rockbox/firmware/drivers/lcd-h300.c

424 lines
13 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2004 by Linus Nielsen Feltzing
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "cpu.h"
#include "lcd.h"
#include "kernel.h"
#include "thread.h"
#include <string.h>
#include <stdlib.h>
#include "file.h"
#include "debug.h"
#include "system.h"
#include "font.h"
#include "bidi.h"
static bool display_on = false; /* is the display turned on? */
static bool display_flipped = false;
static int xoffset = 0; /* needed for flip */
/* register defines */
#define R_START_OSC 0x00
#define R_DRV_OUTPUT_CONTROL 0x01
#define R_DRV_WAVEFORM_CONTROL 0x02
#define R_ENTRY_MODE 0x03
#define R_COMPARE_REG1 0x04
#define R_COMPARE_REG2 0x05
#define R_DISP_CONTROL1 0x07
#define R_DISP_CONTROL2 0x08
#define R_DISP_CONTROL3 0x09
#define R_FRAME_CYCLE_CONTROL 0x0b
#define R_EXT_DISP_IF_CONTROL 0x0c
#define R_POWER_CONTROL1 0x10
#define R_POWER_CONTROL2 0x11
#define R_POWER_CONTROL3 0x12
#define R_POWER_CONTROL4 0x13
#define R_RAM_ADDR_SET 0x21
#define R_WRITE_DATA_2_GRAM 0x22
#define R_GAMMA_FINE_ADJ_POS1 0x30
#define R_GAMMA_FINE_ADJ_POS2 0x31
#define R_GAMMA_FINE_ADJ_POS3 0x32
#define R_GAMMA_GRAD_ADJ_POS 0x33
#define R_GAMMA_FINE_ADJ_NEG1 0x34
#define R_GAMMA_FINE_ADJ_NEG2 0x35
#define R_GAMMA_FINE_ADJ_NEG3 0x36
#define R_GAMMA_GRAD_ADJ_NEG 0x37
#define R_GAMMA_AMP_ADJ_RES_POS 0x38
#define R_GAMMA_AMP_AVG_ADJ_RES_NEG 0x39
#define R_GATE_SCAN_POS 0x40
#define R_VERT_SCROLL_CONTROL 0x41
#define R_1ST_SCR_DRV_POS 0x42
#define R_2ND_SCR_DRV_POS 0x43
#define R_HORIZ_RAM_ADDR_POS 0x44
#define R_VERT_RAM_ADDR_POS 0x45
#define LCD_CMD (*(volatile unsigned short *)0xf0000000)
#define LCD_DATA (*(volatile unsigned short *)0xf0000002)
/* called very frequently - inline! */
static inline void lcd_write_reg(int reg, int val)
{
LCD_CMD = reg;
LCD_DATA = val;
}
/* called very frequently - inline! */
static inline void lcd_begin_write_gram(void)
{
LCD_CMD = R_WRITE_DATA_2_GRAM;
}
/*** hardware configuration ***/
void lcd_set_contrast(int val)
{
(void)val;
}
void lcd_set_invert_display(bool yesno)
{
(void)yesno;
}
static void flip_lcd(bool yesno)
{
if (yesno)
{
lcd_write_reg(R_DRV_OUTPUT_CONTROL, 0x031b); /* 224 lines, GS=SS=1 */
lcd_write_reg(R_GATE_SCAN_POS, 0x0002); /* 16 lines offset */
lcd_write_reg(R_1ST_SCR_DRV_POS, 0xdf04); /* 4..223 */
}
else
{
lcd_write_reg(R_DRV_OUTPUT_CONTROL, 0x001b); /* 224 lines, GS=SS=0 */
lcd_write_reg(R_GATE_SCAN_POS, 0x0000);
lcd_write_reg(R_1ST_SCR_DRV_POS, 0xdb00); /* 0..219 */
}
}
/* turn the display upside down (call lcd_update() afterwards) */
void lcd_set_flip(bool yesno)
{
display_flipped = yesno;
xoffset = yesno ? 4 : 0;
if (display_on)
flip_lcd(yesno);
}
static void _display_on(void)
{
/** Sequence according to datasheet, p. 132 **/
lcd_write_reg(R_START_OSC, 0x0001); /* Start Oscilation */
sleep(1);
/* zero everything*/
lcd_write_reg(R_POWER_CONTROL1, 0x0000); /* STB = 0, SLP = 0 */
lcd_write_reg(R_DISP_CONTROL1, 0x0000); /* GON = 0, DTE = 0, D1-0 = 00b */
lcd_write_reg(R_POWER_CONTROL3, 0x0000); /* PON = 0 */
lcd_write_reg(R_POWER_CONTROL4, 0x0000); /* VCOMG = 0 */
sleep(1);
/* initialise power supply */
/* DC12-10 = 000b: Step-up1 = clock/8,
* DC02-00 = 000b: Step-up2 = clock/16,
* VC2-0 = 010b: VciOUT = 0.87 * VciLVL */
lcd_write_reg(R_POWER_CONTROL2, 0x0002);
/* VRH3-0 = 1000b: Vreg1OUT = REGP * 1.90 */
lcd_write_reg(R_POWER_CONTROL3, 0x0008);
/* VDV4-0 = 00110b: VcomA = Vreg1OUT * 0.76,
* VCM4-0 = 10000b: VcomH = Vreg1OUT * 0.70*/
lcd_write_reg(R_POWER_CONTROL4, 0x0610);
lcd_write_reg(R_POWER_CONTROL1, 0x0044); /* AP2-0 = 100b, DK = 1 */
lcd_write_reg(R_POWER_CONTROL3, 0x0018); /* PON = 1 */
sleep(4); /* Step-up circuit stabilising time */
/* start power supply */
lcd_write_reg(R_POWER_CONTROL1, 0x0540); /* BT2-0 = 101b, DK = 0 */
lcd_write_reg(R_POWER_CONTROL4, 0x2610); /* VCOMG = 1 */
/* other settings */
/* B/C = 1: n-line inversion form
* EOR = 1: polarity inversion occurs by applying an EOR to odd/even
* frame select signal and an n-line inversion signal.
* FLD = 01b: 1 field interlaced scan, external display iface */
lcd_write_reg(R_DRV_WAVEFORM_CONTROL, 0x0700);
/* Address counter updated in vertical direction; left to right;
* vertical increment horizontal increment.
* data format for 8bit transfer or spi = 65k (5,6,5)
* Reverse order of RGB to BGR for 18bit data written to GRAM
* Replace data on writing to GRAM */
lcd_write_reg(R_ENTRY_MODE, 0x7038);
flip_lcd(display_flipped);
lcd_write_reg(R_2ND_SCR_DRV_POS, 0x0000);
lcd_write_reg(R_VERT_SCROLL_CONTROL, 0x0000);
/* 19 clocks,no equalization */
lcd_write_reg(R_FRAME_CYCLE_CONTROL, 0x0002);
/* Transfer mode for RGB interface disabled
* internal clock operation;
* System interface/VSYNC interface */
lcd_write_reg(R_EXT_DISP_IF_CONTROL, 0x0003);
/* Front porch lines: 8; Back porch lines: 8; */
lcd_write_reg(R_DISP_CONTROL2, 0x0808);
/* Scan mode by the gate driver in the non-display area: disabled;
* Cycle of scan by the gate driver - set to 31frames(518ms),
* disabled by above setting */
lcd_write_reg(R_DISP_CONTROL3, 0x003f);
lcd_write_reg(R_GAMMA_FINE_ADJ_POS1, 0x0003);
lcd_write_reg(R_GAMMA_FINE_ADJ_POS2, 0x0707);
lcd_write_reg(R_GAMMA_FINE_ADJ_POS3, 0x0007);
lcd_write_reg(R_GAMMA_GRAD_ADJ_POS, 0x0705);
lcd_write_reg(R_GAMMA_FINE_ADJ_NEG1, 0x0007);
lcd_write_reg(R_GAMMA_FINE_ADJ_NEG2, 0x0000);
lcd_write_reg(R_GAMMA_FINE_ADJ_NEG3, 0x0407);
lcd_write_reg(R_GAMMA_GRAD_ADJ_NEG, 0x0507);
lcd_write_reg(R_GAMMA_AMP_ADJ_RES_POS, 0x1d09);
lcd_write_reg(R_GAMMA_AMP_AVG_ADJ_RES_NEG, 0x0303);
display_on=true; /* must be done before calling lcd_update() */
lcd_update();
sleep(4); /* op-amp stabilising time */
/** Sequence according to datasheet, p. 130 **/
lcd_write_reg(R_POWER_CONTROL1, 0x4540); /* SAP2-0=100, BT2-0=101, AP2-0=100 */
lcd_write_reg(R_DISP_CONTROL1, 0x0005); /* GON=0, DTE=0, REV=1, D1-0=01 */
sleep(2);
lcd_write_reg(R_DISP_CONTROL1, 0x0025); /* GON=1, DTE=0, REV=1, D1-0=01 */
lcd_write_reg(R_DISP_CONTROL1, 0x0027); /* GON=1, DTE=0, REV=1, D1-0=11 */
sleep(2);
lcd_write_reg(R_DISP_CONTROL1, 0x0037); /* GON=1, DTE=1, REV=1, D1-0=11 */
}
/* LCD init */
void lcd_init_device(void)
{
/* GPO46 is LCD RESET */
or_l(0x00004000, &GPIO1_OUT);
or_l(0x00004000, &GPIO1_ENABLE);
or_l(0x00004000, &GPIO1_FUNCTION);
/* Reset LCD */
and_l(~0x00004000, &GPIO1_OUT);
sleep(1);
or_l(0x00004000, &GPIO1_OUT);
sleep(1);
_display_on();
}
void lcd_enable(bool on)
{
if(display_on!=on)
{
if(on)
{
_display_on();
}
else
{
/** Off sequence according to datasheet, p. 130 **/
lcd_write_reg(R_FRAME_CYCLE_CONTROL, 0x0002); /* EQ=0, 18 clks/line */
lcd_write_reg(R_DISP_CONTROL1, 0x0036); /* GON=1, DTE=1, REV=1, D1-0=10 */
sleep(2);
lcd_write_reg(R_DISP_CONTROL1, 0x0026); /* GON=1, DTE=0, REV=1, D1-0=10 */
sleep(2);
lcd_write_reg(R_DISP_CONTROL1, 0x0000); /* GON=0, DTE=0, D1-0=00 */
lcd_write_reg(R_POWER_CONTROL1, 0x0000); /* SAP2-0=000, AP2-0=000 */
lcd_write_reg(R_POWER_CONTROL3, 0x0000); /* PON=0 */
lcd_write_reg(R_POWER_CONTROL4, 0x0000); /* VCOMG=0 */
/* datasheet p. 131 */
lcd_write_reg(R_POWER_CONTROL1, 0x0001); /* STB=1: standby mode */
display_on=false;
}
}
}
/*** update functions ***/
/* Performance function that works with an external buffer
note that by and bheight are in 8-pixel units! */
void lcd_blit(const fb_data* data, int x, int by, int width,
int bheight, int stride)
{
/* TODO: Implement lcd_blit() */
(void)data;
(void)x;
(void)by;
(void)width;
(void)bheight;
(void)stride;
/*if(display_on)*/
}
/* Line write helper function for lcd_yuv_blit. Write two lines of yuv420.
* y should have two lines of Y back to back.
* bu and rv should contain the Cb and Cr data for the two lines of Y.
* Stores bu, guv and rv in repective buffers for use in second line.
*/
extern void lcd_write_yuv420_lines(const unsigned char *y,
unsigned char *bu, unsigned char *guv, unsigned char *rv, int width);
/* Performance function to blit a YUV bitmap directly to the LCD
* src_x, src_y, width and height should be even
* x, y, width and height have to be within LCD bounds
*/
void lcd_yuv_blit(unsigned char * const src[3],
int src_x, int src_y, int stride,
int x, int y, int width, int height)
{
/* IRAM Y, Cb/bu, guv and Cb/rv buffers. */
unsigned char y_ibuf[LCD_WIDTH*2];
unsigned char bu_ibuf[LCD_WIDTH/2];
unsigned char guv_ibuf[LCD_WIDTH/2];
unsigned char rv_ibuf[LCD_WIDTH/2];
const unsigned char *ysrc, *usrc, *vsrc;
const unsigned char *ysrc_max;
if (!display_on)
return;
width &= ~1; /* stay on the safe side */
height &= ~1;
/* Set start position and window */
lcd_write_reg(R_VERT_RAM_ADDR_POS,((x+xoffset+width-1) << 8) | (x+xoffset));
lcd_write_reg(R_RAM_ADDR_SET, ((x+xoffset) << 8) | y);
lcd_begin_write_gram();
ysrc = src[0] + src_y * stride + src_x;
usrc = src[1] + (src_y * stride >> 2) + (src_x >> 1);
vsrc = src[2] + (src_y * stride >> 2) + (src_x >> 1);
ysrc_max = ysrc + height * stride;
do
{
memcpy(y_ibuf, ysrc, width);
memcpy(y_ibuf + width, ysrc + stride, width);
memcpy(bu_ibuf, usrc, width >> 1);
memcpy(rv_ibuf, vsrc, width >> 1);
lcd_write_yuv420_lines(y_ibuf, bu_ibuf, guv_ibuf, rv_ibuf, width);
ysrc += 2 * stride;
usrc += stride >> 1;
vsrc += stride >> 1;
}
while (ysrc < ysrc_max);
}
/* Update the display.
This must be called after all other LCD functions that change the display. */
void lcd_update(void) ICODE_ATTR;
void lcd_update(void)
{
if(display_on){
/* reset update window */
lcd_write_reg(R_VERT_RAM_ADDR_POS,((xoffset+219)<<8) | xoffset);
/* Copy display bitmap to hardware */
lcd_write_reg(R_RAM_ADDR_SET, xoffset << 8);
lcd_begin_write_gram();
DAR3 = 0xf0000002;
SAR3 = (unsigned long)lcd_framebuffer;
BCR3 = LCD_WIDTH*LCD_HEIGHT*2;
DCR3 = DMA_AA | DMA_BWC(1)
| DMA_SINC | DMA_SSIZE(DMA_SIZE_LINE)
| DMA_DSIZE(DMA_SIZE_WORD) | DMA_START;
while (!(DSR3 & 1));
DSR3 = 1;
}
}
/* Update a fraction of the display. */
void lcd_update_rect(int, int, int, int) ICODE_ATTR;
void lcd_update_rect(int x, int y, int width, int height)
{
unsigned long dma_addr;
if(display_on) {
if(x + width > LCD_WIDTH)
width = LCD_WIDTH - x;
if(width <= 0) /* nothing to do */
return;
if(y + height > LCD_HEIGHT)
height = LCD_HEIGHT - y;
/* set update window */
lcd_write_reg(R_VERT_RAM_ADDR_POS,((x+xoffset+width-1) << 8) | (x+xoffset));
lcd_write_reg(R_RAM_ADDR_SET, ((x+xoffset) << 8) | y);
lcd_begin_write_gram();
DAR3 = 0xf0000002;
dma_addr = (unsigned long)&lcd_framebuffer[y][x];
width *= 2;
for (; height > 0; height--)
{
SAR3 = dma_addr;
BCR3 = width;
DCR3 = DMA_AA | DMA_BWC(1)
| DMA_SINC | DMA_SSIZE(DMA_SIZE_LINE)
| DMA_DSIZE(DMA_SIZE_WORD) | DMA_START;
dma_addr += LCD_WIDTH*2;
while (!(DSR3 & 1));
DSR3 = 1;
}
}
}