*frac*frac;
|
||
|
/* Just to make sure we don't have rounding problems */
|
||
|
interp[2] = 1.f-interp[0]-interp[1]-interp[3];
|
||
|
/*sum = frac*accum[1] + (1-frac)*accum[2];*/
|
||
|
sum = interp[0]*accum[0] + interp[1]*accum[1] + interp[2]*accum[2] + interp[3]*accum[3];
|
||
|
|
||
|
*out = PSHR32(sum,15);
|
||
|
out += st->out_stride;
|
||
|
out_sample++;
|
||
|
last_sample += st->int_advance;
|
||
|
samp_frac_num += st->frac_advance;
|
||
|
if (samp_frac_num >= st->den_rate)
|
||
|
{
|
||
|
samp_frac_num -= st->den_rate;
|
||
|
last_sample++;
|
||
|
}
|
||
|
}
|
||
|
st->last_sample[channel_index] = last_sample;
|
||
|
st->samp_frac_num[channel_index] = samp_frac_num;
|
||
|
return out_sample;
|
||
|
}
|
||
|
|
||
|
|
||
|
static void update_filter(SpeexResamplerState *st)
|
||
|
{
|
||
|
int i;
|
||
|
int old_length;
|
||
|
|
||
|
old_length = st->filt_len;
|
||
|
st->oversample = quality_map[st->quality].oversample;
|
||
|
st->filt_len = quality_map[st->quality].base_length;
|
||
|
|
||
|
if (st->num_rate > st->den_rate)
|
||
|
{
|
||
|
/* down-sampling */
|
||
|
st->cutoff = quality_map[st->quality].downsample_bandwidth * st->den_rate / st->num_rate;
|
||
|
/* FIXME: divide the numerator and denominator by a certain amount if they're too large */
|
||
|
st->filt_len = st->filt_len*st->num_rate / st->den_rate;
|
||
|
/* Round down to make sure we have a multiple of 4 */
|
||
|
st->filt_len &= (~0x3);
|
||
|
} else {
|
||
|
/* up-sampling */
|
||
|
st->cutoff = quality_map[st->quality].upsample_bandwidth;
|
||
|
}
|
||
|
|
||
|
/* Choose the resampling type that requires the least amount of memory */
|
||
|
if (st->den_rate <= st->oversample)
|
||
|
{
|
||
|
if (!st->sinc_table)
|
||
|
st->sinc_table = (spx_word16_t *)speex_alloc(st->filt_len*st->den_rate*sizeof(spx_word16_t));
|
||
|
else if (st->sinc_table_length < st->filt_len*st->den_rate)
|
||
|
{
|
||
|
st->sinc_table = (spx_word16_t *)speex_realloc(st->sinc_table,st->filt_len*st->den_rate*sizeof(spx_word16_t));
|
||
|
st->sinc_table_length = st->filt_len*st->den_rate;
|
||
|
}
|
||
|
for (i=0;i<st->den_rate;i++)
|
||
|
{
|
||
|
int j;
|
||
|
for (j=0;j<st->filt_len;j++)
|
||
|
{
|
||
|
st->sinc_table[i*st->filt_len+j] = sinc(st->cutoff,((j-st->filt_len/2+1)-((float)i)/st->den_rate), st->filt_len);
|
||
|
}
|
||
|
}
|
||
|
st->type = SPEEX_RESAMPLER_DIRECT_SINGLE;
|
||
|
st->resampler_ptr = resampler_basic_direct_single;
|
||
|
/*fprintf (stderr, "resampler uses direct sinc table and normalised cutoff %f\n", cutoff);*/
|
||
|
} else {
|
||
|
if (!st->sinc_table)
|
||
|
st->sinc_table = (spx_word16_t *)speex_alloc((st->filt_len*st->oversample+8)*sizeof(spx_word16_t));
|
||
|
else if (st->sinc_table_length < st->filt_len*st->oversample+8)
|
||
|
{
|
||
|
st->sinc_table = (spx_word16_t *)speex_realloc(st->sinc_table,(st->filt_len*st->oversample+8)*sizeof(spx_word16_t));
|
||
|
st->sinc_table_length = st->filt_len*st->oversample+8;
|
||
|
}
|
||
|
for (i=-4;i<st->oversample*st->filt_len+4;i++)
|
||
|
st->sinc_table[i+4] = sinc(st->cutoff,(i/(float)st->oversample - st->filt_len/2), st->filt_len);
|
||
|
st->type = SPEEX_RESAMPLER_INTERPOLATE_SINGLE;
|
||
|
st->resampler_ptr = resampler_basic_interpolate_single;
|
||
|
/*fprintf (stderr, "resampler uses interpolated sinc table and normalised cutoff %f\n", cutoff);*/
|
||
|
}
|
||
|
st->int_advance = st->num_rate/st->den_rate;
|
||
|
st->frac_advance = st->num_rate%st->den_rate;
|
||
|
|
||
|
if (!st->mem)
|
||
|
{
|
||
|
st->mem = (spx_word16_t*)speex_alloc(st->nb_channels*(st->filt_len-1) * sizeof(spx_word16_t));
|
||
|
for (i=0;i<st->nb_channels*(st->filt_len-1);i++)
|
||
|
st->mem[i] = 0;
|
||
|
st->mem_alloc_size = st->filt_len-1;
|
||
|
/*speex_warning("init filter");*/
|
||
|
} else if (!st->started)
|
||
|
{
|
||
|
st->mem = (spx_word16_t*)speex_realloc(st->mem, st->nb_channels*(st->filt_len-1) * sizeof(spx_word16_t));
|
||
|
for (i=0;i<st->nb_channels*(st->filt_len-1);i++)
|
||
|
st->mem[i] = 0;
|
||
|
st->mem_alloc_size = st->filt_len-1;
|
||
|
/*speex_warning("reinit filter");*/
|
||
|
} else if (st->filt_len > old_length)
|
||
|
{
|
||
|
/* Increase the filter length */
|
||
|
/*speex_warning("increase filter size");*/
|
||
|
int old_alloc_size = st->mem_alloc_size;
|
||
|
if (st->filt_len-1 > st->mem_alloc_size)
|
||
|
{
|
||
|
st->mem = (spx_word16_t*)speex_realloc(st->mem, st->nb_channels*(st->filt_len-1) * sizeof(spx_word16_t));
|
||
|
st->mem_alloc_size = st->filt_len-1;
|
||
|
}
|
||
|
for (i=0;i<st->nb_channels;i++)
|
||
|
{
|
||
|
int j;
|
||
|
/* Copy data going backward */
|
||
|
for (j=0;j<old_length-1;j++)
|
||
|
st->mem[i*st->mem_alloc_size+(st->filt_len-2-j)] = st->mem[i*old_alloc_size+(old_length-2-j)];
|
||
|
/* Then put zeros for lack of anything better */
|
||
|
for (;j<st->filt_len-1;j++)
|
||
|
st->mem[i*st->mem_alloc_size+(st->filt_len-2-j)] = 0;
|
||
|
/* Adjust last_sample */
|
||
|
st->last_sample[i] += (st->filt_len - old_length)/2;
|
||
|
}
|
||
|
} else if (st->filt_len < old_length)
|
||
|
{
|
||
|
/* Reduce filter length, this a bit tricky */
|
||
|
/*speex_warning("decrease filter size (unimplemented)");*/
|
||
|
/* Adjust last_sample (which will likely end up negative) */
|
||
|
/*st->last_sample += (st->filt_len - old_length)/2;*/
|
||
|
for (i=0;i<st->nb_channels;i++)
|
||
|
{
|
||
|
int j;
|
||
|
st->magic_samples[i] = (old_length - st->filt_len)/2;
|
||
|
/* Copy data going backward */
|
||
|
for (j=0;j<st->filt_len-1+st->magic_samples[i];j++)
|
||
|
st->mem[i*st->mem_alloc_size+j] = st->mem[i*st->mem_alloc_size+j+st->magic_samples[i]];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
SpeexResamplerState *speex_resampler_init(int nb_channels, int ratio_num, int ratio_den, int in_rate, int out_rate, int quality)
|
||
|
{
|
||
|
int i;
|
||
|
SpeexResamplerState *st = (SpeexResamplerState *)speex_alloc(sizeof(SpeexResamplerState));
|
||
|
st->initialised = 0;
|
||
|
st->started = 0;
|
||
|
st->in_rate = 0;
|
||
|
st->out_rate = 0;
|
||
|
st->num_rate = 0;
|
||
|
st->den_rate = 0;
|
||
|
st->quality = -1;
|
||
|
st->sinc_table_length = 0;
|
||
|
st->mem_alloc_size = 0;
|
||
|
st->filt_len = 0;
|
||
|
st->mem = 0;
|
||
|
st->resampler_ptr = 0;
|
||
|
|
||
|
st->cutoff = 1.f;
|
||
|
st->nb_channels = nb_channels;
|
||
|
st->in_stride = 1;
|
||
|
st->out_stride = 1;
|
||
|
|
||
|
/* Per channel data */
|
||
|
st->last_sample = (int*)speex_alloc(nb_channels*sizeof(int));
|
||
|
st->magic_samples = (int*)speex_alloc(nb_channels*sizeof(int));
|
||
|
st->samp_frac_num = (int*)speex_alloc(nb_channels*sizeof(int));
|
||
|
for (i=0;i<nb_channels;i++)
|
||
|
{
|
||
|
st->last_sample[i] = 0;
|
||
|
st->magic_samples[i] = 0;
|
||
|
st->samp_frac_num[i] = 0;
|
||
|
}
|
||
|
|
||
|
speex_resampler_set_quality(st, quality);
|
||
|
speex_resampler_set_rate(st, ratio_num, ratio_den, in_rate, out_rate);
|
||
|
|
||
|
|
||
|
update_filter(st);
|
||
|
|
||
|
st->initialised = 1;
|
||
|
return st;
|
||
|
}
|
||
|
|
||
|
void speex_resampler_destroy(SpeexResamplerState *st)
|
||
|
{
|
||
|
speex_free(st->mem);
|
||
|
speex_free(st->sinc_table);
|
||
|
speex_free(st->last_sample);
|
||
|
speex_free(st->magic_samples);
|
||
|
speex_free(st->samp_frac_num);
|
||
|
speex_free(st);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
static void speex_resampler_process_native(SpeexResamplerState *st, int channel_index, const spx_word16_t *in, int *in_len, spx_word16_t *out, int *out_len)
|
||
|
{
|
||
|
int j=0;
|
||
|
int N = st->filt_len;
|
||
|
int out_sample = 0;
|
||
|
spx_word16_t *mem;
|
||
|
int tmp_out_len = 0;
|
||
|
mem = st->mem + channel_index * st->mem_alloc_size;
|
||
|
st->started = 1;
|
||
|
|
||
|
/* Handle the case where we have samples left from a reduction in filter length */
|
||
|
if (st->magic_samples)
|
||
|
{
|
||
|
int tmp_in_len;
|
||
|
tmp_in_len = st->magic_samples[channel_index];
|
||
|
tmp_out_len = *out_len;
|
||
|
/* FIXME: Need to handle the case where the out array is too small */
|
||
|
/* magic_samples needs to be set to zero to avoid infinite recursion */
|
||
|
st->magic_samples = 0;
|
||
|
speex_resampler_process_native(st, channel_index, mem+N-1, &tmp_in_len, out, &tmp_out_len);
|
||
|
/*speex_warning_int("extra samples:", tmp_out_len);*/
|
||
|
out += tmp_out_len;
|
||
|
}
|
||
|
|
||
|
/* Call the right resampler through the function ptr */
|
||
|
out_sample = st->resampler_ptr(st, channel_index, in, in_len, out, out_len);
|
||
|
|
||
|
if (st->last_sample[channel_index] < *in_len)
|
||
|
*in_len = st->last_sample[channel_index];
|
||
|
*out_len = out_sample+tmp_out_len;
|
||
|
st->last_sample[channel_index] -= *in_len;
|
||
|
|
||
|
for (j=0;j<N-1-*in_len;j++)
|
||
|
mem[j] = mem[j+*in_len];
|
||
|
for (;j<N-1;j++)
|
||
|
mem[j] = in[st->in_stride*(j+*in_len-N+1)];
|
||
|
|
||
|
}
|
||
|
|
||
|
#ifdef FIXED_POINT
|
||
|
void speex_resampler_process_float(SpeexResamplerState *st, int channel_index, const float *in, int *in_len, float *out, int *out_len)
|
||
|
{
|
||
|
int i;
|
||
|
int istride_save, ostride_save;
|
||
|
spx_word16_t x[*in_len];
|
||
|
spx_word16_t y[*out_len];
|
||
|
istride_save = st->in_stride;
|
||
|
ostride_save = st->out_stride;
|
||
|
for (i=0;i<*in_len;i++)
|
||
|
x[i] = WORD2INT(in[i*st->in_stride]);
|
||
|
st->in_stride = st->out_stride = 1;
|
||
|
speex_resampler_process_native(st, channel_index, x, in_len, y, out_len);
|
||
|
st->in_stride = istride_save;
|
||
|
st->out_stride = ostride_save;
|
||
|
for (i=0;i<*out_len;i++)
|
||
|
out[i*st->out_stride] = y[i];
|
||
|
}
|
||
|
void speex_resampler_process_int(SpeexResamplerState *st, int channel_index, const spx_int16_t *in, int *in_len, spx_int16_t *out, int *out_len)
|
||
|
{
|
||
|
speex_resampler_process_native(st, channel_index, in, in_len, out, out_len);
|
||
|
}
|
||
|
#else
|
||
|
void speex_resampler_process_float(SpeexResamplerState *st, int channel_index, const float *in, int *in_len, float *out, int *out_len)
|
||
|
{
|
||
|
speex_resampler_process_native(st, channel_index, in, in_len, out, out_len);
|
||
|
}
|
||
|
void speex_resampler_process_int(SpeexResamplerState *st, int channel_index, const spx_int16_t *in, int *in_len, spx_int16_t *out, int *out_len)
|
||
|
{
|
||
|
int i;
|
||
|
int istride_save, ostride_save;
|
||
|
spx_word16_t x[*in_len];
|
||
|
spx_word16_t y[*out_len];
|
||
|
istride_save = st->in_stride;
|
||
|
ostride_save = st->out_stride;
|
||
|
for (i=0;i<*in_len;i++)
|
||
|
x[i] = in[i+st->in_stride];
|
||
|
st->in_stride = st->out_stride = 1;
|
||
|
speex_resampler_process_native(st, channel_index, x, in_len, y, out_len);
|
||
|
st->in_stride = istride_save;
|
||
|
st->out_stride = ostride_save;
|
||
|
for (i=0;i<*out_len;i++)
|
||
|
out[i+st->out_stride] = WORD2INT(y[i]);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
void speex_resampler_process_interleaved_float(SpeexResamplerState *st, const float *in, int *in_len, float *out, int *out_len)
|
||
|
{
|
||
|
int i;
|
||
|
int istride_save, ostride_save;
|
||
|
istride_save = st->in_stride;
|
||
|
ostride_save = st->out_stride;
|
||
|
st->in_stride = st->out_stride = st->nb_channels;
|
||
|
for (i=0;i<st->nb_channels;i++)
|
||
|
{
|
||
|
speex_resampler_process_float(st, i, in+i, in_len, out+i, out_len);
|
||
|
}
|
||
|
st->in_stride = istride_save;
|
||
|
st->out_stride = ostride_save;
|
||
|
}
|
||
|
|
||
|
|
||
|
void speex_resampler_set_rate(SpeexResamplerState *st, int ratio_num, int ratio_den, int in_rate, int out_rate)
|
||
|
{
|
||
|
int fact;
|
||
|
if (st->in_rate == in_rate && st->out_rate == out_rate && st->num_rate == ratio_num && st->den_rate == ratio_den)
|
||
|
return;
|
||
|
|
||
|
st->in_rate = in_rate;
|
||
|
st->out_rate = out_rate;
|
||
|
st->num_rate = ratio_num;
|
||
|
st->den_rate = ratio_den;
|
||
|
/* FIXME: This is terribly inefficient, but who cares (at least for now)? */
|
||
|
for (fact=2;fact<=sqrt(IMAX(in_rate, out_rate));fact++)
|
||
|
{
|
||
|
while ((st->num_rate % fact == 0) && (st->den_rate % fact == 0))
|
||
|
{
|
||
|
st->num_rate /= fact;
|
||
|
st->den_rate /= fact;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (st->initialised)
|
||
|
update_filter(st);
|
||
|
}
|
||
|
|
||
|
void speex_resampler_set_quality(SpeexResamplerState *st, int quality)
|
||
|
{
|
||
|
if (quality < 0)
|
||
|
quality = 0;
|
||
|
if (quality > 10)
|
||
|
quality = 10;
|
||
|
if (st->quality == quality)
|
||
|
return;
|
||
|
st->quality = quality;
|
||
|
if (st->initialised)
|
||
|
update_filter(st);
|
||
|
}
|
||
|
|
||
|
void speex_resampler_set_input_stride(SpeexResamplerState *st, int stride)
|
||
|
{
|
||
|
st->in_stride = stride;
|
||
|
}
|
||
|
|
||
|
void speex_resampler_set_output_stride(SpeexResamplerState *st, int stride)
|
||
|
{
|
||
|
st->out_stride = stride;
|
||
|
}
|
||
|
|
||
|
void speex_resampler_skip_zeros(SpeexResamplerState *st)
|
||
|
{
|
||
|
int i;
|
||
|
for (i=0;i<st->nb_channels;i++)
|
||
|
st->last_sample[i] = st->filt_len/2;
|
||
|
}
|
||
|
|
||
|
void speex_resampler_reset_mem(SpeexResamplerState *st)
|
||
|
{
|
||
|
int i;
|
||
|
for (i=0;i<st->nb_channels*(st->filt_len-1);i++)
|
||
|
st->mem[i] = 0;
|
||
|
}
|
||
|
|