2005-10-31 18:56:29 +00:00
|
|
|
/*
|
|
|
|
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
|
|
|
|
** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com
|
|
|
|
**
|
|
|
|
** This program is free software; you can redistribute it and/or modify
|
|
|
|
** it under the terms of the GNU General Public License as published by
|
|
|
|
** the Free Software Foundation; either version 2 of the License, or
|
|
|
|
** (at your option) any later version.
|
|
|
|
**
|
|
|
|
** This program is distributed in the hope that it will be useful,
|
|
|
|
** but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
** GNU General Public License for more details.
|
|
|
|
**
|
|
|
|
** You should have received a copy of the GNU General Public License
|
|
|
|
** along with this program; if not, write to the Free Software
|
|
|
|
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
|
|
**
|
|
|
|
** Any non-GPL usage of this software or parts of this software is strictly
|
|
|
|
** forbidden.
|
|
|
|
**
|
|
|
|
** Commercial non-GPL licensing of this software is possible.
|
|
|
|
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
|
|
|
|
**
|
|
|
|
** $Id$
|
|
|
|
**/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Algorithmically based on Fortran-77 FFTPACK
|
|
|
|
* by Paul N. Swarztrauber(Version 4, 1985).
|
|
|
|
*
|
|
|
|
* Does even sized fft only
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* isign is +1 for backward and -1 for forward transforms */
|
|
|
|
|
|
|
|
#include "common.h"
|
|
|
|
#include "structs.h"
|
|
|
|
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
|
|
|
#include "cfft.h"
|
|
|
|
#include "cfft_tab.h"
|
|
|
|
|
|
|
|
|
|
|
|
/* static function declarations */
|
|
|
|
static void passf2pos(const uint16_t ido, const uint16_t l1, const complex_t *cc,
|
|
|
|
complex_t *ch, const complex_t *wa);
|
|
|
|
static void passf2neg(const uint16_t ido, const uint16_t l1, const complex_t *cc,
|
|
|
|
complex_t *ch, const complex_t *wa);
|
|
|
|
static void passf3(const uint16_t ido, const uint16_t l1, const complex_t *cc,
|
|
|
|
complex_t *ch, const complex_t *wa1, const complex_t *wa2, const int8_t isign);
|
|
|
|
static void passf4pos(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch,
|
|
|
|
const complex_t *wa1, const complex_t *wa2, const complex_t *wa3);
|
|
|
|
static void passf4neg(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch,
|
|
|
|
const complex_t *wa1, const complex_t *wa2, const complex_t *wa3);
|
|
|
|
static void passf5(const uint16_t ido, const uint16_t l1, const complex_t *cc, complex_t *ch,
|
|
|
|
const complex_t *wa1, const complex_t *wa2, const complex_t *wa3,
|
|
|
|
const complex_t *wa4, const int8_t isign);
|
|
|
|
INLINE void cfftf1(uint16_t n, complex_t *c, complex_t *ch,
|
|
|
|
const uint16_t *ifac, const complex_t *wa, const int8_t isign);
|
|
|
|
static void cffti1(uint16_t n, complex_t *wa, uint16_t *ifac);
|
|
|
|
|
|
|
|
|
|
|
|
/*----------------------------------------------------------------------
|
|
|
|
passf2, passf3, passf4, passf5. Complex FFT passes fwd and bwd.
|
|
|
|
----------------------------------------------------------------------*/
|
|
|
|
|
|
|
|
static void passf2pos(const uint16_t ido, const uint16_t l1, const complex_t *cc,
|
|
|
|
complex_t *ch, const complex_t *wa)
|
|
|
|
{
|
|
|
|
uint16_t i, k, ah, ac;
|
|
|
|
|
|
|
|
if (ido == 1)
|
|
|
|
{
|
|
|
|
for (k = 0; k < l1; k++)
|
|
|
|
{
|
|
|
|
ah = 2*k;
|
|
|
|
ac = 4*k;
|
|
|
|
|
|
|
|
RE(ch[ah]) = RE(cc[ac]) + RE(cc[ac+1]);
|
|
|
|
RE(ch[ah+l1]) = RE(cc[ac]) - RE(cc[ac+1]);
|
|
|
|
IM(ch[ah]) = IM(cc[ac]) + IM(cc[ac+1]);
|
|
|
|
IM(ch[ah+l1]) = IM(cc[ac]) - IM(cc[ac+1]);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (k = 0; k < l1; k++)
|
|
|
|
{
|
|
|
|
ah = k*ido;
|
|
|
|
ac = 2*k*ido;
|
|
|
|
|
|
|
|
for (i = 0; i < ido; i++)
|
|
|
|
{
|
|
|
|
complex_t t2;
|
|
|
|
|
|
|
|
RE(ch[ah+i]) = RE(cc[ac+i]) + RE(cc[ac+i+ido]);
|
|
|
|
RE(t2) = RE(cc[ac+i]) - RE(cc[ac+i+ido]);
|
|
|
|
|
|
|
|
IM(ch[ah+i]) = IM(cc[ac+i]) + IM(cc[ac+i+ido]);
|
|
|
|
IM(t2) = IM(cc[ac+i]) - IM(cc[ac+i+ido]);
|
|
|
|
|
|
|
|
#if 1
|
|
|
|
ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]),
|
|
|
|
IM(t2), RE(t2), RE(wa[i]), IM(wa[i]));
|
|
|
|
#else
|
|
|
|
ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]),
|
|
|
|
RE(t2), IM(t2), RE(wa[i]), IM(wa[i]));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void passf2neg(const uint16_t ido, const uint16_t l1, const complex_t *cc,
|
|
|
|
complex_t *ch, const complex_t *wa)
|
|
|
|
{
|
|
|
|
uint16_t i, k, ah, ac;
|
|
|
|
|
|
|
|
if (ido == 1)
|
|
|
|
{
|
|
|
|
for (k = 0; k < l1; k++)
|
|
|
|
{
|
|
|
|
ah = 2*k;
|
|
|
|
ac = 4*k;
|
|
|
|
|
|
|
|
RE(ch[ah]) = RE(cc[ac]) + RE(cc[ac+1]);
|
|
|
|
RE(ch[ah+l1]) = RE(cc[ac]) - RE(cc[ac+1]);
|
|
|
|
IM(ch[ah]) = IM(cc[ac]) + IM(cc[ac+1]);
|
|
|
|
IM(ch[ah+l1]) = IM(cc[ac]) - IM(cc[ac+1]);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (k = 0; k < l1; k++)
|
|
|
|
{
|
|
|
|
ah = k*ido;
|
|
|
|
ac = 2*k*ido;
|
|
|
|
|
|
|
|
for (i = 0; i < ido; i++)
|
|
|
|
{
|
|
|
|
complex_t t2;
|
|
|
|
|
|
|
|
RE(ch[ah+i]) = RE(cc[ac+i]) + RE(cc[ac+i+ido]);
|
|
|
|
RE(t2) = RE(cc[ac+i]) - RE(cc[ac+i+ido]);
|
|
|
|
|
|
|
|
IM(ch[ah+i]) = IM(cc[ac+i]) + IM(cc[ac+i+ido]);
|
|
|
|
IM(t2) = IM(cc[ac+i]) - IM(cc[ac+i+ido]);
|
|
|
|
|
|
|
|
#if 1
|
|
|
|
ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]),
|
|
|
|
RE(t2), IM(t2), RE(wa[i]), IM(wa[i]));
|
|
|
|
#else
|
|
|
|
ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]),
|
|
|
|
IM(t2), RE(t2), RE(wa[i]), IM(wa[i]));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void passf3(const uint16_t ido, const uint16_t l1, const complex_t *cc,
|
|
|
|
complex_t *ch, const complex_t *wa1, const complex_t *wa2,
|
|
|
|
const int8_t isign)
|
|
|
|
{
|
|
|
|
static real_t taur = FRAC_CONST(-0.5);
|
|
|
|
static real_t taui = FRAC_CONST(0.866025403784439);
|
|
|
|
uint16_t i, k, ac, ah;
|
|
|
|
complex_t c2, c3, d2, d3, t2;
|
|
|
|
|
|
|
|
if (ido == 1)
|
|
|
|
{
|
|
|
|
if (isign == 1)
|
|
|
|
{
|
|
|
|
for (k = 0; k < l1; k++)
|
|
|
|
{
|
|
|
|
ac = 3*k+1;
|
|
|
|
ah = k;
|
|
|
|
|
|
|
|
RE(t2) = RE(cc[ac]) + RE(cc[ac+1]);
|
|
|
|
IM(t2) = IM(cc[ac]) + IM(cc[ac+1]);
|
|
|
|
RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),taur);
|
|
|
|
IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),taur);
|
|
|
|
|
|
|
|
RE(ch[ah]) = RE(cc[ac-1]) + RE(t2);
|
|
|
|
IM(ch[ah]) = IM(cc[ac-1]) + IM(t2);
|
|
|
|
|
|
|
|
RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+1])), taui);
|
|
|
|
IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+1])), taui);
|
|
|
|
|
|
|
|
RE(ch[ah+l1]) = RE(c2) - IM(c3);
|
|
|
|
IM(ch[ah+l1]) = IM(c2) + RE(c3);
|
|
|
|
RE(ch[ah+2*l1]) = RE(c2) + IM(c3);
|
|
|
|
IM(ch[ah+2*l1]) = IM(c2) - RE(c3);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (k = 0; k < l1; k++)
|
|
|
|
{
|
|
|
|
ac = 3*k+1;
|
|
|
|
ah = k;
|
|
|
|
|
|
|
|
RE(t2) = RE(cc[ac]) + RE(cc[ac+1]);
|
|
|
|
IM(t2) = IM(cc[ac]) + IM(cc[ac+1]);
|
|
|
|
RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),taur);
|
|
|
|
IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),taur);
|
|
|
|
|
|
|
|
RE(ch[ah]) = RE(cc[ac-1]) + RE(t2);
|
|
|
|
IM(ch[ah]) = IM(cc[ac-1]) + IM(t2);
|
|
|
|
|
|
|
|
RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+1])), taui);
|
|
|
|
IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+1])), taui);
|
|
|
|
|
|
|
|
RE(ch[ah+l1]) = RE(c2) + IM(c3);
|
|
|
|
IM(ch[ah+l1]) = IM(c2) - RE(c3);
|
|
|
|
RE(ch[ah+2*l1]) = RE(c2) - IM(c3);
|
|
|
|
IM(ch[ah+2*l1]) = IM(c2) + RE(c3);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (isign == 1)
|
|
|
|
{
|
|
|
|
for (k = 0; k < l1; k++)
|
|
|
|
{
|
|
|
|
for (i = 0; i < ido; i++)
|
|
|
|
{
|
|
|
|
ac = i + (3*k+1)*ido;
|
|
|
|
ah = i + k * ido;
|
|
|
|
|
|
|
|
RE(t2) = RE(cc[ac]) + RE(cc[ac+ido]);
|
|
|
|
RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),taur);
|
|
|
|
IM(t2) = IM(cc[ac]) + IM(cc[ac+ido]);
|
|
|
|
IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),taur);
|
|
|
|
|
|
|
|
RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2);
|
|
|
|
IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2);
|
|
|
|
|
|
|
|
RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+ido])), taui);
|
|
|
|
IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+ido])), taui);
|
|
|
|
|
|
|
|
RE(d2) = RE(c2) - IM(c3);
|
|
|
|
IM(d3) = IM(c2) - RE(c3);
|
|
|
|
RE(d3) = RE(c2) + IM(c3);
|
|
|
|
IM(d2) = IM(c2) + RE(c3);
|
|
|
|
|
|
|
|
#if 1
|
|
|
|
ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]),
|
|
|
|
IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i]));
|
|
|
|
ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]),
|
|
|
|
IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i]));
|
|
|
|
#else
|
|
|
|
ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]),
|
|
|
|
RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i]));
|
|
|
|
ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]),
|
|
|
|
RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i]));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (k = 0; k < l1; k++)
|
|
|
|
{
|
|
|
|
for (i = 0; i < ido; i++)
|
|
|
|
{
|
|
|
|
ac = i + (3*k+1)*ido;
|
|
|
|
ah = i + k * ido;
|
|
|
|
|
|
|
|
RE(t2) = RE(cc[ac]) + RE(cc[ac+ido]);
|
|
|
|
RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),taur);
|
|
|
|
IM(t2) = IM(cc[ac]) + IM(cc[ac+ido]);
|
|
|
|
IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),taur);
|
|
|
|
|
|
|
|
RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2);
|
|
|
|
IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2);
|
|
|
|
|
|
|
|
RE(c3) = MUL_F((RE(cc[ac]) - RE(cc[ac+ido])), taui);
|
|
|
|
IM(c3) = MUL_F((IM(cc[ac]) - IM(cc[ac+ido])), taui);
|
|
|
|
|
|
|
|
RE(d2) = RE(c2) + IM(c3);
|
|
|
|
IM(d3) = IM(c2) + RE(c3);
|
|
|
|
RE(d3) = RE(c2) - IM(c3);
|
|
|
|
IM(d2) = IM(c2) - RE(c3);
|
|
|
|
|
|
|
|
#if 1
|
|
|
|
ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]),
|
|
|
|
RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i]));
|
|
|
|
ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]),
|
|
|
|
RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i]));
|
|
|
|
#else
|
|
|
|
ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]),
|
|
|
|
IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i]));
|
|
|
|
ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]),
|
|
|
|
IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i]));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void passf4pos(const uint16_t ido, const uint16_t l1, const complex_t *cc,
|
|
|
|
complex_t *ch, const complex_t *wa1, const complex_t *wa2,
|
|
|
|
const complex_t *wa3)
|
|
|
|
{
|
|
|
|
uint16_t i, k, ac, ah;
|
|
|
|
|
|
|
|
if (ido == 1)
|
|
|
|
{
|
|
|
|
for (k = 0; k < l1; k++)
|
|
|
|
{
|
|
|
|
complex_t t1, t2, t3, t4;
|
|
|
|
|
|
|
|
ac = 4*k;
|
|
|
|
ah = k;
|
|
|
|
|
|
|
|
RE(t2) = RE(cc[ac]) + RE(cc[ac+2]);
|
|
|
|
RE(t1) = RE(cc[ac]) - RE(cc[ac+2]);
|
|
|
|
IM(t2) = IM(cc[ac]) + IM(cc[ac+2]);
|
|
|
|
IM(t1) = IM(cc[ac]) - IM(cc[ac+2]);
|
|
|
|
RE(t3) = RE(cc[ac+1]) + RE(cc[ac+3]);
|
|
|
|
IM(t4) = RE(cc[ac+1]) - RE(cc[ac+3]);
|
|
|
|
IM(t3) = IM(cc[ac+3]) + IM(cc[ac+1]);
|
|
|
|
RE(t4) = IM(cc[ac+3]) - IM(cc[ac+1]);
|
|
|
|
|
|
|
|
RE(ch[ah]) = RE(t2) + RE(t3);
|
|
|
|
RE(ch[ah+2*l1]) = RE(t2) - RE(t3);
|
|
|
|
|
|
|
|
IM(ch[ah]) = IM(t2) + IM(t3);
|
|
|
|
IM(ch[ah+2*l1]) = IM(t2) - IM(t3);
|
|
|
|
|
|
|
|
RE(ch[ah+l1]) = RE(t1) + RE(t4);
|
|
|
|
RE(ch[ah+3*l1]) = RE(t1) - RE(t4);
|
|
|
|
|
|
|
|
IM(ch[ah+l1]) = IM(t1) + IM(t4);
|
|
|
|
IM(ch[ah+3*l1]) = IM(t1) - IM(t4);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (k = 0; k < l1; k++)
|
|
|
|
{
|
|
|
|
ac = 4*k*ido;
|
|
|
|
ah = k*ido;
|
|
|
|
|
|
|
|
for (i = 0; i < ido; i++)
|
|
|
|
{
|
|
|
|
complex_t c2, c3, c4, t1, t2, t3, t4;
|
|
|
|
|
|
|
|
RE(t2) = RE(cc[ac+i]) + RE(cc[ac+i+2*ido]);
|
|
|
|
RE(t1) = RE(cc[ac+i]) - RE(cc[ac+i+2*ido]);
|
|
|
|
IM(t2) = IM(cc[ac+i]) + IM(cc[ac+i+2*ido]);
|
|
|
|
IM(t1) = IM(cc[ac+i]) - IM(cc[ac+i+2*ido]);
|
|
|
|
RE(t3) = RE(cc[ac+i+ido]) + RE(cc[ac+i+3*ido]);
|
|
|
|
IM(t4) = RE(cc[ac+i+ido]) - RE(cc[ac+i+3*ido]);
|
|
|
|
IM(t3) = IM(cc[ac+i+3*ido]) + IM(cc[ac+i+ido]);
|
|
|
|
RE(t4) = IM(cc[ac+i+3*ido]) - IM(cc[ac+i+ido]);
|
|
|
|
|
|
|
|
RE(c2) = RE(t1) + RE(t4);
|
|
|
|
RE(c4) = RE(t1) - RE(t4);
|
|
|
|
|
|
|
|
IM(c2) = IM(t1) + IM(t4);
|
|
|
|
IM(c4) = IM(t1) - IM(t4);
|
|
|
|
|
|
|
|
RE(ch[ah+i]) = RE(t2) + RE(t3);
|
|
|
|
RE(c3) = RE(t2) - RE(t3);
|
|
|
|
|
|
|
|
IM(ch[ah+i]) = IM(t2) + IM(t3);
|
|
|
|
IM(c3) = IM(t2) - IM(t3);
|
|
|
|
|
|
|
|
#if 1
|
|
|
|
ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]),
|
|
|
|
IM(c2), RE(c2), RE(wa1[i]), IM(wa1[i]));
|
|
|
|
ComplexMult(&IM(ch[ah+i+2*l1*ido]), &RE(ch[ah+i+2*l1*ido]),
|
|
|
|
IM(c3), RE(c3), RE(wa2[i]), IM(wa2[i]));
|
|
|
|
ComplexMult(&IM(ch[ah+i+3*l1*ido]), &RE(ch[ah+i+3*l1*ido]),
|
|
|
|
IM(c4), RE(c4), RE(wa3[i]), IM(wa3[i]));
|
|
|
|
#else
|
|
|
|
ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]),
|
|
|
|
RE(c2), IM(c2), RE(wa1[i]), IM(wa1[i]));
|
|
|
|
ComplexMult(&RE(ch[ah+i+2*l1*ido]), &IM(ch[ah+i+2*l1*ido]),
|
|
|
|
RE(c3), IM(c3), RE(wa2[i]), IM(wa2[i]));
|
|
|
|
ComplexMult(&RE(ch[ah+i+3*l1*ido]), &IM(ch[ah+i+3*l1*ido]),
|
|
|
|
RE(c4), IM(c4), RE(wa3[i]), IM(wa3[i]));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void passf4neg(const uint16_t ido, const uint16_t l1, const complex_t *cc,
|
|
|
|
complex_t *ch, const complex_t *wa1, const complex_t *wa2,
|
|
|
|
const complex_t *wa3)
|
|
|
|
{
|
|
|
|
uint16_t i, k, ac, ah;
|
|
|
|
|
|
|
|
if (ido == 1)
|
|
|
|
{
|
|
|
|
for (k = 0; k < l1; k++)
|
|
|
|
{
|
|
|
|
complex_t t1, t2, t3, t4;
|
|
|
|
|
|
|
|
ac = 4*k;
|
|
|
|
ah = k;
|
|
|
|
|
|
|
|
RE(t2) = RE(cc[ac]) + RE(cc[ac+2]);
|
|
|
|
RE(t1) = RE(cc[ac]) - RE(cc[ac+2]);
|
|
|
|
IM(t2) = IM(cc[ac]) + IM(cc[ac+2]);
|
|
|
|
IM(t1) = IM(cc[ac]) - IM(cc[ac+2]);
|
|
|
|
RE(t3) = RE(cc[ac+1]) + RE(cc[ac+3]);
|
|
|
|
IM(t4) = RE(cc[ac+1]) - RE(cc[ac+3]);
|
|
|
|
IM(t3) = IM(cc[ac+3]) + IM(cc[ac+1]);
|
|
|
|
RE(t4) = IM(cc[ac+3]) - IM(cc[ac+1]);
|
|
|
|
|
|
|
|
RE(ch[ah]) = RE(t2) + RE(t3);
|
|
|
|
RE(ch[ah+2*l1]) = RE(t2) - RE(t3);
|
|
|
|
|
|
|
|
IM(ch[ah]) = IM(t2) + IM(t3);
|
|
|
|
IM(ch[ah+2*l1]) = IM(t2) - IM(t3);
|
|
|
|
|
|
|
|
RE(ch[ah+l1]) = RE(t1) - RE(t4);
|
|
|
|
RE(ch[ah+3*l1]) = RE(t1) + RE(t4);
|
|
|
|
|
|
|
|
IM(ch[ah+l1]) = IM(t1) - IM(t4);
|
|
|
|
IM(ch[ah+3*l1]) = IM(t1) + IM(t4);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (k = 0; k < l1; k++)
|
|
|
|
{
|
|
|
|
ac = 4*k*ido;
|
|
|
|
ah = k*ido;
|
|
|
|
|
|
|
|
for (i = 0; i < ido; i++)
|
|
|
|
{
|
|
|
|
complex_t c2, c3, c4, t1, t2, t3, t4;
|
|
|
|
|
|
|
|
RE(t2) = RE(cc[ac+i]) + RE(cc[ac+i+2*ido]);
|
|
|
|
RE(t1) = RE(cc[ac+i]) - RE(cc[ac+i+2*ido]);
|
|
|
|
IM(t2) = IM(cc[ac+i]) + IM(cc[ac+i+2*ido]);
|
|
|
|
IM(t1) = IM(cc[ac+i]) - IM(cc[ac+i+2*ido]);
|
|
|
|
RE(t3) = RE(cc[ac+i+ido]) + RE(cc[ac+i+3*ido]);
|
|
|
|
IM(t4) = RE(cc[ac+i+ido]) - RE(cc[ac+i+3*ido]);
|
|
|
|
IM(t3) = IM(cc[ac+i+3*ido]) + IM(cc[ac+i+ido]);
|
|
|
|
RE(t4) = IM(cc[ac+i+3*ido]) - IM(cc[ac+i+ido]);
|
|
|
|
|
|
|
|
RE(c2) = RE(t1) - RE(t4);
|
|
|
|
RE(c4) = RE(t1) + RE(t4);
|
|
|
|
|
|
|
|
IM(c2) = IM(t1) - IM(t4);
|
|
|
|
IM(c4) = IM(t1) + IM(t4);
|
|
|
|
|
|
|
|
RE(ch[ah+i]) = RE(t2) + RE(t3);
|
|
|
|
RE(c3) = RE(t2) - RE(t3);
|
|
|
|
|
|
|
|
IM(ch[ah+i]) = IM(t2) + IM(t3);
|
|
|
|
IM(c3) = IM(t2) - IM(t3);
|
|
|
|
|
|
|
|
#if 1
|
|
|
|
ComplexMult(&RE(ch[ah+i+l1*ido]), &IM(ch[ah+i+l1*ido]),
|
|
|
|
RE(c2), IM(c2), RE(wa1[i]), IM(wa1[i]));
|
|
|
|
ComplexMult(&RE(ch[ah+i+2*l1*ido]), &IM(ch[ah+i+2*l1*ido]),
|
|
|
|
RE(c3), IM(c3), RE(wa2[i]), IM(wa2[i]));
|
|
|
|
ComplexMult(&RE(ch[ah+i+3*l1*ido]), &IM(ch[ah+i+3*l1*ido]),
|
|
|
|
RE(c4), IM(c4), RE(wa3[i]), IM(wa3[i]));
|
|
|
|
#else
|
|
|
|
ComplexMult(&IM(ch[ah+i+l1*ido]), &RE(ch[ah+i+l1*ido]),
|
|
|
|
IM(c2), RE(c2), RE(wa1[i]), IM(wa1[i]));
|
|
|
|
ComplexMult(&IM(ch[ah+i+2*l1*ido]), &RE(ch[ah+i+2*l1*ido]),
|
|
|
|
IM(c3), RE(c3), RE(wa2[i]), IM(wa2[i]));
|
|
|
|
ComplexMult(&IM(ch[ah+i+3*l1*ido]), &RE(ch[ah+i+3*l1*ido]),
|
|
|
|
IM(c4), RE(c4), RE(wa3[i]), IM(wa3[i]));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void passf5(const uint16_t ido, const uint16_t l1, const complex_t *cc,
|
|
|
|
complex_t *ch, const complex_t *wa1, const complex_t *wa2, const complex_t *wa3,
|
|
|
|
const complex_t *wa4, const int8_t isign)
|
|
|
|
{
|
|
|
|
static real_t tr11 = FRAC_CONST(0.309016994374947);
|
|
|
|
static real_t ti11 = FRAC_CONST(0.951056516295154);
|
|
|
|
static real_t tr12 = FRAC_CONST(-0.809016994374947);
|
|
|
|
static real_t ti12 = FRAC_CONST(0.587785252292473);
|
|
|
|
uint16_t i, k, ac, ah;
|
|
|
|
complex_t c2, c3, c4, c5, d3, d4, d5, d2, t2, t3, t4, t5;
|
|
|
|
|
|
|
|
if (ido == 1)
|
|
|
|
{
|
|
|
|
if (isign == 1)
|
|
|
|
{
|
|
|
|
for (k = 0; k < l1; k++)
|
|
|
|
{
|
|
|
|
ac = 5*k + 1;
|
|
|
|
ah = k;
|
|
|
|
|
|
|
|
RE(t2) = RE(cc[ac]) + RE(cc[ac+3]);
|
|
|
|
IM(t2) = IM(cc[ac]) + IM(cc[ac+3]);
|
|
|
|
RE(t3) = RE(cc[ac+1]) + RE(cc[ac+2]);
|
|
|
|
IM(t3) = IM(cc[ac+1]) + IM(cc[ac+2]);
|
|
|
|
RE(t4) = RE(cc[ac+1]) - RE(cc[ac+2]);
|
|
|
|
IM(t4) = IM(cc[ac+1]) - IM(cc[ac+2]);
|
|
|
|
RE(t5) = RE(cc[ac]) - RE(cc[ac+3]);
|
|
|
|
IM(t5) = IM(cc[ac]) - IM(cc[ac+3]);
|
|
|
|
|
|
|
|
RE(ch[ah]) = RE(cc[ac-1]) + RE(t2) + RE(t3);
|
|
|
|
IM(ch[ah]) = IM(cc[ac-1]) + IM(t2) + IM(t3);
|
|
|
|
|
|
|
|
RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12);
|
|
|
|
IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12);
|
|
|
|
RE(c3) = RE(cc[ac-1]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11);
|
|
|
|
IM(c3) = IM(cc[ac-1]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11);
|
|
|
|
|
|
|
|
ComplexMult(&RE(c5), &RE(c4),
|
|
|
|
ti11, ti12, RE(t5), RE(t4));
|
|
|
|
ComplexMult(&IM(c5), &IM(c4),
|
|
|
|
ti11, ti12, IM(t5), IM(t4));
|
|
|
|
|
|
|
|
RE(ch[ah+l1]) = RE(c2) - IM(c5);
|
|
|
|
IM(ch[ah+l1]) = IM(c2) + RE(c5);
|
|
|
|
RE(ch[ah+2*l1]) = RE(c3) - IM(c4);
|
|
|
|
IM(ch[ah+2*l1]) = IM(c3) + RE(c4);
|
|
|
|
RE(ch[ah+3*l1]) = RE(c3) + IM(c4);
|
|
|
|
IM(ch[ah+3*l1]) = IM(c3) - RE(c4);
|
|
|
|
RE(ch[ah+4*l1]) = RE(c2) + IM(c5);
|
|
|
|
IM(ch[ah+4*l1]) = IM(c2) - RE(c5);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (k = 0; k < l1; k++)
|
|
|
|
{
|
|
|
|
ac = 5*k + 1;
|
|
|
|
ah = k;
|
|
|
|
|
|
|
|
RE(t2) = RE(cc[ac]) + RE(cc[ac+3]);
|
|
|
|
IM(t2) = IM(cc[ac]) + IM(cc[ac+3]);
|
|
|
|
RE(t3) = RE(cc[ac+1]) + RE(cc[ac+2]);
|
|
|
|
IM(t3) = IM(cc[ac+1]) + IM(cc[ac+2]);
|
|
|
|
RE(t4) = RE(cc[ac+1]) - RE(cc[ac+2]);
|
|
|
|
IM(t4) = IM(cc[ac+1]) - IM(cc[ac+2]);
|
|
|
|
RE(t5) = RE(cc[ac]) - RE(cc[ac+3]);
|
|
|
|
IM(t5) = IM(cc[ac]) - IM(cc[ac+3]);
|
|
|
|
|
|
|
|
RE(ch[ah]) = RE(cc[ac-1]) + RE(t2) + RE(t3);
|
|
|
|
IM(ch[ah]) = IM(cc[ac-1]) + IM(t2) + IM(t3);
|
|
|
|
|
|
|
|
RE(c2) = RE(cc[ac-1]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12);
|
|
|
|
IM(c2) = IM(cc[ac-1]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12);
|
|
|
|
RE(c3) = RE(cc[ac-1]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11);
|
|
|
|
IM(c3) = IM(cc[ac-1]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11);
|
|
|
|
|
|
|
|
ComplexMult(&RE(c4), &RE(c5),
|
|
|
|
ti12, ti11, RE(t5), RE(t4));
|
|
|
|
ComplexMult(&IM(c4), &IM(c5),
|
|
|
|
ti12, ti12, IM(t5), IM(t4));
|
|
|
|
|
|
|
|
RE(ch[ah+l1]) = RE(c2) + IM(c5);
|
|
|
|
IM(ch[ah+l1]) = IM(c2) - RE(c5);
|
|
|
|
RE(ch[ah+2*l1]) = RE(c3) + IM(c4);
|
|
|
|
IM(ch[ah+2*l1]) = IM(c3) - RE(c4);
|
|
|
|
RE(ch[ah+3*l1]) = RE(c3) - IM(c4);
|
|
|
|
IM(ch[ah+3*l1]) = IM(c3) + RE(c4);
|
|
|
|
RE(ch[ah+4*l1]) = RE(c2) - IM(c5);
|
|
|
|
IM(ch[ah+4*l1]) = IM(c2) + RE(c5);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (isign == 1)
|
|
|
|
{
|
|
|
|
for (k = 0; k < l1; k++)
|
|
|
|
{
|
|
|
|
for (i = 0; i < ido; i++)
|
|
|
|
{
|
|
|
|
ac = i + (k*5 + 1) * ido;
|
|
|
|
ah = i + k * ido;
|
|
|
|
|
|
|
|
RE(t2) = RE(cc[ac]) + RE(cc[ac+3*ido]);
|
|
|
|
IM(t2) = IM(cc[ac]) + IM(cc[ac+3*ido]);
|
|
|
|
RE(t3) = RE(cc[ac+ido]) + RE(cc[ac+2*ido]);
|
|
|
|
IM(t3) = IM(cc[ac+ido]) + IM(cc[ac+2*ido]);
|
|
|
|
RE(t4) = RE(cc[ac+ido]) - RE(cc[ac+2*ido]);
|
|
|
|
IM(t4) = IM(cc[ac+ido]) - IM(cc[ac+2*ido]);
|
|
|
|
RE(t5) = RE(cc[ac]) - RE(cc[ac+3*ido]);
|
|
|
|
IM(t5) = IM(cc[ac]) - IM(cc[ac+3*ido]);
|
|
|
|
|
|
|
|
RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2) + RE(t3);
|
|
|
|
IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2) + IM(t3);
|
|
|
|
|
|
|
|
RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12);
|
|
|
|
IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12);
|
|
|
|
RE(c3) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11);
|
|
|
|
IM(c3) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11);
|
|
|
|
|
|
|
|
ComplexMult(&RE(c5), &RE(c4),
|
|
|
|
ti11, ti12, RE(t5), RE(t4));
|
|
|
|
ComplexMult(&IM(c5), &IM(c4),
|
|
|
|
ti11, ti12, IM(t5), IM(t4));
|
|
|
|
|
|
|
|
IM(d2) = IM(c2) + RE(c5);
|
|
|
|
IM(d3) = IM(c3) + RE(c4);
|
|
|
|
RE(d4) = RE(c3) + IM(c4);
|
|
|
|
RE(d5) = RE(c2) + IM(c5);
|
|
|
|
RE(d2) = RE(c2) - IM(c5);
|
|
|
|
IM(d5) = IM(c2) - RE(c5);
|
|
|
|
RE(d3) = RE(c3) - IM(c4);
|
|
|
|
IM(d4) = IM(c3) - RE(c4);
|
|
|
|
|
|
|
|
#if 1
|
|
|
|
ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]),
|
|
|
|
IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i]));
|
|
|
|
ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]),
|
|
|
|
IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i]));
|
|
|
|
ComplexMult(&IM(ch[ah+3*l1*ido]), &RE(ch[ah+3*l1*ido]),
|
|
|
|
IM(d4), RE(d4), RE(wa3[i]), IM(wa3[i]));
|
|
|
|
ComplexMult(&IM(ch[ah+4*l1*ido]), &RE(ch[ah+4*l1*ido]),
|
|
|
|
IM(d5), RE(d5), RE(wa4[i]), IM(wa4[i]));
|
|
|
|
#else
|
|
|
|
ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]),
|
|
|
|
RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i]));
|
|
|
|
ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]),
|
|
|
|
RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i]));
|
|
|
|
ComplexMult(&RE(ch[ah+3*l1*ido]), &IM(ch[ah+3*l1*ido]),
|
|
|
|
RE(d4), IM(d4), RE(wa3[i]), IM(wa3[i]));
|
|
|
|
ComplexMult(&RE(ch[ah+4*l1*ido]), &IM(ch[ah+4*l1*ido]),
|
|
|
|
RE(d5), IM(d5), RE(wa4[i]), IM(wa4[i]));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (k = 0; k < l1; k++)
|
|
|
|
{
|
|
|
|
for (i = 0; i < ido; i++)
|
|
|
|
{
|
|
|
|
ac = i + (k*5 + 1) * ido;
|
|
|
|
ah = i + k * ido;
|
|
|
|
|
|
|
|
RE(t2) = RE(cc[ac]) + RE(cc[ac+3*ido]);
|
|
|
|
IM(t2) = IM(cc[ac]) + IM(cc[ac+3*ido]);
|
|
|
|
RE(t3) = RE(cc[ac+ido]) + RE(cc[ac+2*ido]);
|
|
|
|
IM(t3) = IM(cc[ac+ido]) + IM(cc[ac+2*ido]);
|
|
|
|
RE(t4) = RE(cc[ac+ido]) - RE(cc[ac+2*ido]);
|
|
|
|
IM(t4) = IM(cc[ac+ido]) - IM(cc[ac+2*ido]);
|
|
|
|
RE(t5) = RE(cc[ac]) - RE(cc[ac+3*ido]);
|
|
|
|
IM(t5) = IM(cc[ac]) - IM(cc[ac+3*ido]);
|
|
|
|
|
|
|
|
RE(ch[ah]) = RE(cc[ac-ido]) + RE(t2) + RE(t3);
|
|
|
|
IM(ch[ah]) = IM(cc[ac-ido]) + IM(t2) + IM(t3);
|
|
|
|
|
|
|
|
RE(c2) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr11) + MUL_F(RE(t3),tr12);
|
|
|
|
IM(c2) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr11) + MUL_F(IM(t3),tr12);
|
|
|
|
RE(c3) = RE(cc[ac-ido]) + MUL_F(RE(t2),tr12) + MUL_F(RE(t3),tr11);
|
|
|
|
IM(c3) = IM(cc[ac-ido]) + MUL_F(IM(t2),tr12) + MUL_F(IM(t3),tr11);
|
|
|
|
|
|
|
|
ComplexMult(&RE(c4), &RE(c5),
|
|
|
|
ti12, ti11, RE(t5), RE(t4));
|
|
|
|
ComplexMult(&IM(c4), &IM(c5),
|
|
|
|
ti12, ti12, IM(t5), IM(t4));
|
|
|
|
|
|
|
|
IM(d2) = IM(c2) - RE(c5);
|
|
|
|
IM(d3) = IM(c3) - RE(c4);
|
|
|
|
RE(d4) = RE(c3) - IM(c4);
|
|
|
|
RE(d5) = RE(c2) - IM(c5);
|
|
|
|
RE(d2) = RE(c2) + IM(c5);
|
|
|
|
IM(d5) = IM(c2) + RE(c5);
|
|
|
|
RE(d3) = RE(c3) + IM(c4);
|
|
|
|
IM(d4) = IM(c3) + RE(c4);
|
|
|
|
|
|
|
|
#if 1
|
|
|
|
ComplexMult(&RE(ch[ah+l1*ido]), &IM(ch[ah+l1*ido]),
|
|
|
|
RE(d2), IM(d2), RE(wa1[i]), IM(wa1[i]));
|
|
|
|
ComplexMult(&RE(ch[ah+2*l1*ido]), &IM(ch[ah+2*l1*ido]),
|
|
|
|
RE(d3), IM(d3), RE(wa2[i]), IM(wa2[i]));
|
|
|
|
ComplexMult(&RE(ch[ah+3*l1*ido]), &IM(ch[ah+3*l1*ido]),
|
|
|
|
RE(d4), IM(d4), RE(wa3[i]), IM(wa3[i]));
|
|
|
|
ComplexMult(&RE(ch[ah+4*l1*ido]), &IM(ch[ah+4*l1*ido]),
|
|
|
|
RE(d5), IM(d5), RE(wa4[i]), IM(wa4[i]));
|
|
|
|
#else
|
|
|
|
ComplexMult(&IM(ch[ah+l1*ido]), &RE(ch[ah+l1*ido]),
|
|
|
|
IM(d2), RE(d2), RE(wa1[i]), IM(wa1[i]));
|
|
|
|
ComplexMult(&IM(ch[ah+2*l1*ido]), &RE(ch[ah+2*l1*ido]),
|
|
|
|
IM(d3), RE(d3), RE(wa2[i]), IM(wa2[i]));
|
|
|
|
ComplexMult(&IM(ch[ah+3*l1*ido]), &RE(ch[ah+3*l1*ido]),
|
|
|
|
IM(d4), RE(d4), RE(wa3[i]), IM(wa3[i]));
|
|
|
|
ComplexMult(&IM(ch[ah+4*l1*ido]), &RE(ch[ah+4*l1*ido]),
|
|
|
|
IM(d5), RE(d5), RE(wa4[i]), IM(wa4[i]));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*----------------------------------------------------------------------
|
|
|
|
cfftf1, cfftf, cfftb, cffti1, cffti. Complex FFTs.
|
|
|
|
----------------------------------------------------------------------*/
|
|
|
|
|
|
|
|
static INLINE void cfftf1pos(uint16_t n, complex_t *c, complex_t *ch,
|
|
|
|
const uint16_t *ifac, const complex_t *wa,
|
|
|
|
const int8_t isign)
|
|
|
|
{
|
|
|
|
uint16_t i;
|
|
|
|
uint16_t k1, l1, l2;
|
|
|
|
uint16_t na, nf, ip, iw, ix2, ix3, ix4, ido, idl1;
|
|
|
|
|
|
|
|
nf = ifac[1];
|
|
|
|
na = 0;
|
|
|
|
l1 = 1;
|
|
|
|
iw = 0;
|
|
|
|
|
|
|
|
for (k1 = 2; k1 <= nf+1; k1++)
|
|
|
|
{
|
|
|
|
ip = ifac[k1];
|
|
|
|
l2 = ip*l1;
|
|
|
|
ido = n / l2;
|
|
|
|
idl1 = ido*l1;
|
|
|
|
|
|
|
|
switch (ip)
|
|
|
|
{
|
|
|
|
case 4:
|
|
|
|
ix2 = iw + ido;
|
|
|
|
ix3 = ix2 + ido;
|
|
|
|
|
|
|
|
if (na == 0)
|
|
|
|
passf4pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3]);
|
|
|
|
else
|
|
|
|
passf4pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3]);
|
|
|
|
|
|
|
|
na = 1 - na;
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
if (na == 0)
|
|
|
|
passf2pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw]);
|
|
|
|
else
|
|
|
|
passf2pos((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw]);
|
|
|
|
|
|
|
|
na = 1 - na;
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
ix2 = iw + ido;
|
|
|
|
|
|
|
|
if (na == 0)
|
|
|
|
passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], isign);
|
|
|
|
else
|
|
|
|
passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], isign);
|
|
|
|
|
|
|
|
na = 1 - na;
|
|
|
|
break;
|
|
|
|
case 5:
|
|
|
|
ix2 = iw + ido;
|
|
|
|
ix3 = ix2 + ido;
|
|
|
|
ix4 = ix3 + ido;
|
|
|
|
|
|
|
|
if (na == 0)
|
|
|
|
passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);
|
|
|
|
else
|
|
|
|
passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);
|
|
|
|
|
|
|
|
na = 1 - na;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
l1 = l2;
|
|
|
|
iw += (ip-1) * ido;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (na == 0)
|
|
|
|
return;
|
|
|
|
|
|
|
|
for (i = 0; i < n; i++)
|
|
|
|
{
|
|
|
|
RE(c[i]) = RE(ch[i]);
|
|
|
|
IM(c[i]) = IM(ch[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static INLINE void cfftf1neg(uint16_t n, complex_t *c, complex_t *ch,
|
|
|
|
const uint16_t *ifac, const complex_t *wa,
|
|
|
|
const int8_t isign)
|
|
|
|
{
|
|
|
|
uint16_t i;
|
|
|
|
uint16_t k1, l1, l2;
|
|
|
|
uint16_t na, nf, ip, iw, ix2, ix3, ix4, ido, idl1;
|
|
|
|
|
|
|
|
nf = ifac[1];
|
|
|
|
na = 0;
|
|
|
|
l1 = 1;
|
|
|
|
iw = 0;
|
|
|
|
|
|
|
|
for (k1 = 2; k1 <= nf+1; k1++)
|
|
|
|
{
|
|
|
|
ip = ifac[k1];
|
|
|
|
l2 = ip*l1;
|
|
|
|
ido = n / l2;
|
|
|
|
idl1 = ido*l1;
|
|
|
|
|
|
|
|
switch (ip)
|
|
|
|
{
|
|
|
|
case 4:
|
|
|
|
ix2 = iw + ido;
|
|
|
|
ix3 = ix2 + ido;
|
|
|
|
|
|
|
|
if (na == 0)
|
|
|
|
passf4neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3]);
|
|
|
|
else
|
|
|
|
passf4neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3]);
|
|
|
|
|
|
|
|
na = 1 - na;
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
if (na == 0)
|
|
|
|
passf2neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw]);
|
|
|
|
else
|
|
|
|
passf2neg((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw]);
|
|
|
|
|
|
|
|
na = 1 - na;
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
ix2 = iw + ido;
|
|
|
|
|
|
|
|
if (na == 0)
|
|
|
|
passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], isign);
|
|
|
|
else
|
|
|
|
passf3((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], isign);
|
|
|
|
|
|
|
|
na = 1 - na;
|
|
|
|
break;
|
|
|
|
case 5:
|
|
|
|
ix2 = iw + ido;
|
|
|
|
ix3 = ix2 + ido;
|
|
|
|
ix4 = ix3 + ido;
|
|
|
|
|
|
|
|
if (na == 0)
|
|
|
|
passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)c, ch, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);
|
|
|
|
else
|
|
|
|
passf5((const uint16_t)ido, (const uint16_t)l1, (const complex_t*)ch, c, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);
|
|
|
|
|
|
|
|
na = 1 - na;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
l1 = l2;
|
|
|
|
iw += (ip-1) * ido;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (na == 0)
|
|
|
|
return;
|
|
|
|
|
|
|
|
for (i = 0; i < n; i++)
|
|
|
|
{
|
|
|
|
RE(c[i]) = RE(ch[i]);
|
|
|
|
IM(c[i]) = IM(ch[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void cfftf(cfft_info *cfft, complex_t *c)
|
|
|
|
{
|
2007-12-09 03:40:40 +00:00
|
|
|
cfftf1neg(cfft->n, c, cfft->work, (const uint16_t*)cfft->ifac, (const complex_t*)cfft->tab, (const int8_t) -1);
|
2005-10-31 18:56:29 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void cfftb(cfft_info *cfft, complex_t *c)
|
|
|
|
{
|
2007-12-09 03:40:40 +00:00
|
|
|
cfftf1pos(cfft->n, c, cfft->work, (const uint16_t*)cfft->ifac, (const complex_t*)cfft->tab, (const int8_t) +1);
|
2005-10-31 18:56:29 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void cffti1(uint16_t n, complex_t *wa, uint16_t *ifac)
|
|
|
|
{
|
|
|
|
static uint16_t ntryh[4] = {3, 4, 2, 5};
|
|
|
|
#ifndef FIXED_POINT
|
|
|
|
real_t arg, argh, argld, fi;
|
|
|
|
uint16_t ido, ipm;
|
|
|
|
uint16_t i1, k1, l1, l2;
|
|
|
|
uint16_t ld, ii, ip;
|
|
|
|
#endif
|
|
|
|
uint16_t ntry = 0, i, j;
|
|
|
|
uint16_t ib;
|
|
|
|
uint16_t nf, nl, nq, nr;
|
|
|
|
|
2005-10-31 20:33:27 +00:00
|
|
|
(void)wa;
|
2005-10-31 18:56:29 +00:00
|
|
|
nl = n;
|
|
|
|
nf = 0;
|
|
|
|
j = 0;
|
|
|
|
|
|
|
|
startloop:
|
|
|
|
j++;
|
|
|
|
|
|
|
|
if (j <= 4)
|
|
|
|
ntry = ntryh[j-1];
|
|
|
|
else
|
|
|
|
ntry += 2;
|
|
|
|
|
|
|
|
do
|
|
|
|
{
|
|
|
|
nq = nl / ntry;
|
|
|
|
nr = nl - ntry*nq;
|
|
|
|
|
|
|
|
if (nr != 0)
|
|
|
|
goto startloop;
|
|
|
|
|
|
|
|
nf++;
|
|
|
|
ifac[nf+1] = ntry;
|
|
|
|
nl = nq;
|
|
|
|
|
|
|
|
if (ntry == 2 && nf != 1)
|
|
|
|
{
|
|
|
|
for (i = 2; i <= nf; i++)
|
|
|
|
{
|
|
|
|
ib = nf - i + 2;
|
|
|
|
ifac[ib+1] = ifac[ib];
|
|
|
|
}
|
|
|
|
ifac[2] = 2;
|
|
|
|
}
|
|
|
|
} while (nl != 1);
|
|
|
|
|
|
|
|
ifac[0] = n;
|
|
|
|
ifac[1] = nf;
|
|
|
|
|
|
|
|
#ifndef FIXED_POINT
|
|
|
|
argh = (real_t)2.0*(real_t)M_PI / (real_t)n;
|
|
|
|
i = 0;
|
|
|
|
l1 = 1;
|
|
|
|
|
|
|
|
for (k1 = 1; k1 <= nf; k1++)
|
|
|
|
{
|
|
|
|
ip = ifac[k1+1];
|
|
|
|
ld = 0;
|
|
|
|
l2 = l1*ip;
|
|
|
|
ido = n / l2;
|
|
|
|
ipm = ip - 1;
|
|
|
|
|
|
|
|
for (j = 0; j < ipm; j++)
|
|
|
|
{
|
|
|
|
i1 = i;
|
|
|
|
RE(wa[i]) = 1.0;
|
|
|
|
IM(wa[i]) = 0.0;
|
|
|
|
ld += l1;
|
|
|
|
fi = 0;
|
|
|
|
argld = ld*argh;
|
|
|
|
|
|
|
|
for (ii = 0; ii < ido; ii++)
|
|
|
|
{
|
|
|
|
i++;
|
|
|
|
fi++;
|
|
|
|
arg = fi * argld;
|
|
|
|
RE(wa[i]) = (real_t)cos(arg);
|
|
|
|
#if 1
|
|
|
|
IM(wa[i]) = (real_t)sin(arg);
|
|
|
|
#else
|
|
|
|
IM(wa[i]) = (real_t)-sin(arg);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ip > 5)
|
|
|
|
{
|
|
|
|
RE(wa[i1]) = RE(wa[i]);
|
|
|
|
IM(wa[i1]) = IM(wa[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
l1 = l2;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
cfft_info *cffti(uint16_t n)
|
|
|
|
{
|
|
|
|
cfft_info *cfft = (cfft_info*)faad_malloc(sizeof(cfft_info));
|
|
|
|
|
|
|
|
cfft->n = n;
|
2006-09-24 19:00:29 +00:00
|
|
|
|
|
|
|
if (n <= 512)
|
|
|
|
{
|
|
|
|
static complex_t work_buf[512] IBSS_ATTR;
|
|
|
|
|
|
|
|
cfft->work = work_buf;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
cfft->work = (complex_t*)faad_malloc(n*sizeof(complex_t));
|
|
|
|
}
|
2005-10-31 18:56:29 +00:00
|
|
|
|
|
|
|
#ifndef FIXED_POINT
|
|
|
|
cfft->tab = (complex_t*)faad_malloc(n*sizeof(complex_t));
|
|
|
|
|
|
|
|
cffti1(n, cfft->tab, cfft->ifac);
|
|
|
|
#else
|
|
|
|
cffti1(n, NULL, cfft->ifac);
|
|
|
|
|
|
|
|
switch (n)
|
|
|
|
{
|
|
|
|
case 64: cfft->tab = (complex_t*)cfft_tab_64; break;
|
|
|
|
case 512: cfft->tab = (complex_t*)cfft_tab_512; break;
|
|
|
|
#ifdef LD_DEC
|
|
|
|
case 256: cfft->tab = (complex_t*)cfft_tab_256; break;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef ALLOW_SMALL_FRAMELENGTH
|
|
|
|
case 60: cfft->tab = (complex_t*)cfft_tab_60; break;
|
|
|
|
case 480: cfft->tab = (complex_t*)cfft_tab_480; break;
|
|
|
|
#ifdef LD_DEC
|
|
|
|
case 240: cfft->tab = (complex_t*)cfft_tab_240; break;
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
case 128: cfft->tab = (complex_t*)cfft_tab_128; break;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
return cfft;
|
|
|
|
}
|
|
|
|
|
|
|
|
void cfftu(cfft_info *cfft)
|
|
|
|
{
|
|
|
|
if (cfft->work) faad_free(cfft->work);
|
|
|
|
#ifndef FIXED_POINT
|
|
|
|
if (cfft->tab) faad_free(cfft->tab);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (cfft) faad_free(cfft);
|
|
|
|
}
|
|
|
|
|