rockbox/firmware/target/arm/as3525/sansa-fuzev2/lcd-fuzev2.c

500 lines
14 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2008 by Dave Chapman
* Copyright (C) 2010 by Thomas Martitz
*
* LCD driver for the Sansa Fuze - controller unknown
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "cpu.h"
#include "lcd.h"
#include "file.h"
#include "debug.h"
#include "system.h"
#include "clock-target.h"
/* The controller is unknown, but some registers appear to be the same as the
HD66789R */
static bool display_on = false; /* is the display turned on? */
/* register defines */
#define R_START_OSC 0x00
#define R_DRV_OUTPUT_CONTROL 0x01
#define R_DRV_WAVEFORM_CONTROL 0x02
#define R_ENTRY_MODE 0x03
#define R_COMPARE_REG1 0x04
#define R_COMPARE_REG2 0x05
#define R_DISP_CONTROL1 0x07
#define R_DISP_CONTROL2 0x08
#define R_DISP_CONTROL3 0x09
#define R_FRAME_CYCLE_CONTROL 0x0b
#define R_EXT_DISP_IF_CONTROL 0x0c
#define R_POWER_CONTROL1 0x10
#define R_POWER_CONTROL2 0x11
#define R_POWER_CONTROL3 0x12
#define R_POWER_CONTROL4 0x13
#define R_RAM_ADDR_SET 0x21
#define R_WRITE_DATA_2_GRAM 0x22
#define R_GAMMA_FINE_ADJ_POS1 0x30
#define R_GAMMA_FINE_ADJ_POS2 0x31
#define R_GAMMA_FINE_ADJ_POS3 0x32
#define R_GAMMA_GRAD_ADJ_POS 0x33
#define R_GAMMA_FINE_ADJ_NEG1 0x34
#define R_GAMMA_FINE_ADJ_NEG2 0x35
#define R_GAMMA_FINE_ADJ_NEG3 0x36
#define R_GAMMA_GRAD_ADJ_NEG 0x37
#define R_GAMMA_AMP_ADJ_RES_POS 0x38
#define R_GAMMA_AMP_AVG_ADJ_RES_NEG 0x39
#define R_GATE_SCAN_POS 0x40
#define R_VERT_SCROLL_CONTROL 0x41
#define R_1ST_SCR_DRV_POS 0x42
#define R_2ND_SCR_DRV_POS 0x43
#define R_HORIZ_RAM_ADDR_POS 0x44
#define R_VERT_RAM_ADDR_POS 0x45
/* Flip Flag */
#define R_ENTRY_MODE_HORZ_NORMAL 0x7030
#define R_ENTRY_MODE_HORZ_FLIPPED 0x7000
static unsigned short r_entry_mode = R_ENTRY_MODE_HORZ_NORMAL;
#define R_ENTRY_MODE_VERT 0x7038
#define R_ENTRY_MODE_SOLID_VERT 0x1038
#define R_ENTRY_MODE_VIDEO_NORMAL 0x7038
#define R_ENTRY_MODE_VIDEO_FLIPPED 0x7018
/* Reverse Flag */
#define R_DISP_CONTROL_NORMAL 0x0004
#define R_DISP_CONTROL_REV 0x0000
static unsigned short r_disp_control_rev = R_DISP_CONTROL_NORMAL;
static const int xoffset = 20;
static inline void lcd_delay(int x)
{
do {
asm volatile ("nop\n");
} while (x--);
}
static void as3525_dbop_init(void)
{
CCU_IO |= 1<<12;
CGU_DBOP |= (1<<4) | (1<<3) | AS3525_DBOP_DIV;
DBOP_TIMPOL_01 = 0xE12FE12F;
DBOP_TIMPOL_23 = 0xE12F0036;
DBOP_CTRL = 0x41004;
DBOP_TIMPOL_23 = 0x60036;
DBOP_CTRL = 0x51004;
DBOP_TIMPOL_01 = 0x60036;
DBOP_TIMPOL_23 = 0xA12FE037;
}
static inline void dbop_set_mode(int mode)
{
int delay = 10;
unsigned long ctrl = DBOP_CTRL;
int words = (ctrl >> 13) & 3; // bits 14:13
if (mode == 32 && words != 2)
DBOP_CTRL = (ctrl & ~(1<<13)) | (1<<14); // 4 serial words
else if (mode == 16 && words != 1)
DBOP_CTRL = (ctrl & ~(1<<14)) | (1<<13); // 2 serial words
else
return;
while(delay--) asm volatile("nop");
}
static void dbop_write_data(const int16_t* p_bytes, int count)
{
const int32_t *data;
if ((intptr_t)p_bytes & 0x3 || count == 1)
{ /* need to do a single 16bit write beforehand if the address is
* not word aligned or count is 1, switch to 16bit mode if needed */
dbop_set_mode(16);
DBOP_DOUT16 = swap16(*p_bytes++);
if (!(--count))
return;
}
/* from here, 32bit transfers are save
* set it to transfer 4*(outputwidth) units at a time,
* if bit 12 is set it only does 2 halfwords though (we never set it)
* switch to 32bit output if needed */
dbop_set_mode(32);
data = (int32_t*)p_bytes;
while (count > 1)
{
int pixels = *data++;
pixels = (swap16(pixels >> 16) << 16) | (swap16(pixels & 0xffff));
DBOP_DOUT32 = pixels;
count -= 2;
/* Wait if push fifo is full */
while ((DBOP_STAT & (1<<6)) != 0);
}
/* While push fifo is not empty */
while ((DBOP_STAT & (1<<10)) == 0);
/* due to the 32bit alignment requirement or uneven count,
* we possibly need to do a 16bit transfer at the end also */
if (count > 0)
dbop_write_data((int16_t*)data, 1);
}
static void lcd_write_cmd(unsigned short cmd)
{
volatile int i;
for(i=0;i<0x20;i++) asm volatile ("nop\n");
DBOP_CTRL |= 1<<13;
DBOP_CTRL &= ~(1<<14); // 2 serial words
DBOP_CTRL &= ~(1<<12); // 8 bit data width
DBOP_TIMPOL_23 = 0xA12F0036;
DBOP_DOUT = swap16(cmd);
while ((DBOP_STAT & (1<<10)) == 0);
for(i=0;i<0x20;i++) asm volatile ("nop\n");
DBOP_TIMPOL_23 = 0xA12FE037;
}
static void lcd_write_reg(int reg, int value)
{
int16_t data = value;
lcd_write_cmd(reg);
dbop_write_data(&data, 1);
}
/*** hardware configuration ***/
void lcd_set_contrast(int val)
{
(void)val;
}
void lcd_set_invert_display(bool yesno)
{
r_disp_control_rev = yesno ? R_DISP_CONTROL_REV :
R_DISP_CONTROL_NORMAL;
if (display_on)
{
lcd_write_reg(R_DISP_CONTROL1, 0x0013 | r_disp_control_rev);
}
}
#ifdef HAVE_LCD_FLIP
static bool display_flipped = false;
/* turn the display upside down */
void lcd_set_flip(bool yesno)
{
display_flipped = yesno;
r_entry_mode = yesno ? R_ENTRY_MODE_HORZ_FLIPPED :
R_ENTRY_MODE_HORZ_NORMAL;
}
#endif
static void _display_on(void)
{
/* Initialise in the same way as the original firmare */
lcd_write_reg(R_DISP_CONTROL1, 0);
lcd_write_reg(R_POWER_CONTROL4, 0);
lcd_write_reg(R_POWER_CONTROL2, 0x3704);
lcd_write_reg(0x14, 0x1a1b);
lcd_write_reg(R_POWER_CONTROL1, 0x3860);
lcd_write_reg(R_POWER_CONTROL4, 0x40);
lcd_write_reg(R_POWER_CONTROL4, 0x60);
lcd_write_reg(R_POWER_CONTROL4, 0x70);
lcd_write_reg(R_DRV_OUTPUT_CONTROL, 277);
lcd_write_reg(R_DRV_WAVEFORM_CONTROL, (7<<8));
lcd_write_reg(R_ENTRY_MODE, r_entry_mode);
lcd_write_reg(R_DISP_CONTROL2, 0x01);
lcd_write_reg(R_FRAME_CYCLE_CONTROL, (1<<10));
lcd_write_reg(R_EXT_DISP_IF_CONTROL, 0);
lcd_write_reg(R_GAMMA_FINE_ADJ_POS1, 0x40);
lcd_write_reg(R_GAMMA_FINE_ADJ_POS2, 0x0687);
lcd_write_reg(R_GAMMA_FINE_ADJ_POS3, 0x0306);
lcd_write_reg(R_GAMMA_GRAD_ADJ_POS, 0x104);
lcd_write_reg(R_GAMMA_FINE_ADJ_NEG1, 0x0585);
lcd_write_reg(R_GAMMA_FINE_ADJ_NEG2, 255+66);
lcd_write_reg(R_GAMMA_FINE_ADJ_NEG3, 0x0687+128);
lcd_write_reg(R_GAMMA_GRAD_ADJ_NEG, 259);
lcd_write_reg(R_GAMMA_AMP_ADJ_RES_POS, 0);
lcd_write_reg(R_GAMMA_AMP_AVG_ADJ_RES_NEG, 0);
lcd_write_reg(R_1ST_SCR_DRV_POS, (LCD_WIDTH - 1));
lcd_write_reg(R_2ND_SCR_DRV_POS, 0);
lcd_write_reg(R_HORIZ_RAM_ADDR_POS, (LCD_WIDTH - 1));
lcd_write_reg(R_VERT_RAM_ADDR_POS, 0);
lcd_write_reg(0x46, (((LCD_WIDTH - 1) + xoffset) << 8) | xoffset);
lcd_write_reg(0x47, (LCD_HEIGHT - 1));
lcd_write_reg(0x48, 0x0);
lcd_write_reg(R_DISP_CONTROL1, 0x11);
lcd_write_reg(R_DISP_CONTROL1, 0x13 | r_disp_control_rev);
display_on = true; /* must be done before calling lcd_update() */
lcd_update();
}
void lcd_init_device(void)
{
as3525_dbop_init();
GPIOA_DIR |= (0x20|0x1);
GPIOA_DIR &= ~(1<<3);
GPIOA_PIN(3) = 0;
GPIOA_PIN(0) = 1;
GPIOA_PIN(4) = 0;
GPIOB_DIR |= 0xf;
GPIOB_PIN(0) = 1<<0;
GPIOB_PIN(1) = 1<<1;
GPIOB_PIN(2) = 1<<2;
GPIOB_PIN(3) = 1<<3;
GPIOA_PIN(4) = 1<<4;
GPIOA_PIN(5) = 1<<5;
_display_on();
}
#if defined(HAVE_LCD_ENABLE)
void lcd_enable(bool on)
{
if (display_on == on)
return;
if(on)
{
lcd_write_reg(R_START_OSC, 1);
lcd_write_reg(R_POWER_CONTROL1, 0);
lcd_write_reg(R_POWER_CONTROL2, 0x3704);
lcd_write_reg(0x14, 0x1a1b);
lcd_write_reg(R_POWER_CONTROL1, 0x3860);
lcd_write_reg(R_POWER_CONTROL4, 0x40);
lcd_write_reg(R_POWER_CONTROL4, 0x60);
lcd_write_reg(R_POWER_CONTROL4, 112);
lcd_write_reg(R_DISP_CONTROL1, 0x11);
lcd_write_reg(R_DISP_CONTROL1, 0x13 | r_disp_control_rev);
display_on = true;
lcd_update(); /* Resync display */
send_event(LCD_EVENT_ACTIVATION, NULL);
sleep(0);
}
else
{
lcd_write_reg(R_DISP_CONTROL1, 0x22);
lcd_write_reg(R_DISP_CONTROL1, 0);
lcd_write_reg(R_POWER_CONTROL1, 1);
display_on = false;
}
}
#endif
#if defined(HAVE_LCD_ENABLE) || defined(HAVE_LCD_SLEEP)
bool lcd_active(void)
{
return display_on;
}
#endif
/*** update functions ***/
/* FIXME : find the datasheet for this RENESAS controller so we identify the
* registers used in windowing code (not present in HD66789R) */
/* Set horizontal window addresses */
static void lcd_window_x(int xmin, int xmax)
{
xmin += xoffset;
xmax += xoffset;
lcd_write_reg(R_HORIZ_RAM_ADDR_POS + 2, (xmax << 8) | xmin);
lcd_write_reg(R_RAM_ADDR_SET - 1, xmin);
}
/* Set vertical window addresses */
static void lcd_window_y(int ymin, int ymax)
{
lcd_write_reg(R_VERT_RAM_ADDR_POS + 2, ymax);
lcd_write_reg(R_VERT_RAM_ADDR_POS + 3, ymin);
lcd_write_reg(R_RAM_ADDR_SET, ymin);
}
static unsigned lcd_yuv_options = 0;
void lcd_yuv_set_options(unsigned options)
{
lcd_yuv_options = options;
}
/* Line write helper function for lcd_yuv_blit. Write two lines of yuv420. */
extern void lcd_write_yuv420_lines(unsigned char const * const src[3],
int width,
int stride);
extern void lcd_write_yuv420_lines_odither(unsigned char const * const src[3],
int width,
int stride,
int x_screen, /* To align dither pattern */
int y_screen);
/* Performance function to blit a YUV bitmap directly to the LCD
* src_x, src_y, width and height should be even
* x, y, width and height have to be within LCD bounds
*/
void lcd_blit_yuv(unsigned char * const src[3],
int src_x, int src_y, int stride,
int x, int y, int width, int height)
{
unsigned char const * yuv_src[3];
off_t z;
/* Sorry, but width and height must be >= 2 or else */
width &= ~1;
height >>= 1;
z = stride*src_y;
yuv_src[0] = src[0] + z + src_x;
yuv_src[1] = src[1] + (z >> 2) + (src_x >> 1);
yuv_src[2] = src[2] + (yuv_src[1] - src[1]);
#ifdef HAVE_LCD_FLIP
lcd_write_reg(R_ENTRY_MODE,
display_flipped ? R_ENTRY_MODE_VIDEO_FLIPPED : R_ENTRY_MODE_VIDEO_NORMAL
);
#else
lcd_write_reg(R_ENTRY_MODE, R_ENTRY_MODE_VIDEO_NORMAL);
#endif
lcd_window_x(x, x + width - 1);
if (lcd_yuv_options & LCD_YUV_DITHER)
{
do
{
lcd_window_y(y, y + 1);
lcd_write_cmd(R_WRITE_DATA_2_GRAM);
lcd_write_yuv420_lines_odither(yuv_src, width, stride, x, y);
yuv_src[0] += stride << 1; /* Skip down two luma lines */
yuv_src[1] += stride >> 1; /* Skip down one chroma line */
yuv_src[2] += stride >> 1;
y += 2;
}
while (--height > 0);
}
else
{
do
{
lcd_window_y(y, y + 1);
lcd_write_cmd(R_WRITE_DATA_2_GRAM);
lcd_write_yuv420_lines(yuv_src, width, stride);
yuv_src[0] += stride << 1; /* Skip down two luma lines */
yuv_src[1] += stride >> 1; /* Skip down one chroma line */
yuv_src[2] += stride >> 1;
y += 2;
}
while (--height > 0);
}
}
/* Update the display.
This must be called after all other LCD functions that change the display. */
void lcd_update(void)
{
if (!display_on)
return;
lcd_write_reg(R_ENTRY_MODE, r_entry_mode);
lcd_window_x(0, LCD_WIDTH - 1);
lcd_window_y(0, LCD_HEIGHT - 1);
lcd_write_cmd(R_WRITE_DATA_2_GRAM);
lcd_update_rect(0,0, LCD_WIDTH, LCD_HEIGHT);
}
/* Update a fraction of the display. */
void lcd_update_rect(int x, int y, int width, int height)
{
const fb_data *ptr;
if (!display_on)
return;
/* nothing to draw? */
if ((width <= 0) || (height <= 0) || (x >= LCD_WIDTH) ||
(y >= LCD_HEIGHT) || (x + width <= 0) || (y + height <= 0))
return;
if (x < 0)
{ /* clip left */
width += x;
x = 0;
}
if (y < 0)
{ /* clip top */
height += y;
y = 0;
}
if (x + width > LCD_WIDTH)
width = LCD_WIDTH - x; /* clip right */
if (y + height > LCD_HEIGHT)
height = LCD_HEIGHT - y; /* clip bottom */
lcd_write_reg(R_ENTRY_MODE, r_entry_mode);
/* we need to make x and width even to enable 32bit transfers */
width = (width + (x & 1) + 1) & ~1;
x &= ~1;
lcd_window_x(x, x + width - 1);
lcd_window_y(y, y + height -1);
lcd_write_cmd(R_WRITE_DATA_2_GRAM);
ptr = &lcd_framebuffer[y][x];
do
{
dbop_write_data(ptr, width);
ptr += LCD_WIDTH;
}
while (--height > 0);
}